VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF CIVIL ENGINEERING QUESTION BANK

IV SEMESTER CE 8301STRENGTH OF MATERIALS I Regulation – 2017 Academic Year 2018 – 19 Prepared by

Mr.M.Murugan, Assistant Professor/CIVIL Mr., G.R.IyyappanAssistant Professor/ CIVIL

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF CIVIL ENGINEERING <u>QUESTION BANK</u>

SUBJECT : CE 8301 STRENGTH OF MATERIALS I SEM / YEAR : III / II

UNIT 1 STRESS, STRAIN AND DEFORMATION OF SOLIDS

Simple Stresses and strains – Elastic constants - Relationship between elastic constants – Stress Strain Diagram – Ultimate Stress – Yield Stress – Deformation of axially loaded member - Composite Bars -Thermal Stresses – State of Stress in two dimensions – Stresses on inclined planes – Principal Stresses and Principal Planes – Maximum shear stress - Mohr's circle method.

	<u>PART – A</u>				
Q.No	Questions	BT Level	Competence		
1	Define Poisson's ratio.	BT-1	Remember		
2	Define Hook's Law.	BT-1	Remember		
3	Define stress & strain.	BT-1	Remember		
4	Define (i) modulus of elasticity (ii) modulus of rigidity	BT-4	Analyze		
5	Define (i) factor of safety (ii) stability.	BT-4	Analyze		
6	State bulk modulus.	BT-1	Remember		
7	What is mean by strain energy density?	BT-2	Understand		
8	Draw the stress strain curve for mild steel.	BT-6	Create		
9	State relationship between modulus of elasticity& modulus of rigidity.	BT-3	Application		
10	What do you Understand by a compound bar?	BT-1	Remember		
11	What are the type of elastic constants	BT-1	Remember		
12	Write two equations used to find the forces in compound bars made of	BT-1	Remember		
	two materials subjected to tension.				
13	Determine the Poisson's ratio and bulk modulus of a material for which	BT-2	Understand		
	young's modulus is1.2 x 105 N /mm2and modulus of rigidity is 4.8 x				
	104 N/mm2.				
14	A brass rod 2 m long is fixed at both ends. if the thermal stress is not to	BT-2	Understand		
	exceed 76.5 /mm2,calculate the temperature through which the rod				
	should be heated. Take the values of α and E as 17 x10-6 /k and 90Gpa				
	respectively.				
15	Define principal stress and principal plans.	BT-5	Evaluate		
16	Write the concept used for finding stresses in compound bars.	BT-1	Remember		
17	Explain the effect of change of temperature in a composite bar.	BT-5	Evaluate		
18	Write the expressions for a normal stress on an inclined plane in aa block	BT-3	Application		
	which is subjected to two mutually perpendicular normal stress and shear				
	stress?				

19	Write short notes on mohr's circle method and uses.	BT-3	Application
20	At a point in a strained materials is subjected to a compressive stress of	BT-2	Understand
	100 N/mm ² and shear stress of 60 N/mm ² .Determine graphically or		
	otherwise the principal stress.		
1	$\frac{PART-B}{PART-B}$	DT 1	Apolyzo
1	A tenshe test was conducted on a find steel bar. The following data was	D1-4	Allaryze
	obtained from the test:		
	i. Diameter of the steel bar = 4 cm		
	ii. Gauge length of the bar = 22 cm		
	iii. Load at elastic limit = 250 kN		
	iv. Extension at a load of $160 \text{ kN} = 0.235 \text{ mm}$		
	v. Maximum load = 390 kN		
	vi. Total extension = 70 mm		
	vii. Diameter of rod at failure = 2.35 cm		
	Determine: a) The Young's modulus (4 marks)		
	b) The stress at elastic limit (4 marks)		
	c) The percentage of elongation (3 marks)		
	d) The percentage decrease in area (3 marks)		
2	(i) Find the stresses in each section of the bar shown in fig.	BT-2	Understand
_	(ii) Find the total extension of the bar shown in fig.E= $2.1 \times 10^5 \text{ N/mm}^2$	D1 2	Chaerstand
	В		
	A 70 kN < 20 mm dia 30 mm dia 50 mm dia > 70 kN		
	250 mm		
	220 mm		
3	Estimate the values of change in length, breadth and thickness of a steel	BT-2	Understand
	bar 4.2m long, 35mm wide and 25mm thick. When subjected to an axial		
	pull of 130kN in the direction of its length. Take E=200Gpa and		
	poisson's ratio = 0.3		
4	Three bars made of copper, zinc and aluminium are of equal length and	BT-5	Evaluate
	have cross section 555, 705, and 1020 sq.mm respectively. They are		
	rigidly connected at their ends. If this compound member is subjected to		
	a longitudinal pull of 255kN, estimate the proportional of the load carried		
	on each rod and the2induced stresses. Take the value of E for copper =		
	1.3×10^{5} N/mm ² , for zinc = 1×10^{5} N/mm ² and for aluminium = 0.8×10^{5}		
	N/mm ²		
5	A bar of 25mm diameter is subjected to a pull of 40kN. The measured	BT-2	Understand
	extension on gauge length of 200mm is 0.085mm and the change in		
	diameter is 0.003mm. Estimate the values of Poisson's ratio and the three		

	moduli		
6	a) Obtain a relation for change in length of a bar hanging freely under its	BT-5	Evaluate
	own weight (7		
	marks)		
	b)Derive the relationship between modulus of elasticity and modulus of		
	rigidity (6		
	marks)		
7	Derive E=2G(1+(1/3)), (ii) E=3K(1-(2/3)).	BT-6	Create
8	A reinforced concrete column 500mm x 500mm in section is rein forced	BT-5	Evaluate
	with 4 steel bars of 25mm diameter, one in each corner, the column is		
	bars. Take E for steel $-210 \times 10^3 \text{N/mm}^2$ and E for concrete -14		
	$v_{10}^{3}N/mm^{2}$		
9	Find the value of P and the change in length of each component and the	BT-2	Understand
	total change in length of the bar shown in figure.		
	ВС		
	Α Γ		
	$ \rightarrow P $		
	130 KN 룾 25 mm dia 120 KN 20 mm dia	_	
	30 mm dia		
	800 mm 1600 mm 400 mm		
10	A load of 200N falls through a height of 20mm onto a collar rigidly	ВТ 2	Understand
10	attached to the lower end of a vertical bar 2m long and 1.5 sq cm c/s	D1-2	Onderstand
	attached to the lower end of a vertical bar 2111 long and 1.5 sq. cm c/s		
	area. The upper end of vertical bar is fixed. Take $E = 2x10$ N/mm . Find		
	a) Maximum instantaneous stress (4 marks)		
	1. Maximum instantaneous strain(3 marks)2. Maximum instantaneous strain(3 marks)		
	2. Maximum instantaneous elongation (3 marks)		
11	3. Strain energy (5 marks)	DT 2	Amplication
11	A steel rod of 5.6cm diameter and 5m long is connected to two grips and	B1-3	Application
	the rod is maintained at a temperature of 105 [°] C. Determine the stress and		
	pull exerted when the temperature falls to 40° C if,		
	i. The ends do not yield (7 marks)		
	ii. The ends yield by 0.13cm (6 marks)		
12	A tensile load of 55N is acting on a rod of diameter 55mm and length	BT-1	Remember
	4.5m. A bore of diameter 25mm is made centrally on the rod. To what		
	length the rod should be bored so that the total extension will increase		
	35% under the same tensile load. Take $E = 2x10^5 \text{ N/mm}^2$		

13	A steel tube of 30mm external diameter and 20mm internal diameter encloses a copper rod of 15.5mm diameter to which it is rigidly joined at each end. If, at a temperature of 10° C there is no longitudinal stress, calculate the stresses in the rod and the tube when the temperature is raised to 200° C. TakeEs = 2.1×10^{5} N/mm ² , Ec = 1×10^{5} N/mm ² , Co-efficient of linear expansion 11×10^{-6} per °C and 18×10^{-6} per °C	BT-4	Analyze
14	The steel plate 300mm long ,60mm wide and 30 mm deep is acted upon by the forces shown in figure. Determine the change in volume. Take E = 200KN/mm2 and Poisson's ratio=0.3.	ВТ-4 50 кг	Analyze
	80 KN 300 mm		
	<u>PART –C</u>		
1	A reinforced concrete column is 300mm x 300mm in section. The column is provided with 8 bars each of 20mm diameter. The column carries a load of 360kN. Find the stresses in concrete and the steel bars. Take Es=210 GN/m ² and Ec=14 GN/m ²	BT-2	Understand
2	A C.I plate, 300mm long and of 30mm x 50 mm uniform cross section, is acted upon by the following forces uniformly. $25kN(T)$, $35kN(T)$, and $45kN(T)$ in x,y and z axis respectively. Determine the change in volume of the plate. E=140GN/m ² and m=4	BT-4	Analyze
3	Draw stress – strain diagram for mild steel and for a brittle material and indicate salient points.	BT-6	Create
4	A compound bar is made of a central steel plate 60mm wide and 10mm thick to which copper plates 40mm wide and 5mm thick are connected rigidly on each side. The length of the bar at normal temperature is 1m. If the temperature is raised by 80°c, determine the stresses in each metal and change in length. Take the value of E for steel = 2×10^{5} N/mm ² , for copper = 1×10^{5} N/mm ² . Coefficient of thermal expansion for steel and copper are 12×10^{-6} per °c and 17 x 10 ⁻⁶ per °c	BT-2	Application

UNIT – 2 TRANSFER OF LOADS AND STRESSES IN BEAMS

Types of loads, supports, beams – concept of shearing force and bending moment - Relationship between intensity of load, Shear Force and Bending moment - Shear Force and Bending Moment Diagrams for Cantilever, simply supported and overhanging beams with concentrated load, uniformly distributed load, uniformly varying load and concentrated moment. Theory of Simple Bending – Stress Distribution due to bending moment and shearing force - Flitched Beams - Leaf Springs. PART - A

Q.No	Questions	BT Level	Competence	
1	How to Classify the beams according to its supports?	BT-4	Analyze	
2	Discuss about shear force and bending moment.	BT-2	Understand	
3	Explain what do you meant by point of contra flexure?	BT-6		
4	Differentiate between hogging and sagging bending moment.	BT-2	Understand	
5	Define the term (i) Point of contrafleure (ii) Maximum bending moment	BT-1	Remember	
6	Draw the S.F. & B.M. diagrams for cantilever beam of length L carrying a UDL of W/unit length throughout its span.	BT-3	Application	
7	Draw the SF and BM diagrams for a cantilever beam 2m long carrying a gradually varying load from zero @ free end to 2500N/m at the fixed end	BT-5	Evaluate	
8	A SSB of span 4m is subjected to audl of 2 kN/m over its entire length. Sketch the bending moment diagram for the beam.	BT-5	Evaluate	
9	Draw the SFD and BMD for the overhanging beam carrying UDL throughout its length and supported at 'a' distance from end A and 'b' distance from end B.	BT-3	Application	
10	Summarize and sketch the types of supports used for a beam indicating the reactions in each case.	BT-2	Understand	
11	Write the theory of simple bending equation.	BT-4	Analyze	
12	Discuss about moment of resistance of a beam?	BT-2	Understand	
13	Define (i) shear stress distribution (ii) section modulus.	BT-1	Remember	
14	Write any four assumptions in the theory of simple bending?	BT-4	Analyze	
15	What do you Understand by neutral axis & neutral plane? How do you locate Neutral axis?	BT-1	Remember	
16	Write down the expression for shear stress distribution in a beam subjected to shear force F.	BT-4	Analyze	
17	How would you find the bending stress in unsymmetrical sections?	BT-1	Remember	
18	A beam subjected to a bending stress of $5N/mm^2$ and the section modulus is 3530 cm^3 . Calculate the moment of resistance of the beam.	BT-3	Application	
19	Discover the function of flitched beams. Why it is used?	BT-4	Analyze	
20	What is meant by Laminated spring and what are the uses of leaf springs?	BT-2	Understand	
	PART -B		1	
1	A beam of length 10 m is simply supported at its ends carries two concentrated loads of 5 kN each at a distance of 3 m and 7 m from the left support and also a UDL load of 1 kN/m between the point loads.	BT-2	Understand	

	Draw the SFD and BMD. calculate the maximum bending moment.		
2	A cantilever beam of 2 m long carries a uniformly distributed load of	BT-2	Understand
	1.5 kN/m over a length of 1.6 m from the fixed end and 2 kN at free		
2	end. Draws shear force and bending moment diagrams for the beam.	DT 5	T
3	Derive an expression for shear force and bending moment of a simply	BT-5	Evaluate
	with near sketch		
4	Alayse the beam as shown in fig and draw the the S.F and B.M	BT-3	Application
	diagram.		rr ·····
	4 kN/m 5 kN 3 kN/m		
	A B C D E		
	3 m 1 m 1 m 2 m		
5	Label the shear force and bending moment diagram for the beam	BT-1	Remember
	shown in Fig		
	20 kN/m 30 kN 100 kN.m		
	-terrer		
	A C D AB		
	3m 15m K 1m		
6	Locate and Plot the shear force and bending moment diagram for the	BT-1	Remember
	beam given in Fig.+		
	12 KN/m 20 KN		
	A B C D		
	$k^2m - k^2 - 4m - k^2 - 3m - k$		
7	The intensity of loading on a simply supported beam of 7m span	BT-3	Application
	increases gradually from 8.25kN/m run at one end to 2.5kN/m run at the other end. Find the position and the amount of maximum hending		
	moment. Also Sketch the Shear force and bending moment diagram		
8	Derive an expression for $\frac{M}{\sigma} - \frac{\sigma}{\varepsilon} - \frac{E}{\varepsilon}$	BT-3	Application
	$\frac{I}{I} = \frac{Y}{R}$		
9	A simply supported beam of span 4m carries a udl of 6kN/m over the	ВТ-4	Analyze
	entire span. If the maximum allowable stress due to bending is restricted		
	to 150 N/mm^2 , determine the cross sectional dimensions if the section		
	is;		
	(i) Rectangular with depth twice the breadth (4 marks)		
	(ii) Solid circular section (5 marks)		
	· · · · · · · · · · · · · · · · · · ·		

	(iii) Hollow circular section having a diameter ratio of 0.6 (4		
	marks)		
10		DT 7	
10	The cross section of T beam is as follows: Flange thickness = $10mm$;	B1-5	Evaluate
	which of the finance = 100mm; thickness of the web = 10mm; depth of the web = 120mm; If a shear force of $2kN$ is eating at a particular		
	the web = 12011111, If a shear force of 2kN is acting at a particular section of the beam design and draw the shear stress distribution		
	section of the beam design and draw the shear stress distribution		
11	A 100mm X 200mm rolled steel I section has the flanges 12mm thick	BT-5	Evaluate
11	and web 10mm thick. Formulate	DIS	Lvaluate
	(i) The safe udl the section can carry over a span of 6m if the		
	permissible stress is limited to 150 N/mm^2 (7 marks)		
	(ii) The maximum bending stress when the beam carries a central point		
	load of 20kN. (6 marks)		
12	A simply supported beam of span 6m is subjected to a UDL of 15kn/m	BT-4	Analyze
	over its entire length. The cross section of beam is 20 cm wide and		
	30cm deep. Sketch the variation of bending stress and shear stress in		
	the beam cross section		
13	The cast iron beam is of T- section as show in the figure. The beam is	BT-3	Application
	simply supported on a span of 6m. thebeam carries a uniformly		
	distributed load of 2KN/m on the entire length (span). Determine the		
	maximum tenshe and maximum compressive stress.		
	100 mm		
	20 mm		
	80 mm		
14	A rectangular beam 300 mm deep is simply supported over the span of	BT-6	Creating
	4 m. Determine the uniformly distributed load per metre which the		
	beam may carry, if the bending stress should not exceed 120N/mm ⁴ . Take $I=8\times10^4$ mm ⁴		
	PART.C		
1	A captilever beam of 3 m long carries a uniformly distributed load of	BT-2	Understand
1.	10 kN/m over a length of 2 m from the free end. Draw shear force and	D1-2	Understallu
	bending moment diagrams for		
	the beam.		
2.	Derive an expression for shear force and bending moment of a simply	BT-4	Analyze
	supported beam carrying a UDL of w/metre length throughout its span		
	with neat sketch of SFD and BMD		
3.	Draw shear force and bending moment diagrams for the beam shown in	BT-1	Remember

	fig. 6 kN 4 B 2 kN/m 2 kN/m		
4.	Find out the section modulus for the following a) Rectangular section(3 marks)	BT-3	Application
	b) Hollow rectangular section(4 marks)		
	c) Circular section(3 marks)		
	d) Hollow circular section(3 marks)		

UNIT – 3 DEFLECTION OF BEAMS

Elastic curve – Governing differential equation - Double integration method - Macaulay's method - Area moment method - conjugate beam method for computation of slope and deflection of determinant beams. Part A

	Part A				
Q.No	Questions	BT Level	Competence		
1	Illustrate what is meant by deflection of beam with neat sketch.	BT-2	Understand		
2	Recall the methods for finding out the slope and deflection at a section?	BT-1	Remember		
3	Analyze double integration method.	BT-4	Analyze		
4	Distinguish between actual beam and conjugate beam.	BT-6	Create		
5	State the two theorems in moment area method.	BT-1	Remember		
6	Give the differential relation between bending moment, slope and the deflection?	BT-3	Application		
7	Give the maximum slope and maximum deflection of a cantilever beam subjected to UDL?	BT-1	Remember		
8	Illustrate when Macaulay's method is preferred?	BT-2	Understand		
9	When do you prefer Moment area method?	BT-1	Remember		
10	Identify the values of slope and deflection for a cantilever beam of length 'L' subjected to Moment 'M' at the free end?	BT-3	Application		
11	Distinguish between statically determinate and indeterminate beams.	BT-2	Understand		
12	State the theorems of conjugate beam method.	BT-1	Remember		
13	Formulate the slope at the support for a simply supported beam of length L, constant EI and carrying central concentrated load?	BT-5	Evaluate		
14	Justify why moment method is more useful when compared with double integration?	BT-6	Create		
15	Write down the formula used to find the deflection of beam by Moment-Area method.	BT-4	Analyze		
16	Compare and contrast working stress & allowable stress	BT-2	Understand		
17	Write the maximum value of deflection for a cantilever beam of length L, constant EI and carrying concentrated load W at the end.	BT-4	Analyze		
18	Write the relation between deflection of bending moment and flexural rigidity for a beam.	BT-4	Analyze		
19	Recall method of Singularity functions.	BT-1	Remember		
20	Among 4 methods of analyzing the beams for deflection and slope, relate the situations when each methods are used.	BT-2	Understand		
	PART –B				
1	 A beam of length 5 m is simply supported at its ends and carries two point loads of 47 kN and 30 kN at a distance of 1.1 m and 3.2 m respectively from the left support. Solve for (i) Deflection under each load (4 marks) 	BT-5	Evaluate		
	(ii) Maximum deflection (4 marks)				
	(iii) The point at which the maximum deflection occurs. (5 marks) Take I= 85×10^6 mm ⁴ E = 2×10^5 N/mm ²				

2	A beam is simply supported as its ends over a span of 10 m and carries two	BT-1	Remember
	concentrated loads of 100 kN and 60 kN at a distance of 2 m and 5 m		
	respectively from the left support. calculate (i) slope at the left support; (ii)		
	slop and deflection under the 100 kN load. Assume $EI = 36 \times 10^4 \text{ kN} \text{-M}^2$		
3	For the beam shown in fig find the deflection at the B. Use Macaulay's	BT-4	Analyze
	method.		
	$\begin{bmatrix} 3.0m \\ 4 \\ 15kN \\ C \\ C \\ D \\ B \\ C \\ C$		
	→→→ I ← →→I		
4	Analyze the slope at the supports and deflection of the beam shown in figure. Take $E=2x10^5 N/mm^2$ and $I=20x10^6 mm^4$. Use Macaulay's method	BT-4	Analyze
	IDKN 8KN A L T B C T D		
	$k^2m + 4m - k^2m^2$		
5	A cantilever of length 2.5m is loaded with an udlof10 kN/m over a length 1.5m	BT-6	Create
	from the fixed end and point load 2KIN at 2m from free end. Use Moment area		
	Design the beam for slope (6 morks)		
	 a) Design the beam for deflection at the free and (7 merbe) 		
	b) Design the deam for deflection at the free end. (/ marks)		

6	Indicate and solve the slope and deflection at the free end of the	BT-2	Understand
	cantilever shows in fig. Take $EI = 1 \times 10^{10} \text{kN/mm}^2$		
	$A = 4m \xrightarrow{C} 1m \xrightarrow{D} 2m \xrightarrow{KN/m} B$		
7	Using conjugate beam method, obtain the slope and deflections at A, B, C and	BT-5	Evaluate
	D of the beam shown in fig. Take $E = 200$ GPa and $I = 2 \times 10^{-2}$ m ⁴ .		
	150kN 300kN		
	A EI 3EI 2EI		
	10m 10m 10m		
8	For the beam shown in fig Predict the deflection at the B. Use Macaulay's	BT-6	Create
	method		

	100 kN 20 kN		
	A B C		
	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		
9	Obtain the deflection under the greater load for the beam shown in fig using	BT-6	Create
	the Moment Area method.		
	60kN 120kN		
	2m 3m 1m		
10	A hear AD of snor (m is simply suggested at its ands is subjected to a point	DT 2	I in denote a d
10	I had of 20kN at C at a distance of 2m from left end. Using moment area	D1-2	Understand
	method. Predict the deflection at the point C, slope at the points A, B and C.		
	Take $I = 6 \times 10^8 \text{ mm}^4$ and $E = 200 \text{GPa}$		
11	A beam of leangth 6m is simply supported at its ends and carries two point	BT-3	Application
	loads bof 48 kN and 40 kN at a distance of 1m & 3m respectively.	-	
	(i) Deflection under each load		
	(ii) Maximum deflection		
	(iii) take point at which the max deflection occues. Take I= $85 \times 10^{\circ}$ mm ⁴ E =		
10	2×10° N/mm ² .	DT 1	Demonstration
12	A simply supported beam carrying a triangular distributed load. Label	B1-1	Remember
	b) deflection at Centre (6 marks)		
	b) defice ton at centre (o marks)		
13	Derive an expression for deflection of a simply supported beam carrying an	BT-4	Analyze
1.4	eccentric point load.	DT 4	Ameliume
14	A dealin of 4m span is carrying a point load of 40kN at a distance of 5m from the left end. Calculate the slope at the supports and deflection under the load	D1-4	Anaryze
	Also calculate the maximum deflection $EI= 2.6 \times 10^7 N m^2$		
	PART-C		
1	Derive an expression for slope and deflection of a cantilever beam carrying point load at free end	BT-2	Understand
2	Derive an expression for deflection of a simply supported beam carrying UDL	BT-4	Analyze
	throughout its span		·
3	A simply supported beam of length 8 m is loaded as shown in fig. calculate	BT-3	Application
	the slope and deflection at each point by the following methods. using any		
	one method.		
	Conjugate beam method. Assume $F = 2.1 \times 10^5 \text{ N/mm}^2$ and $I = 78 \times 10^6 \text{ mm}^4$		
	2.1×10^{-10} min and $1-70 \times 10^{-10}$ min		

UNIT-IV	TORSION
----------------	---------

Theory of Torsion – Stresses and Deformations in Solid and Hollow Circular Shafts – combined bending moment and torsion of shafts - Power transmitted to shaft – Shaft in series and parallel – Closed and Open Coiled helical springs – springs in series and parallel – Design of buffer springs

PART - A			
Q.No	Questions	BT	Competence
1.	Compare and contrast between torsion, bending and torque	BT-1	Remember
2.	List the assumptions made in the theory of torsion?	BT-1	Remember
3.	Write about Torsional equation and torsional rigidity	BT-2	Remember
4.	Write about modulus of rupture	BT-2	Remember
5.	Write the expression for power transmitted by a shaft.	BT-5	Application
6.	Explain the term spring index	BT-4	Analyze
7.	Differentiate between closed coil helical spring and open coil helical spring.	BT-4	Understand
8.	Summarize the assumptions made in torsional equation.	BT-4	Understand
9.	Quote the expressions for polar modulus of solid and hollow circular shaft.	BT-3	Remember
10.	Formulate the mathematical expression for deflection of an open coiled	BT-6	Creating
	helical spring.		

11.	Classify springs with example.	BT-3	Application
12.	Summarize the assumptions made in torsional equation.	BT-1	Understand
13.	Express the stiffness of a close coiled helical spring mathematically.	BT-1	Understand
14.	Combine the expressions for deflection and shear stress of close coiled	BT-6	Creating
1.5	spring.		F 1 (
15.	what is meant by stiffness? write the formula for stiffness of a close coiled	В1-2	Evaluate
16	helical spring subjected to axial load.	DT 1	Domomhor
10.	A circular shart is subjected to a torque of Tokivini. The power transmitted by	D1-1	Kemember
	the shaft is 209.33kW. Find the speed of shaft in revolution per minute		
17.	What is meant by stiffness? Write the formula for stiffness of a close coiled	BT-2	Evaluate
	helical spring subjected to axial load		
18.	What is leaf spring? State the uses of leaf spring.	BT-1	Analyze
10		DT 2	
19.	Design the equivalent bending moment for a shaft subjected to moment M	BT-3	Analyze
	and torsion T?		
20.	Write short notes on buffer springs	BT-5	Application
PART – B (13 MARKS)			
1.	What do you mean by the strength of the shaft? Compare the strength of solid and hollow circular shafts	BT-1	Understand
2.	What are the assumptions made in the torque equations?	BT-4	Remember
3.	In a tensile test, a test piece of 25mm diameter, 200mm gauge length stretched 0.0950mm under a pull of 50kN. In a torsion test, the same rod is twisted about 0.03radian over a length of 150mm when a torque of 0.5kN.m was applied. Evaluate a) Poisson's ratio (3 marks) b) Young's modulus (3 marks) c) Bulk modulus and (3 marks) d) Rigidity modulus for a material (4 marks)	BT-1	Understand
4.	Two close coiled helical springs wound from the same wire, but with different core radii having equal no. of coils are compressed between rigid plates at their ends. Calculate the maximum shear stress induced in each spring, if the wire diameter is 10mm and the load applied between the rigid plates is 500N. The core radii of the spring 100 mm and 75mm respectively.	BT-4	Application

5.	A composite shaft consists of copper rod of 25mm diameter enclosed in a steel tube of external diameter 45mm and 5mm thick. The shaft is required to transmit a torque of 1100N.m and both the shaft have equal lengths, welded to a plate at each end so that their twists are equal. If the modulus of rigidity for the steel as twice that of copper, find a) Shear stress developed in copper (6 marks) b) Shear stress developed in steel (7 marks)	BT-4	Creating
6.	A solid circular shaft transmits 75kW power at 200rpm. Estimate the values of shaft diameter, if the twist in the shaft is not to exceed one degree in $2m$ length of shaft and shear stress is not exceed 50 N/mm ² . Assume the modulus of rigidity of the material of the shaft as 100 kN/mm^2	BT-2	Understand
7.	A solid shaft is to transmit 300kW at 100 rpm if the shear stress is not to exceed 80N/mm ² . Find diameter of the shaft. If this shaft was to be replaced by hollow shaft of same material and length with an internal diameter of 0.6 times the external diameter. What percentage saving in weight is possible?	BT-3	Creating
8.	 A leaf spring is made of 12 steel plates of 50mm wide and 5mm thick. It carries a load of 4 kN at the centre. If the bending stress is limited to 140 N/mm², determine the following: i) Length of the spring and ii) Deflection at the centre of the spring. Take E = 2 x 105 N/mm² 	BT-2	Application
9.	A leaf spring of semi elliptical type has 10 plates, each 60mm wide and 5 mm thick. The longest plate is 700 mm long. Find the greatest central load on the spring so that the bending stress shall not exceed 150 N/mm ² and the central deflection shall not exceed 10 mm. take $E=2\times105$ N/mm ² .	BT-3	Creating
10.	A close coiled helical spring is to have a stiffness of 1.5 N/mm of compression under a maximum load of 60 N. the maximum shearing stress produced in the wire of the spring is $125N/mm^2$. The solid length of the spring is 50mm. Find the diameter of coil, diameter of wire and number of coils .C = $4.5 \times 104N/mm^2$	BT-1	Application
11.	It is required to design a closed coiled helical spring which shall deflect 1mm under an axial load of 100 N at a shear stress of 90 Mpa. The spring is to be made of round wire having shear modulus of 0.8 x 105 MPa. The mean diameter of the coil is 10 times that of the coil wire. Find the diameter and length of the wire.	BT-2	Understand
12.	Derive the expression for the shear stress produced in a circular solid shaft subjected to torsion.	BT-6	Analyze

13.	Derive an expression for strain energy stored in a body due to torsion	BT-3	Applying
14.	 a) A circular shaft of 1000mm diameter and 2m length is subjected to a twisting moment. This creates a shear stress of 20N/mm² at 30mm from the axis of the shaft. Calculate the angle of twist and the strain energy stored in the shaft. Take G=8x104 N/mm² (6 marks) b) A leaf spring 750mm long is required to carry a central load of 8kN. If the central deflection is not to exceed 20mm and the bending stress is not to be greater than 200N/mm². Determine the thickness, width and number of plates. Assume the width of the plates is 12 times, their thickness and modulus of elasticity of the springs material as 200kN/mm² (7 marks) 	BT-5	Evaluating
	PART - C		
1.	Derive the expression for the shear stress produced in a circular solid shaft subjected to torsion	BT-2	Understand
2.	Deduce the expression for strain energy stored in a closed coil helical spring when subjected to axial loading.	BT-6	Evaluate
3.	A shaft has to transmit 245 kW power at 240 rpm. The maximum torque may be 1.5 times the mean torque. The shear stress in the shaft is not to exceed 40 N/mm ² and the twist must not exceed 10 per metre length, find a suitable diameter. If a) The shaft is solid (7 marks) b) The shaft is hollow with external diameter twice the internal diameter Take C = $8x104$ N/mm ⁴ (8 marks)	BT-3	Understand
4.	Derive the expression for stiffness of two closed coil helical springs when connected in series.	BT-5	Evaluate
	UNIT V ANALYSIS OF TRUSSES		
Determinate and indeterminate trusses - Analysis of pin jointed plane determinate trusses by method of joints, method of sections and tension coefficient – Analysis of Space trusses by tension coefficient method.			
PART - A			
Q.No	Questions	BT	Competence
1.	Differentiate between plane truss and space truss.	вт-2	Kemember
2.	Define tension coefficient of a truss member.	BT-4	Evaluate
3.	What is meant by indeterminate structures?	BT-1	Remember
4.	What are the conditions of equilibrium?	BT-2	Understand
5.	Differentiate between determinate and indeterminate structures.	BT-2	Remember

6.	Define degree of indeterminacy.	BT-5	Remember
7.	Write the equation for degree of indeterminacy for truss member.	BT-3	Remember
8.	Explain in internal and external indeterminacies.	BT-6	Remember
9.	Explain the different methods of analysis of indeterminate structures?	BT-1	Understand
10.	analysis a space frame and what is the nature of joints provided in the shape	BT-3	Analyze
	trusses		
11.	Explain the methods available for the analysis of space trusses?	BT-1	Evaluate
12.	Examine condition of equilibrium.	BT-4	Understand
13.	Define compatibility conditions?	BT-2	Application
14.	Write the comparative statement in linear and non-linear systems?	BT-6	Analyze
15.	What are all type of frames	BT-1	Creating
16.	What are the assumptions made in the unit load method?	BT-4	Understand
17.	Write down the two methods of determining displacements in pin jointed plane frames by the unit load concept.	BT-5	Application
18.	What is meant by perfect frame?	BT-1	Analyze
19.	Differentiate external and internal indeterminacy of structures	BT-1	Creating
20.	Define redundant force	BT-3	Application
	PART-B		
1.	Using the method of tension coefficients, Analyse the space truss shown in the figure and find the forces in the members of the truss.	BT-1	Understand
2.	Analyse the space truss shown in the figure by the method of tension coefficients and determine the member forces	BT-2	Remember
3.	Determine the force in the members of the truss shown in figure. The cross sectional area of vertical and horizontal members is 4000mm2 and that of the diagonal is 6000 mm ² $ \begin{array}{c} 3 m \\ 3 m \\ $	BT-4	Understand

4.	Tabulate the forces in the members of the truss shown in figure. The cross sectional area and young's modulus of all the members are the same. $ \frac{\tau}{3m} \int_{E}^{B} \int_{B}^{B} \int_{C}^{B} $	BT-3	Remember
5.	Determine the force in various members of the pin-jointed frame as shown in Fig. If the member BC is short by an amount of δ . All members of the frame have same axial rigidity as AE.	BT-2	Application
6.	Determine the horizontal reaction of the portal frame shown in Fig, by the energy method. Also, calculate the horizontal reaction when the member BC is subjected to the uniformly distributed load, w over entire length $ \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	BT-5	Analyze

7.	Find the forces in the members of the truss shown in Fig. The axial rigidities are same for all the members.	BT-6	Creating
	$ \begin{array}{c} $		
8.	Analyse the pin-connected plane frame shown in Fig. The cross- sectional area of each member is 3000 mm ² . Take E equal to 210 kN/ mm ² A = B = C = D = D = D = D = D = D = D = D = D	BT-4	Creating
9.	List the force methods and explain in detail about any methods with an example.	BT-2	Evaluate
10.	Write in detail about the Equilibrium, Compatibility and Force displacement Relationships	BT-3	Remember
11.	Explain in detail about the (i) Plane frame(ii) Pin jointed Frame (iii) Rigid jointed Frame	BT-1	Understand
12.	What are the conditions to be satisfied for determinate structures and how are indeterminate structures identified?	BT-1	Understand
13.	Define degree of freedom of the structure with an example.	BT-3	Applying
14.	Derive the stiffness matrix of a typical pin-jointed two-dimensional frame element.	BT2	Understand
I	PART - C		1
1.	Explain in details about External and Internal indeterminacy.	BT-6	Remember
2.	Elaborate in List the classical methods of structural analysis.	BT-2	Understand

3.	Give the mathematical expression for the degree of static indeterminacy of rigid jointed plane frames.	BT-1	Evaluate
4.	Write down the equation for the degree of static indeterminacy of the pin jointed Plane frames, explain the notations used.	BT-4	Creating