VALLIAMMAIENGINEERINGCOLLEGE

SRM Nagar, Kattankulathur– 603203

DEPARTMENTOF CIVIL ENGINEERING

QUESTION BANK

IVSEMESTER

CE6404–SURVEYING

Regulation-2013

Academic Year 2017–18

Prepared by

Mr.C.Arumugam, Assistant Professor/Civil Ms. M.Saranya, Assistant Professor/Civil Mr.R.Karthick, Assistant Professor/Civil Ms. K.Sandhiya, Assistant Professor/Civil

<u>OUESTION BANK</u> (As per Anna University 2013 Regulation)

SUBJECTCODE / NAME: CE6404-SURVEYING - II **SEM/ YEAR:** IV/II

UNIT 1-CONTROLSURVEYING

Horizontal and vertical control–Methods–specifications–triangulation-baseline instruments and accessories–corrections–satellite stations–reduction to centre-trigonometrical levelling–single and reciprocal observations– traversing– Gale's table.

PART A				
	8	BTL		
Q.NO	QUESTIONS	EVEL	COMPETENCE	
1.	Name the equipments used for base line measurement.	BT-1	Remembering	
2.	List the different types of tape correction.	BT-1	Remembering	
3.	Quote the applications of Gale's table.	BT-1	Remembering	
4.	Describe the satellite station and reduction to centre	BT-1	Remembering	
5.	List the factors to be considered while choosing the site for	BT-1	Remembering	
	baseline.			
6.	Define control surveying.	BT-1	Remembering	
7.	Distinguish the sag correction and temperature correction	BT-2	Understanding	
8.	Summarize the points to be borne in mind while selecting the	BT-2	Understanding	
	triangular station.			
9.	Summarize the specifications of first order triangulation.	BT-2	Understanding	
10.	Discuss few lines about the effect of curvature of the earth	BT-2	Understanding	
11.	Classify traversing. Illustrate with neat sketch.	BT-3	Applying	
12.	How to apply the figure adjustment in triangulation?	BT-3	Applying	
13.	Triangulation networks for covering a large area are composed of	BT-3	Applying	

	Anyone or	a combination	on of basic	figures arranged as a series of		
	chains or a	connected c	entralized 1	network: Demonstrate any two		
	such arrangements.					
14.	Explain the	principle inv	volved in se	cond order triangulation.	BT-4	Analyzing
15.	Explain the	main princip	ole involved	in triangulation.	BT-4	Analyzing
16.	Compare th	he Horizonta	al and Ver	tical controls in hydrographic	BT-4	Analyzing
	surveying.					
17.	Design a we	ell conditione	ed triangle.		BT-5	Evaluating
18.	Prepare a ba	ase line for th	ne survey w	ork and give its definition.	BT-5	Evaluating
19.	Conclude fe	ew lines abou	it the trigon	ometrical levelling.	BT-6	Creating
20.	When wor	uld you re	commend	the triangulation system in	BT-6	Creating
	surveying p	rojects?		GINEER		
	PART B					
1.	(i)Describe	the satellite	station and	reduction to centre?	BT-1	Remembering
	(ii)Show the expression for reducing the angles measured at the					
	satellite stat	tion to centre				
2.	The follow:	ing observati	ions were n	nade on a satellite station S to	BT-1	Remembering
	determine a	ngle BAC.	2			
	Line	Length	Line	Bearing		
	SA	9.500 m	SA	<mark>0° 00'00''</mark>		
	AB	2950 m	SB	78° 46'00''		
	AC	3525 m	SC	100° 15'00"		
	Identify the	angle BAC.				
3.	Two triang	ulation station	ons A and	B are 60 km apart and have	BT-1	Remembering
	elevations 2	240m and 28	0m. Identify	the minimum height of signal		
	required at	B so that the	line of sigh	t may not pass the ground than		
	2metres.Th	e intervenin	g ground	may be assumed to have a		
	uniform ele	vation of 200	metres.			
4.	Find the R.	L of Q from	the followin	ng observations.	BT-1	Remembering
	(i) Horizont	tal distance b	etween P ar	nd Q =9290m		
	(ii) Angle o	of elevation fr	rom P to Q	= 2°06'18''		

	(iii) Height of signal at Q =3.96 m		
	(iv) Height of instrument at P =1.25m		
	(v) Coefficient of refraction =0.07		
	R Sin 1" =30.88 m		
	R.L of P =396.58 m		
5.	After measuring the length of a base line, the correct length of the	BT-2	Understanding
	line is computed by applying various applicable corrections.		
	Discuss the following corrections and provide expressions for		
	a. Correction for temperature.		
	b. Correction for pull.		
	c. Correction for sag		
	d. Correction for absolute length		
	e. Correction for slope		
6.	(i)Discuss the curvature and refraction correction in	BT-2	Understanding
	trigonometrically leveling.		
	(ii)From a satellite station S, 5.8 m from main triangulation station		
	A, the following directions were measured.		
	A=0°0'0";B=132°18'30";C <mark>=232</mark> °24'06";D=296°06'		
	11";AB =3265.5m;AC =40 <mark>20.2m</mark> ; AD=3086.4m.Predict the		
	Directions of AB, AC and AD from the above given data.		
7.	Discuss the various methods of arranging the triangles and	BT-2	Understanding
	mention the different criteria for the selection of the arrangement		
	of triangles?		
8.	(i)How the triangulation systems are classified?	BT-3	Applying
	(ii) Calculate sag correction for 30 m steel under a pull of 100 N in		
	three equal spans of 10 m each. Weight of one cubic cm of steel		
	=0.078 N. Area of cross-section of tape =0.08 sq.cm		
9.	From a satellite station S 14m from A, angles measured to three	BT-3	Applying
9.	From a satellite station S 14m from A, angles measured to three triangulation station are as follows:	BT-3	Applying
9.	From a satellite station S 14m from A, angles measured to three triangulation station are as follows: Angle CSA=32°45'48"	BT-3	Applying
9.	From a satellite station S 14m from A, angles measured to three triangulation station are as follows: Angle CSA=32°45'48" Angle BSC=68°26'36"	BT-3	Applying

	Angle BAC.		
10.	(i)Explain the inter visibility of triangular station?	BT-4	Analyzing
	(ii)A tape 20m long of standard lengthat29°C was used to measure		
	a line, the mean temperature during measurement being19°C.The		
	measured distance was 882.10 meters, the following being the		
	slopes:2°20'for100m;4°12'for150m;1°6'for50m;7°48'for 200 m;		
	3°00'for 300 m ;5°10'for82.10m;Examine the true length of the		
	line if the coefficient of expansion is 6.5×10^{-4} per degree F.		
11.	A nominal distance of 30m was set out with a 30m steel tape from	BT-4	Analyzing
	a mark on the top of one peg to a mark on the top of another, the		
	tape being in catenary under a pull of 100N and at a mean		
	temperature of 70°F. The top of one peg was 0.25m below the top		
	of the other. The top of the higher peg was 460m above mean sea		
	level. Analyse the exact horizontal distance between the marks on		
	the two pegs and reduce it to means ealevel, if the tape was		
	standardized at a temperature of 60°F in catenary under a pull of		
	(a) 80 N (b)120 N (c) 100 N.		
	Take radius of e <mark>arth=</mark> 6370km.		
	Density of tape=7.86g/cm ³		
	Section of tape=0.08 sq.cm		
	Co efficient of expansion =6 $\times 10^{-6}$ per 1° F		
	Young's modulus = $2 \times 10^7 \text{N/cm}^2$		
12.	A steel standard tape is 30m long at a temperature of 15°C when	BT-4	Analyzing
	lying horizontal on ground. Its cross-sectional area is 0.08 cm^2 and		
	weight is1.8kgf (18N) and coefficient of expansion is 117x10 ⁻		
	7 per°C. The tape is stretched over three supports which are at the		
	same level and at equal intervals. Identify the actual length		
	between the end graduations under the following conditions:-		
	(i) Temperature =25°C		
	(ii) Pull = 18 kgf (180N)		

	(iii) $E = 2.1 \times 10^6 \text{kgf/cm}^2 (2.1 \times 10^5 \text{N/mm}^2)$		
13.	A30m steel tape was standardized on the fiat and was found to be	BT-5	Evaluating
	exactly 30m under no pull at 66°F.it was used in catenary to		
	measure a base of 5 bays. The temperature during the		
	measurement was 92°F and the pull exerted during measurement		
	twas100N.The area of cross-section of the tape was 8mm ² .The		
	specific weight of steel is78.6KN/m ² . α =0.63x10 ⁻⁵ F and E=2.1		
	$x10^{5}$ N/mm ² .Invent the true length of the tape.		
14.	What is base line? Explain the accessories used to measure the	BT-6	Creating
	baseline.		
	PART-C		
1.	i).What are the different layouts of primary triangulation for large	BT-2	Understanding
	countries? Explain it briefly. List out the criteria for selection of		
	the layout of triangles.		
	ii).what are signals? Classify them, enumerate the requirements to		
	be fulfilled by signal.		
2.	The following reciprocal observations were made from two points	BT-3	Applying
	P and Q:-		
	(i) Horizontal distance between P and Q =6996 m		
	(ii) Angle of elevation of Q at P = $1^{\circ}56'10''$		
	(iii) Angle of depression of P at Q = $1^{\circ}56'52''$		
	(iv) Height of signal at P =4.07 m		
	(v) Height of signal at Q $=3.87$ m		
	(vi) Height of instrument at P $=1.27$ m		
	(vii) Height of instrument at Q $=1.48$ m.		
	Show and find the difference in level between P and Q and the		
	Refraction correction. Take R sin 1"=30.588m.		
3.	In measuringang les from a triangulation station B, it was found	BT-5	Evaluating
	necessary to set the instrument at a satellite station S, due south of		
	the main station B and at a distance of 12.2m from it. The line BS		
	approximately bisects the exterior angle ABC. The angles ASB		
	and BSC were observed to be 30°20'30'' and 29°45'6''. When the		

	to be 59°18'26" and 60°26'12" respect	tively. The sides AC were		
	computed to be 4248.5m from the adjacent triangle. Evaluate the			
	correct value of the angle ABC.			
4.	Invent the difference of levels of point	s P and Q and the R.L.of P	BT-6	Creating
	from the following data:-			
	(i) Horizontal distance between P and C	Q =7118		
	(ii) Angle of depression to P and Q	=1°32'12"		
	(iii) Height of signal at P	=3.87 m		
	(iv) Height of instrument at Q	=1.27 m		
	(v) Coefficient of Refraction	= 0.07		
	(vi) R Sin1"	=30.88m		
	(vii) m	= 0.07		
	(viii) R.L of Q	= 417.860 m		

UNI<mark>T II-<u>SURVEYADJ</u>USTMENTS</mark>

Errors Sources-precautions and corrections-classification of errors-true and most probable valuesweighted observations-method of equal shifts-principle of least squares-normal equation-correlates- level nets-adjustment of simple triangulation networks.

PART A				
		BTL		
Q.NO	QUESTIONS	EVEL	COMPETENCE	
1.	Define most probable value	BT-1	Remembering	
2.	State the principle of least square.	BT-1	Remembering	
3.	Define the term true error.	BT-1	Remembering	
4.	Define correlates.	BT-1	Remembering	
5.	Name the different kinds of error possible in survey work	BT-1	Remembering	
6.	List any four random errors occur in linear measurements.	BT-1	Remembering	
7.	Distinguish between the observed value and the most probable value of a quantity.	BT-2	Understanding	
8.	Differentiate the most probable error from residual error	BT-2	Understanding	

9.	Distinguish between the true error and residual error	BT-2	Understanding
10.	Discuss the conditioned quantity.	BT-2	Understanding
11.	Examine the rules of assigning weightage to the field observations.	BT-3	Applying
12.	When do you apply the method of equal shift?	BT-3	Applying
13.	Illustrate with formula the determination of probable error.	BT-3	Applying
14.	Explain in detail about the weight of an observation	BT-4	Analyzing
15.	Explain normal equations.	BT-4	Analyzing
16.	Compare the conditioned quantity and conditioned equation.	BT-4	Analyzing
17.	How the true value is modified from the most probable value?	BT-5	Evaluating
18.	How do you prepare the figure adjustments in triangulation?	BT-5	Evaluating
19.	Compare the systematic and accidental errors.	BT-6	Creating
20.	Compare the Delambre's method and Legendre's method.	BT-6	Creating
	PART B	1	I
1.	(i)Define the following terms	BT-1	Remembering
	(1) True error		
	(2) Residual error		
	(3) Most probable error		
	(ii)The angle of triangle ABC were recorded as follows:		
	$A = 77^{\circ} 14'20'' \text{ weight } 4$		
	B = $49^{\circ} 40'35''$ weight 3		
	$C = 53^{\circ} 04'52''$ weight 2		
	Identify the corrected value of the angles.		
2.	Examine the most probable values of the angles A, B, C from the	BT-1	Remembering
	following observations at a station P.		
	A =38° 25'20'' Weight 1		
	B=32° 36'12" Weight 1		
	A+B =71° 01'29" Weight 2		
	A+B+C =119° 10'43" Weight 1		
	B+C =80° 45' 28" Weight 2		
3.	Find the most probable values of a angles A, B and C of triangle	BT-1	Remembering
	ABC from the following observation equations:		

	A =68°12'36''		
	B=53°46'12''		
	$C = 58^{\circ}01'16''$		
4.	Find the most probable values of the angles A, B and C from the	BT-1	Remembering
	following observations.		
	$A = 45^{\circ} 26' 48.34''$		
	$B = 52^{\circ} 43' 24.62''$		
	$C = 48^{\circ} 34' 22.78''$		
	$A+B = 98^{\circ} 10'12.46''$		
	$B+C = 101^{\circ} 77'47.68''$		
5.	Describe the triangulation adjustment and explain the different	BT-2	Understanding
	conditions and cases with sketches.		
6.	(i) Explain the general principles of least squares.	BT-2	Understanding
	(ii) Explain the various cases for the determination of most probable		
	value.		
7.	Adjust and predict the angle P, Q, R and S which close the horizon.	BT-2	Understanding
	Angle P = $100^{\circ}30'22''$ Weight 1		
	Angle Q =80°40'10" Weight 2		
	Angle R= 90°20'8" Weight 3		
	Angle S = 88°29'25"Weight 4		
8.	The following angles were recorded for a triangle ABC.	BT-3	Applying
	Angle A = $60^{\circ} 28'16''$ weight 4		
	Angle B = $56^{\circ} 44' 40''$ weight 3		
	Angle C = $60^{\circ} 46'53''$ weight 2		
	Calculate the correct values of the angles.		
9.	Show the most probable value of the following.	BT-3	Applying
	$A = 28^{\circ} 24' 27.4''$		
	$B = 32^{\circ} 14' 16.3''$		
	$C = 51^{\circ} 18' 18.8''$		
	$A+B = 60^{\circ} 38'45.6''$		
	$B+C = 83^{\circ} 32' 28.2''$		

10.	Examine the following given angles closing the horizon at a station	BT-4	Analyzing
	and adjust it.		
	A = $122^{\circ} 05'58.9''$ Weight 1		
	$B = 86^{\circ} 45' 16.4''$ weight 1		
	$C = 72^{\circ} 50'31.2''$ weight 3		
	$D = 78^{\circ} 18' 16.6''$ weight 1		
11.	The following observations of 3 angles A, B, C were taken at one	BT-4	Analyzing
	station.		
	A=75°32'46.3" Weight 3		
	B=55°09'53.2" Weight 2		
	C= 108°09'28.8" Weight2		
	$A+B = 130^{\circ}42'41.6''$ Weight 2		
	B+C= 163°19'22.5" Weight 1		
	A+B+C= 238°52'9.8" Weight 1		
	Identify the most probable value of each angle by method of		
	differences.		
12.	The following are the observed values of the angle A with the	BT-4	Analyzing
	corresponding weights.		
	(i) 51°20'30'' Weight 2		
	(ii) 51°20'28'' Weight 3		
	(iii) 51°20'29'' Weight		
	2.Examinethe following terms:		
	(1) the standard deviation		
	(2) the standard error of the weighted mean		
	(3) the probable error of single observation of weight 3		
	(4) The probable error of the weighted mean		
13.	(i)Formulate the normal equations for x,y and z in the following	BT-5	Evaluating
	equation of equal weight:		
	3x+3y+z-4 = 0		
	x+2y+2z-6 = 0		
	5x+y+4z-21 = 0		
	ii)If the weights of the above equation are2,3 and1respectively		

	form the normal equations for x,y and z.		
14.	Construct the normal equations for x,y and z in the following	BT-6	Creating
	equations		
	4x + 2y + z - 4 = 0		
	3x+3y+2z-8=0		
	5x+2y+4z-21=0		
	(i) For equal weight.		
	(ii) Construct the normal equations of x,y, z with weights are 2,3,1.		
	PART C		
1.	(i)Discuss the laws of accidental errors.	BT-2	Understanding
	(ii) The following are the three angles P, Q and R observed at a		
	station O, Closing the horizon along with standard errors.		
	Angle P =84°15'12"± 3"		
	Angle Q =125°13'15"±4"		
	Angle R= 150°31'18" ±5"		
	Predict the corrected angles.		
2.	The following rounds of angles were observed from a center station	BT-3	Applying
	to the surrounding station.		
	A =95°43'22"weight 2		
	B= 76°32'39" weight 3		
	C=103°13'44" weight 2		
	D=84°29'50"weight 3		
	In addition to the above angle (A+B) was observed separately as		
	172°16'16" weight.		
	(i) Solve by using method of correlates.		
	(ii) Determine the most probable value.		
3.	The following are mean values observed in the measurement of 3	BT-5	Evaluating
	Angles α , \ddot{u} and \hat{U} at one		
	station.		
	α=76°42'46.2" Weight 4		
	α + \ddot{u} =134°36'32.63"Weight3		

	$\alpha + \ddot{u} + \hat{U} = 262^{\circ}18'10.4''Weight1.$		
	Evaluate the most probable value of each angle by normal equation		
	method.		
4.	Write down the various laws of weight. Explain it.	BT-6	Creating

UNIT3-TOTAL STATION SURVEYING

Basic Principle – Classifications -Electro-optical system: Measuring principle, Working principle, Sources of Error, Infrared and Laser Total Station instruments. Microwave system: Measuring principle, working principle, Sources of Error, Microwave Total Station instruments. Comparison on between Electro-optical and Microwave system. Care and maintenance of Total Station instruments. Modern positioning systems – Traversing and Trilateration

		BTL	
Q.NO	QUESTIONS	EVEL	COMPETENCE
1.	Name the equipment inventory required for a total station.	BT-1	Remembering
2.	Define EDM	BT-1	Remembering
3.	List out the types of EDM.	BT-1	Remembering
4.	Define traverse	BT-1	Remembering
5.	Define total station surveying	BT-1	Remembering
6.	What is called trilateration in modern positioning system?	BT-1	Remembering
7.	Distinguish between triangulation and trilateration.	BT-2	Understanding
8.	Differentiate between microwave and electro optical system.	BT-2	Understanding
9.	Discuss The atmospheric and scale corrections factors of total stations	BT-2	Understanding
10.	Discuss the principle behind the linear distance measurement of a total station.	BT-2	Understanding
11.	Illustrate the application of traversing.	BT-3	Applying
12.	Classify the types of accuracy related to total station.	BT-3	Applying
13.	Show how the sources of errors affect the working condition of a total station.	BT-3	Applying

14.	Classify total station surveying.	BT-4	Analyzing
15.	Explain the principle of electro optical system.	BT-4	Analyzing
16.	Compare microwave system with electro optical system.	BT-4	Analyzing
17.	When do you substitute the total station instead of conventional surveying instruments?	BT-5	Evaluating
18.	Design the fundamental parameters of a total station	BT-5	Evaluating
19.	What are the precautions to be decided while using a total station?	BT-6	Creating
20.	How do you decide a total station is set up over a point during the	BT-6	Creating
	field		
	PART B		
1.	Define total station surveying? Describe its working principle.	BT-1	Remembering
2.	List the components of total station? Describe them briefly and also tell about its care and maintenances.	BT-1	Remembering
3.	Describe the function and operation of total station.	BT-1	Remembering
4.	What are the important precautionary measures and maintenance of Total Station instruments?	BT-1	Remembering
5.	Discuss the different sources of errors for total station	BT-2	Understanding
6.	Describe the types of traversing and write its application.	BT-2	Understanding
7.	Discuss about traversing and classical traversing methods.	BT-2	Understanding
8.	Illustrate the working principle and measuring principle of Electro optical surveying (Total Station) with neat sketches.	BT-3	Applying
9.	How electronic distance measurement can be classified and explain its uses on total station.	BT-3	Applying
10.	Explain in detail about the fundamental measurement systems of total station.	BT-4	Analyzing
11.	Compare Electro optical and Micro wave System. Explain it briefly.	BT-4	Analyzing
12.	Design the working principle and measuring principle of Micro Wave system with neat sketches.	BT-5	Evaluating
13.	Categorize salient features of modern total station	BT-5	Evaluating

14.	Compare the following	BT-6	Creating
	(i) Triangulation		
	(ii) Trilateration		
	PART C		
1.	Evaluate and compare the accuracy, precision and cost (time	BT-1	Remembering
	expenditure) of two methods of surveying, i.e. GPS and total station.		
2.	Explain in detail about the measuring principle working principle and	BT-4	Analyzing
	sources of error in infrared and laser total station instruments.		
3.	Describe in detail the pulse method and phase difference method.	BT-4	Analyzing
4.	Brief a comparison about microwave systems and electro optical	BT-6	Creating
	systems also. Bring out the important precautionary measures and		
	maintenance of total station instrument.		

UNIT 4-GPS SURVEYING

Basic Concepts - Different segments - space, control and user segments - satellite configuration - signal structure - Orbit determination and representation - Anti Spoofing and Selective Availability – Task of control segment – Hand Held and Geodetic receivers –data processing - Traversing and triangulation.

	PART A		
		BTL	
Q.NO	QUESTIONS	EVEL	COMPETENCE
1.	Define GPS	BT-1	Remembering
2.	State the basics of GPS	BT-1	Remembering
3.	List the different segments of GPS	BT-1	Remembering
4.	What is meant by Anti spoofing?	BT-1	Remembering
5.	Define GPS data processing.	BT-1	Remembering
6.	Why GPS signal is so complicated?	BT-1	Remembering
7.	Distinguish between Space and User segment?	BT-2	Understanding
8.	Comparison between Control and Space segment	BT-2	Understanding
9.	Discuss few points on GPS navigation.	BT-2	Understanding

10.	Explain shortly about Orbit Representation.	BT-2	Understanding		
11.	Classify the component of GPS.	Applying			
12.	Illustrate the Signal processing in GPS.BT-3				
13.	Demonstrate the components of satellite signals.	BT-3	Applying		
14.	Explain in short about Satellite Configuration.	BT-4	Analyzing		
15.	State the applications of GPS.	BT-4	Analyzing		
16.	Classify the types of receiver.	BT-4	Analyzing		
17.	Write the principles of GPS.	BT-5	Evaluating		
18.	How are personal GPS receivers different from survey-grade GPS receivers? Justify.	BT-5	Evaluating		
19.	Compose a short note on Task of control segment	BT-6	Creating		
20.	Construct the sketch of the signal structure.	BT-6	Creating		
	PART B				
1.	What are the space, control and user segments of GPS and their functions?	BT-1	Remembering		
2.	List out the various measurements of GPS. Explain them.	BT-1	Remembering		
3.	Briefly explain the Characteristics of GPS Navigation and Satellite navigation?	BT-1	Remembering		
4.	What is meant by SAASM? Explain in detail.	BT-1	Remembering		
5.	(i) What are the types of GPS receivers?(ii) Explain the task of control segment in GPS	BT-2	Understanding		
6.	(i)Describe briefly about sources of errors in GPS(ii)Explain the hand held receiver and geodetic receiver of GPS.	BT-2	Understanding		
7.	How the Traversing and Triangulation is to be done Using GPS? Explain.	BT-2	Understanding		
8.	Explain in detail about the signal structure of GPS.	BT-2	Understanding		
9.	Classify the main components of GPS receiver and explain them briefly	BT-3	Applying		
10	Distinguish between single frequency receivers and Double frequency receivers.	BT-4	Analyzing		
11.	Describe in detail about Anti-spoofing and Selective Availability	BT-4	Analyzing		
12.	Write the Requirements of GPS Signals? Briefly explain	BT-4	Analyzing		

13.	Write down the steps involved in GPS data processing.	BT-5	Evaluating
14.	Explain the orbit determination and representation.	BT-6	Creating
	PART C		
1.	Explain the various types of GPS devices and their uses.	BT-2	Understanding
2.	Write an Essay on Future of GPS Tracking Systems.	BT-3	Applying
3.	Discuss the emerging Trends in GPS Technology.	BT-5	Evaluating
4.	Explain in detail the History of GPS and Technical Specifications of its Orbits.	BT-6	Creating

UNIT 5-ADVANCED TOPICS IN SURVEYING

Route Surveying – Reconnaissance – Route surveys for highways, railways and waterways – Simple curves – Compound and reverse curves – Setting out Methods – Transition curves – Functions and requirements – Setting out by offsets and angles – Vertical curves – Sight distances- hydrographic surveying – Tides – MSL – Sounding methods – Three-point problem – Strength of fix – Sextants and station pointer- Astronomical Surveying – field observations and determination of Azimuth by altitude and hour angle methods – fundamentals of Photogrammetry and Remote Sensing

		BTL	
Q.NO	QUESTIONS	EVEL	COMPETENCE
1.	What is Hydrographic Survey?	BT-1	Remembering
2.	Define Sounding.	BT-1	Remembering
3.	List the functions of transition curves.	BT-1	Remembering
4.	What is Mean sea level?	BT-1	Remembering
5.	Enumerate the objectives of route surveys.	BT-1	Remembering
6.	State the differences between lunar tides and solar tides.	BT-1	Remembering
7.	Distinguish between compound and reverse curves.	BT-2	Understanding
8.	Describe the Azimuth.	BT-2	Understanding
9.	Describe Fathometer.	BT-2	Understanding
10.	Distinguish between terrestrial and aerial photogrammetry.	BT-2	Understanding

11.	Classify the types of curves.	BT-3	Applying
12.	Classify the different equipment's needed for soundings.	BT-3	Applying
13.	Illustrate the methods for determining the latitude of a place.	BT-3	Applying
14.	What do you infer about station pointer?	BT-4	Analyzing
15.	Classify the instrumental methods for setting out a circular curve	BT-4	Analyzing
16.	Write the equation of time	BT-4	Analyzing
17.	Explain the term Right Ascention (R.A).	BT-5	Evaluating
18.	Write a short note on echo-sounding.	BT-5	Evaluating
19.	State three point problem in hydrographic surveying.	BT-6	Creating
20.	Summarize the applications of remote sensing.	BT-6	Creating
	PART B		I
1.	 With the help of suitable sketches, describe the following methods of locating soundings. (i) Location by range and one angle from the shore. (6) (ii) Location by two angles from the shore.(7) 	BT-1	Remembering
2.	What is a three point problem in hydrographic surveying? List the various solutions for the problem? Explain in detail.	BT-1	Remembering
3.	Describe briefly the different methods of prediction of tides.	BT-1	Remembering
4.	(i) What is Eco Sounding? Explain the Advantages.(8) (ii) Define the term MSL. How it is Established?(5)	BT-1	Remembering
5.	Estimate the hour angle and declination of a star from the following data. Altitude of the star = $21^{\circ} 30^{\circ}$ Azimuth of the star = 140° E Latitude of the observer = 48° N.	BT-2	Understanding
6.	 (i)Summarize briefly the procedures for setting out compound curve.(7) (ii) How reconnaissance survey is conducted for railway project? (6) 	BT-2	Understanding
7.	Derive the Parallax equation for determining the Height from a pair of Vertical Photographs.	BT-2	Understanding
8.	(i) Classify the different types of tides? Explain any two. (6)(ii) Explain the various sounding methods.(7)	BT-3	Applying
9.	A, B and C are three visible stations in a hydrographical survey. The computed sides of the triangle ABC are: AB, 1130 m ; BC, 1372 m ; CA, 1889 m. Outside this triangle (and nearer to AC), a station P is	BT-3	Applying

	established and its position is to be found by three point intersection		
	on A, B and C, the angles APB and BPC being respectively		
	42°35'and54°20'.Calculate the distances PA and PC.		
10.	(i) A simple curve is to have a radius of 300m. The tangents intersect at chainage of 1192 m and the deflection angle at intersection is 50.5°. Find the tangent distance, chainage of beginning and end length of long chord, degree of curve and the number of full and sub chord.(8)	BT-3	Applying
	(ii)Prepare step by step by procedure to set out a transition curve.(6)	BT-4	Analyzing
11.	Calculate the Sun's Azimuth and Hour angle at sunset at a place in Latitude 52°N, When its Declination is (i) 20°N and (ii) 14°S	BT-4	Analyzing
12.	Explain the Tilt Distortion with neat sketch in Photographic method.	BT-4	Analyzing
13.	Explain in detail the obstacles to the location of curves.	BT-4	Analyzing
14.	(i) Write the Applications of Photogrammetry.(ii) What is the Components of Remote sensing? Explain in detail.	BT-6	Creating
	PART C		
1.	Explain the Curve Setting methods using appropriate case studies.	BT-2	Understanding
2.	Briefly explain the applications of remote sensing.	BT-2	Understanding
3.	Elaborate the advancements in route surveying of highways/ Water ways/ Railways	BT-5	Evaluating
4.	Enumerate the various investigations involved in hydrographic surveying.	BT-6	Creating

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF CIVIL ENGINEERING CE6404 - SURVEYING II

Unit No.		BT-1	BT-2	BT-3	BT-4	BT-5	BT-6	Total No. of
								Questions
т	Part-A	6	4	3	3	2	2	20
1	Part-B	4	3	2	3	1	1	14
	Part-C	-	1	1	-	1	1	4
TT	Part-A	6	4	3	3	2	2	20
11	Part-B	4	3	2	3	1	1	14
	Part-C	-	1	1	-	1	1	4
	Part-A	6	4	3 NE	3	2	2	20
111	Part-B	4	3	2	2s	2	1	14
	Part-C	1	12		2	-	1	4
TV.	Part-A	6	4	3	3	2	2	20
IV	Part-B	4	4	SILIV	3	1	1	14
	Part-C	- 3	1	1	-	-1	1	4
V	Part-A	6	4	30	3	2	2	20
	Part-B	4	3	3	4	-	1	14
	Part-C	-	2	-	/-	1	1	4

TOTAL NO.OFQUESTIONS IN EACH PART

PART A	100
PART B	70
PART C	20
TOTAL	190