SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF AGRICULTURE ENGINEERING

QUESTION BANK

III SEMESTER

1902301–SOIL SCIENCE AND ENGINEERING

Regulation – 2019

Academic Year 2021 – 22

Prepared by

Mr. MOGANRAJ .M , Assistant Professor/CIVIL

SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203 DEPARTMENT OF CIVIL ENGINEERING

OUESTION BANK

SUBJECT CODE/NAME: 1902301–SOIL SCIENCE AND ENGINEERING SEM/YEAR: III/II

UNIT I – INTRODUCTION AND SOIL PHYSICS

Soil - definition - major components – Soil forming minerals and processes - soil profile-Physical properties - texture – density – porosity – consistence – colour - specific gravity- capillary and non capillary – plasticity - Soil air - soil temperature - soil water -classification of soil water - Movement soil water - Soil colloids – organic and inorganic matter - Ion exchange- pH – Plant nutrient availability.

PART A									
BT									
Q.NO	QUE <mark>STIO</mark> NS	LEVEL	COMPETENCE						
1.	Define major components of soil	BT-1	Remember						
2.	What are the physical properties of soil?	BT-1	Remember						
3.	Why texture of soil important?	BT-1	Remember						
4.	Define air content and percentage air content in soil.	BT-1	Remember						
5.	Define porosity.	BT-1	Remember						
6.	Define specific gravity of soil and list methods to determine it.	BT-1	Remember						
7.	What are the properties of montmornilite mineral?	BT-2	Understand						
8.	Discuss about water content of a soil mass	BT-2	Understand						
9.	Differentiate between plasticity and consistency.	BT-2	Understand						
10.	Discuss the types of soil moisture and its importance in plant growth	BT-2	Understand						
11.	Identify the minerals which are present in soil.	BT-3	Apply						
12.	List major mineral present in clay and sand. And what mineral in present in red soil.	BT-3	Apply						
13.	Derive the relationship between void ratio and porosity.	BT-3	Apply						
14.	Why Ion exchange property of soil is identified	BT-4	Analyse						
15.	List methods to improve the quality of soil	BT-4	Analyse						
16.	List methods to identify permeability of soil	BT-4	Analyse						

17			
17.	What is water holding capacity of soil?	BT-5	Evaluate
18.	Which mineral in clay causes volume change behavior, how is it controlled?	BT-5	Evaluate
19.	Sketch the influence of temperature of soil property and its behavior.	BT-6	Create
20.	Define soil collides.	BT-6	Create
21.	List methods of determining soil pH.	BT-1	Remember
22.	Differentiate porosity and void ratio	BT-4	Analyse
23.	Define Liquid Limit	BT-2	Understand
24.	Differentiate saturated density and submerged density.	BT-4	Analyse
25.	Define plant nutrients.	BT-2	Understand
	<u> </u>		
	PART B		
1.	Explain various soil moisture and effect of capillarity.	BT – 1	Remember
2.	Discuss the physical properties of soil in detail.	BT – 1	Remember
3.	Brief the methods of soil profiling and soil logging.	BT - 1	Remember
4.	Explain how a seismic testing of soil profile is done.	BT - 2	Understand
5.	Explain how a Electrical resistivity testing of soil profile is done.	BT – 2	Understand
6.	List various minerals present in soil and its uses.	BT -3	Apply
7.	Explain field and laboratory method of determination of density	BT- 4	Analyse
8.	Derive the equation to derive specific gravity using pyconometer method. What are the other methods to determine specific gravity.	BT-4	Analyse
9.	Explain field and laboratory method of determination of permeability.	BT- 5	Evaluate
10.	Brief the procedure listed in IS code for determination of ion exchange property of soil.	BT – 5	Evaluate
11.	List the clay minerals and its uses. Brief the chemical	BT – 5	Evaluate
	reaction with water		
12.	Brief the importance of organic and inorganic materials present in soil how will it affect the plant growth.	BT – 6	Create
13.	List the procedure to test the plant nutrient availability.	BT – 6	Create
14.	How the direction movement of water affect permeability. Derive the respective equations	BT – 6	Create
	PART C		
1.	Brief the chemical composition of the soil minerals its	BT – 2	Understand
	arrangement and its effect on reaction with water.	_	
2.	Explain laboratory method of determination of permeability.	BT -3	Apply
3.	List and explain non destructive methods of identifying soil	BT- 4	Analyse
1	Priof methods of determining the ion evaluance property of soil		Crooto
4.	brief methods of determining the ion exchange property of son.	DI - 0	Cicale

UNIT II – SOIL CLASSIFICATION AND SURVEY

Soil taxonomy – Soils of Tamil Nadu and India. Soil survey - types and methods of soil survey – Field mapping- mapping units - base maps -preparation of survey reports - concepts and uses land capability classes and subclasses - soil suitability – Problem soils – Reclamation.

PART A						
		BT				
Q.NO	QUESTIONS	LEVEL	COMPETENCE			
1.	Define A-line and its uses.	BT-1	Remember			
2.	What are uses of survey report?	BT-1	Remember			
3.	Why swell potential of soil an important character?	BT-1	Remember			
4.	Define problem due to soil salinity.	BT-1	Remember			
5.	Define base map.	BT-1	Remember			
6.	Which mineral makes the soil problematic?	BT-1	Remember			
7.	Define mapping units.	BT-2	Understand			
8.	Discuss about soil suitability.	BT-2	Understand			
9.	Differentiate soil suitability and land capability.	BT-2	Understand			
10.	Discuss the problem soils and give example.	BT-2	Understand			
11.	Identify the land capability subclasses.	BT-3	Apply			
12.	List major characteristics of field mapping.	BT-3	Apply			
13.	Derive the suitable method of classification for agricultural purpose.	BT-3	Apply			
14.	Why preparation of survey reports important?	BT-4	Analyse			
15.	List major types of soil in Tamil Nadu.	BT-4	Analyse			
16.	List the land canability classes.	BT-4	Analyse			
17.	What are major type of soil present in India?	BT-5	Evaluate			
18.	Which mineral in clay causes volume change behavior, how is it controlled?	BT-5	Evaluate			
19.	Sketch the methods of soil reclamation.	BT-6	Create			
20.	Define the basis of soil taxonomy.	BT-6	Create			
21.	List methods of determining land capability.	BT-1	Remember			
22.	Differentiate geological map and forest inventory map.	BT-4	Analyse			
23.	Define vegetation and land use map.	BT-2	Understand			
24.	Differentiate aerial photography and remote sensing.	BT-4	Analyse			
25.	Define preparation of mapping legend.	BT-2	Understand			
	PART B	I				
1.	Explain field mapping and its characteristics.	BT – 1	Remember			
2.	Discuss the preparation of base and survey report.	BT – 1	Remember			

3.	Brief the uses of aerial photography in soil survey.	BT – 1	Remember
4.	Explain geological map, vegetation and land uses map, forest		Understand
	inventory map.	BT-2	
5.	Explain how a survey report helps in identifying plant nutrient.	BT – 2	Understand
6.	List various condition of soil suitability.	BT -3	Apply
7.	Explain hydrometer analysis for identifying grain size of soil.	BT- 4	Analyse
8.	Derive on what basis the survey land capability classes and		Analyse
	classes are done.	BT – 4	
9.	Explain problems faced in clay soil and list the remedial	РТ 5	Evaluate
	measures.	D1- J	
10.	Brief the procedure for identifying land capability.	BT – 5	Evaluate
11	Brief IS soil classification for clay soil	BT = 5	Evaluate
12	Brief the properties of soil present in Tamil Nedu and India	DT 6	Croata
12.	Brief the properties of son present in Tanin Nadu and India.	BI - 0	Create
13.	List the methods of soil survey and brief its procedure.	BT-6	Create
14.	List the problematic soil and the remedial process for it.	BT – 6	Create
	PART C		
1.	Explain IS method of soil classification	BT-2	Understand
2.	Brief the method of classification of soil which is helpful for	BT -3	Apply
	agricultural purpose.		
3.	Brief the preparation of base map and survey report.	BT- 4	Analyse
4.	List the land capability, classes and subclasses.	BT - 6	Create

UNIT III - PHASE RELATIONSHIP AND SOIL COMPACTION								
Phase relations- Gradation analysis- Atterberg Limits and Indices- Engineering Classification of soil								
– Soil cc	mpaction- factors affecting compaction- field and laboratory r	nethods.						
	PART A							
	BT							
Q.NO	QUESTIONS	LEVEL	COMPETENCE					
1.	Define degree of saturation and shrinkage ratio.	BT-1	Remember					
2.	What are the Atterberg"s limits? List its types.	BT-1	Remember					
3.	If the volume of voids is equal to the volume of solids in a given soil sample, Find void ratio and porosity.	BT-1	Remember					
4.	Define Submerged unit weight of soil.	BT-1	Remember					
5.	Define compaction.	BT-1	Remember					
6.	Define Optimum Moisture content.	BT-1	Remember					
7.	Define plasticity index and flow index.	BT-2	Understand					
8.	Discuss about Shrinkage limit and its effect on volume change.	BT-2	Understand					
9.	Differentiate between plasticity and consistency.	BT-2	Understand					

10.	The natural water content of an excavated soil from the borrow pit is 35%. Its liquid limit is 65% and plasticity limit is 25%. Determine the Liquidity Index of the soil and comment about the consistency of the soil.	BT-2	Understand
11.	A compacted sample of soil with a bulk unit weight of 19.62kN/m ³ has a water content of 15 percent. Calculate its dry density, degree of saturation and air content? Assume $G = 2.65$.	BT-3	Apply
12.	What is a zero air voids line?Draw a compaction curve and	BT-3	Apply
	show the zero air voids line.		
13.	Derive the relationship between void ratio and porosity.	BT-3	Apply
14.	State whether the following statement is true or false and justify	BT-4	Analyse
	your answer. The efficiency of compaction improves with		
	increase in compactive effort.		
15.	List any four equipment/ methods for field compaction of Soil.	BT-4	Analyse
16.	List various field compaction equipments along with its	BT-4	Analyse
	suitability.		
	Soil properties Clay A Clay B Liquid limit 44% 55%		
	Plastic limit 29% 35%		
	Natural water content30%50%		
17.	Compose a relation for γ_{sat} with G, γ_w and e.	BT-5	Evaluate
18.	A dry clay has a mass of 30g and volume of 15cc, What will be	BT-5	Evaluate
	the shrinkage limit if the specific gravity of solids is 2.65		
19.	Draw the phase diagram for completely dry and fully saturated	BT-6	Create
	soil mass.		
20.	Two clay samples A and B have the following properties:	BT-6	Create
	Which of the clays A or B would experience larger settlement under identical loads? Conclude with your comments by classifying the soils.		
21.	List various factors affecting compaction.	BT-1	Remember
22.	Differentiate porosity and void ratio	BT-4	Analyse
23.	Define Liquid Limit	BT-2	Understand
24.	Difference between modified and standard compaction test.	BT-3	Apply
25.	Dry unit weight of soil is 13.75KN/m ³ and water content is 17%.Determine the bulk unit weight.	BT-5	Evaluate
	PART B		
1.	Explain Indian Standard soil classification system	BT – 1	Remember

2.	(i) By three phase soil system, show that the degree of saturation		
	S (as ratio) in terms of mass unit weight(γ), void ratio (e), specific		
	gravity of soil grains(G) and unit weight of water (γ_w) is given by		
	theexpression:		
	$\gamma = \frac{(G + eS)\gamma_w}{W}$		
	r = 1 + e	ר דיד 1	Remember
		BI – I	
	(0) (ii) A composted culindrical specimen 50 mm diameter and 100		
	(II) A compacted cylindrical specifien 50 milli diameter and 100		
	required to have a water content of 15% and the percentage of air		
	voids is 20 calculate the weight of soil and water required in the		
	preparation of soil where specific gravity= 2.69 (7)		
3	In an earth dam under construction, the bulk unit weight is 16.5		
5.	kN/m^3 at water content 11%. If the water content has to be		
	increased to 15%, compute the quantity of water to be added per	BT – 1	Remember
	cu.m of soil. Assume no change in void ratio. Determine the		
	degree of saturation at this water content. Take $G = 2.7$.		
4.	(i) A partially saturated soil from an earth fill has a natural water		
	content of 22% and a bulk unit weight of 19 kN/m ³ . Assuming the		
	specific gravity of soil solids as 2.65, compute the degree of		
	saturation and void ratio. If subsequently the soil gets saturated,	BT – 2	Understand
	determine the dry density, buoyant unit weight and saturated unit		
	weight. (8)		
	(ii) Explain Indian Standard soil classification system for		
	classifying coarsegrainedsoil. (5)		
5	Discuss short the springing distribution of a like		
5.	Discuss about the grain size distribution of soil by		Understand
	i) Sedimentationanalysis	DI - Z	Understand
6	I) Sedimentationaliarysis Sandy soil in a borrow pit has unit weight of solids as 25 gkN/m^3		
0.	water content equal to 11% and bulk unit weight equal to		
	$16 4 \text{kN/m^3}$ How many cubic meter of compacted fill could be		
	constructed of 3500m^3 of sand excavated from the borrow pit, if	BT -3	Apply
	the required value of porosity in the compacted fill is 30%. Also		
	calculate the change in degree of saturation.		
7.	Explain the IS soil classification system for soil.	BT- 4	Analyse
			-
8.	() Discuss the effect of compaction on various engineering		
	properties of soils. (5)		
	(ii) A soil sample is found to have the following properties.		
	Classify the soil according to IS classification system. Passing	BT – 4	Analyse
	75μ sieve = 10%; passing 4.75 mm sieve = 70%; Uniformity		
	coefficient =8; coefficient of curvature = 2.8; Plasticity index = 40° (9)		
	4%.(8)		
9.	A laboratory compaction test on soil having $G = 2.67$ gave a	BT- 5	Evaluate
	maximumui yumi weignioi 17.0Kiv/mbanuawatercomentoi		

	15%. D	etermine	the degree	ee of sat	turation,	, air cont	ent and			
	percenta	age air v	oids at the							
	be theor	retical m	aximum c							
	voids at	the opti	mum wat							
10.	(i) A cubic meter of soil in its natural state weighs 17.75 kN. after									
	beingdr	ieditweig	ghs15.08k	N.Thes	pecificg	gravityof	thesoilis			
	2.70. De	etermine	the degree	e of sat	uration,	void rat	io, poros	sity and	DT 6	Creata
	water co	ontent of	the origination of the originati	nalsoils	ample.		-	(7)	D1-0	Cleate
	(ii) Discuss the effect of compaction on various engineering									
	properti	esofsoils	S.	-			-	(6)		
11.	In its na	atural co	ndition, a	soil sa	mple ha	s a mass	s of 22.9	N and a		
	volume	of 1.15	x 10 ⁻³ r	n ³ . Afte	er being	comple	tely drie	ed in the		
	oven sa	mple w	eighs 20.3	35 N. F	Find bul	k densit	y, water	content,	BT – 1	Remember
	void rat	io, poros	sity, degre	e of sat	uration,	air cont	ent, dryd	ensity		
	and per	centage a	air voids.				•	•		
12.	(i) Deriv	ve the re	lationship	betwee	en poros	ity and v	void ratio	b .(5)		
	(ii) A p	artially	saturated	sample	from a	borrow	pit has	a natural		
	moistur	e conten	t of 15%	and bull	k unit w	eight of	1.9 g/cc.	G = 2.7.	BT - 2	Understand
	Determ	ine the o	legree of	saturat	ion and	void rat	io. Wha	t will be		
	the unit weight of the soil if itgets saturated. (8)									
13.	(i) Desc	ribe the	proctor co	ompacti	on testir	n detail.		(7)		
	(ii) Dra	w the dia	agram for	the three	ee Atterl	berg Lim	<mark>its of a</mark> s	soil and		
	mark th	e variou	ssoilphase	es.		SRM		(3)	BT-3 Ap	Apply
	(iii) Def	fine Sens	sitivity an	d Thixo	tropy fo	orasoil.		(3)		
			13		1			in the		
14.	(i) A pa	artially s	saturated	soil sar	nples co	ollected	from a	pit has a		
	natural	moistur	e content	of 18	% and	bulk ur	nit weig	ht of 20		
	kN/m^3 .	G = 2.68	8. Estimat	the vo	oid ratio	and deg	ree of sa	aturation.	BT-4	Analyse
	What w	ill be the	e unit wei	ght of tl	ne soil sa	ample or	<mark>i saturati</mark>	ion?(8)	DIII	i illui jõe
	(ii) Discuss the engineering behaviour of compacted cohesive							cohesive		
	soils. (7									
						PART-0	2			
1	A soil n	nass in it	s natural	state is	nartially	/ saturate	ed having	g a water		
	content	of 17.5	percent	and vo	id ratio	of 0.87	7. Deter	mine the		
	degree (of satura	tion total	unit w	eight di	rv unit w	veight w	hat is the	BT-1	Remember
	weight of water required to make a mass of 10 m ³ volume to get							to get	211	
	saturate	d assume	$e G = 2.6^{\circ}$).	~	i v m	, stanie	000		
2.	500 gms	s of drv s	soil was u	sed for	sieve an	alysis th	e masses	s of soil		
	retained	on each	sieve is c	given be	low:	, <u>,</u>				
	[I.S. 2mm] 1.4mm] 1mm] 500u] 250u] 125u] 75u						75u			
	sieve				coop		m	, opt		
	Mass	10	18	60	135	145	56	45		
	in			~~					BT-3	Apply
	Plot the	grain siz	ze distribu	tion cu	rve and	compute	the follo	owing:		
	a) Perce	ntage of	gravel. co	oarse sa	nd, med	lium san	d, fine sa	and and		
	silt as ne	er I.S 14	98		,		.,			
									l	

	b) Uniformitycoefficientc) Coefficient of curvature, classify thesoil.		
3.	Test on a soil sample from a borrow area resulted specific gravity of 2.7, void ration = 0.65 and water content of 15%. What is the quantity of soil required to construct an embankment volume of 8000 m3, if the borrow materials compacted to achieve maximum dry density of 18 kN/m3 at a moisture content 18%. Calculate addition quantity of water required for every cubic meter of compacted soil.	BT-2	Understand
4.	A sample of clay was coated with paraffin wax and its mas, including the mass of wax, was found to be 697.5 g. The sample was immersed in water and the volume of the water displaced was found to be 355 ml. The mass of the sample without wax was 690 g, and the water content of the representative specimen was 18%. Determine the bulk density, dry density, void ratio and the degree of saturation. The specific gravity of the solids was 2.7 and that of the wax was 0.89.	BT-2	Understand

UNIT IV - ENGINEERING PROPERTIES OF SOIL

Shear strength of cohesive and cohesionless - Mohr-Coulomb failure theory- Measurement of shear strength, direct shear, Triaxial and vane shear test - Permeability- Coefficient of Permeability-Darcy's law-field and lab methods - Assessment of seepage – Compressibility – Liquefaction.

PART A					
		BT			
Q.NO	QUESTIONS	LEVEL	COMPETENCE		
1.	Define Cohesion.	BT-1	Remember		
2.	What do you meant by Thixotropy?	BT-1	Remember		
3.	What is the effect of pore pressure on shear strength of soil?	BT-1	Remember		
4.	What is angle of internal friction?	BT-1	Remember		
5.	Why triaxial shear test is considered better than direct shear test?	BT-1	Remember		
6.	When is vane shear test adopted? Write the expressions to determine the shear strength of soil.	BT-1	Remember		
7.	Show the coulomb"s expression for shear strength.	BT-2	Understand		
8.	Show the diagram of strength envelopes for fully saturated clay subjected to CD test and fully saturated sand subjected to UU test.	BT-2	Understand		
9.	Classify the types of shear test based on drainage conditions?	BT-2	Understand		
10.	Define permeability.	BT-2	Understand		

11.	What are the factors affective of the factors	cting permeability?		BT-3	Application				
12.	State Darcy"s law			BT-3	Application				
13.	Write down the Mohr" explain the terms invol	s-Coulomb failure crit ved.	erion for soils and	BT-3	Application				
14.	List out the advantages	of direct shear test.		BT-4	Analyze				
15.	Examine and give one CD strength results in a	example each of the u engineering practice.	se of CU strength and	BT-4	Analyze				
16.	Examine and conclude false. On the failure pla	Examine and conclude whether the following statement is true or false. On the failure plane, the shear stress is maximum.							
17.	Explain the merits of the	iaxial test.		BT-5	Evaluate				
18.	List out the methods of	drawing flow net.		BT-5	Evaluate				
19.	Draw the Mohr's Circle salient features.	e diagram for UCC tes	t and mention the	BT-6	Create				
20.	Draw the typical stress failure and plastic failu	mens failed by brittle	BT-6	Create					
21.	What is Quick sand cond quick sand condition.	s for the occurrence of	BT-1	Remember					
22.	Discuss the disadvanta	ges of dire <mark>ct shear tes</mark> t	T I	BT-4	Analyze				
23.	Draw the strength enve UU test	ted clay for CD and	BT-6	Create					
24.	List out the shear stress	s parameters	O	BT-4	Analyze				
25.	Explain the demerits of	f triaxial t <mark>est.</mark>		BT-5	Evaluate				
		PA	RT B						
1.	The stress on a failure p soil are as under: Normal stress (σ) = 100 Shear stress (τ) = 40kN i. Find the angle σ the failure plane ii. Find the major	BT-1	Remember						
2.	The following table gives test conducted under same soil sample. The respectively for both satisfies the second se	BT-1	Remember						
	Specimen no	1 100	200						
	Pressure(kN/m ³)	100	200						

	Deviator load failure (N)	at	637	8	381		
	Increase in volu at failure(ml)	me	1.1		1.5		
	Axial compression(mr	n)	5		7		
	Find C_u and ϕ_u by	graphical me	thod.				
3.	The results of a din given below. Find	rect shear test the shear stre	t on a 60mm ength parame	x 60mm sp eters.	becimen are	BT-1	Remember
	Normal load, N	300	400	500	600		
	Shear force at failure,N	195	263	324	399		
			2		VG		
4.	i. The results identical sp	s of three con pecimens of a	solidated und p <mark>articular so</mark>	drained tria bil are as fo	xial tests on llows :(7)	BT-1	Remember
	TestNo.	NT1	2		3		
	Confining stress, kPa	200	300	4	00		
	Deviatoric stress at peak,kPa	244	314		84		
	Pore water pressure at peak , kPa	55	107	1	59		
	Find the value of t ii. A shear va	otal and effectant of 7.5 ci					
	used to me of 600 N-m	easure the she	ear strength of to shear the	of soft clay e soil. Find	. If a torque theshear		
	strength.						
5.	A direct shear test	t was perform	ned on 60 m	nm x 60 mi	n sample of	BT-2	Understand
	dry sand. The nor	rmal load wa	s 360 N. Th	e failure o	ccurred at a		
	shear load of 180	N. Plot the M	ohr strength	envelope a	nd		
	determine ϕ . Assu	time $c = 0$. Al					

	failure.					
6.	Describe the Vane Shear test in detail and classify the methods adopted in this test-Fully Submerged Vane and Partially Submerged Vane.			BT-2	Understand	
7.	A series of three consolidated undrained tests were conducted on an identical clay specimen of 50 mm diameter and height of 120 mm. Deviator load at failure 'pt', confining pressure ' σ_3 ' and pore water pressure 'U' recorded are presented below. Identify the total and effective strength parameters both by analytical and Mohr circle method.			BT-2	Understand	
	Trial No	p _t (N)	$\sigma_{s} (kN/m^{2})$	U (kN/m ²)		
	1	100	510	-65		
	2	200	720	-10		
	3	40	11 0	80		
8.	Describe the Unconfir coefficient of permeabili	ned Pumping ty of soil. Also	Out Flow and explain Draw De	determine the	BT-3	Application
9.	In a triaxial test, a soil specimen was consolidated under a cell pressure of 200 kPa and simultaneously a back pressure of 100 kPa is applied to saturate the specimen .Thereafter, with drainage prevented, the cell pressure was raised to 250 kPa resulting in an increased pore pressure of 149kPa. Maintaining the same cell pressure of 250 kPa, now the deviator stress was increased to 170 kPaandporepressureof220kPawasobserved.Identifythepore pressure parameters A and B.			BT-3	Application	
10.	Describe in detail wi permeability	th neat sketc	ches, the field of	determination of	BT-4	Analyze
11.	In a falling head perm section of soil specime Calculate the time red 0.10 m. The area of c The sample has three for first 0.06 m, 4 x 1 m/sec for the third 0.4 place perpendicular to	meability test en are 0.17 m juired for the ross section of layers with j 10^{-5} m/sec fo 05 m thickne the bedding j	the length and and 21.8x10 ⁻⁴ m head to drop fi of stand pipe is 3 permeabilities 3 r second 0.06 m ss. Assume the plane.	area of cross h^2 respectively. rom 0.25 m to 2.0 x 10 ⁻⁴ m ² . x 10-5 m/sec h and 6 x 10-5 flow is taking	BT-4	Analyze

12.	i. Direct She	ear Test was cor	ducted on Com	pacted Sand Shear	BT-4	Analyze
	Box Dimensions 60 mm x 60 mm. The readings are listed					
	below.					
	Normal load	110	225	340		
	(N)					
	Peak shear	95	195	294		
	load (N)					
	Ultimate	65	135	200		
	shear load					
	(N)					
	Examine the ang	gle of shearing re	esistance in			
	a. Dense co	ompactedstate				
	b. Loosest	ate	1 • •, •			
	1. Define De	viator stress and	discover its sign	nificance in		
12	i An cort	hearstrengthtest.	t is constructor	(4)	PT 5	Evoluoto
15.	I. All call	$C = 45 \text{ kN/m}^2$	and $\phi'= 26^\circ \Gamma$	etermine the total	D1-3	Lvaluate
	and effe	ctive shear stre	and $\psi = 20$. L	il on a horizontal		
	nlane at	a depth of 10m	below the top	of an embankment		
	having a bulk unit weight of soil $y_{\rm bulk} = -21 \text{ kN/m}^3$ and the					
	naving a bulk unit weight of son $\gamma_{\text{bulk}} = 21 \text{ kV/m}^2$ and the pore water pressure at this depth is 15 kN/m^2 (8)					
	ii Outline t	the diagram of N	lohr-Coulomb f	ailureenvelops		
	CU, CD	and UU tests	sandy soils and	d comment on the		
	shearstre	engthparameter.		(5)		
14.	i. An unce	onfined compre	ssion test was	carried out on a	BT-6	Create
	sample of	of clay had a dia	meter of 38 mm	and a length of 76		
	mm. The	e load at failure	measured by the	e proving ring was		
	45 N and	d the axial deform	nation of the sam	mple at failurewas		
	15 mm.	Estimate the	unconfined con	npressive strength,		
	undraine	ed shear strengt	h and undraine	d cohesion of the		
	claysam	ple.		(7)		
	ii. How do	you find the s	hear strength o	of soil using Vane		
	Shear te	st and derive the	formula used to	calculatethe		
	shear str	ength. Invent wh	here this test is n	nostly used?(7)		
			PART	C		
1.	Explain the triax	kial shear tests b	ased on drainage	e and their	BT-2	Understand
	applicability. Mention its merits and demerits.					
2.	i. What is the	e shear strength	in terms of ef	fective stress on a	BT-1	Remember
	plane wi	thin a saturated	soil mass at a po	oint where the total		
	normalst	tressis295kN/m ²	andtheporewate	rpressureis		
	120 kN/1	m ² ? The effectiv	e stress paramet	ers for the soil are		

	$c'' = 12 \text{ kN/m}^2 \text{ and } \varphi' = 30^0.$ (10)		
	ii. List advantages and disadvantages of direct shear test.(5)		
3.	An embankment consists of clay fill for which $c=25 \text{ kN/m}^2$ and	BT-5	Evaluate
	$\phi'=27^{\circ}$ (from consolidated undrained tests with pore-pressure		
	measurement). The average bulk unit weight of the fill is 20		
	kN/m ³ . Estimate the shear-strength of the material on a horizontal		
	plane at a point 20 m below the surface to the embankment, if the		
	pore pressure at this point is 180 kN/m^2 as shown by a piezometer.		
4.	Explain in detail with neat sketches, the laboratory determination of	BT-3	Application
	permeability methods.		

UNIT 5- BEARING CAPACITY AND SLOPE STABILITY

Bearing capacity of soils - Factors affecting Bearing Capacity- Shallow foundations-Terzaghis formula- BIS standards - Slope stability-Analysis of infinite and finite slopes- friction circle method- slope protection measures.

PART A					
		BT			
Q.NO	QUESTIONS	LEVEL	COMPETENCE		
1.	Define local shear failure and General shear failure.	BT-1	Remember		
2.	Define Co-efficient of volume change and volume change.	BT-1	Remember		
3.	What do you understand primary consolidation and secondary consolidation.	BT-1	Remember		
4.	Classify the components of settlement	BT-1	Remember		
5.	Define Co-efficient of settlement.	BT-1	Remember		
6.	Examine the factors consider in seismic design of shallow foundation.	BT-1	Remember		
7.	List the requirement of good foundation	BT-2	Understand		
8.	Compare Immediate Settlement and consolidation settlement.	BT-4	Analyzing		
9.	Sketch the slip circle for a failure plane in a slope and show the	BT-2	Understand		
	forces involved.				
10.	Explain critical depth.	BT-2	Understand		
11.	Identify when and where the circular failure surface is mobilized.	BT-3	Apply		
12.	Write the expression for FOS for friction.	BT-5	Evaluate		
13.	Why circular failure surface is mobilized?	BT-3	Apply		
14.	Distinguish between finite slope and infinite slope.	BT-4	Analyze		
15.	Classify the different modes of failure of finite and infinite slopes.	BT-4	Analyze		

16.	List the three forces acting in circular failure while analysing	BT-4	Analyze
	through friction circle method?		
17.	A cuffing is to be made in clay for which the cohesion is	BT-5	Evaluate
	350 kN/m ² ; Bulk unit weight is 20 kN/m ³ , Determine the		
	maximum depth for a cutting of side slope 1.5 to 1. Factor of		
	safety to be 1.5. Take the stability number as 0.17.		
18.	Evaluate the maximum depth of soil having undrained cohesion	BT-5	Evaluate
	is 50kN/m ² , Unit weight of soil is 19kN/m ³ , Stability number is		
	0.20.		
19.	Elaborate the effect of depth of failure surface on the stability of	BT-6	Create
	infinite slope in Cohesionless soil.		
20.	Discuss about the three critical conditions for which the stability	BT-6	Create
	analysis of an earth dam is carried out.		
21.	Give the expression for stability number.	BT-3	Apply
22.	Define infinite slope.	BT-1	Remember
23.	Develop points on various slope protection measures.	BT-3	Apply
24.	Write the expression for FOS for cohesion.	BT-5	Evaluate
25.	When will you adopt friction circle method?	BT-6	Create
	PART B		L
1.	An R.C. Column footing 2.26 m in square shape is to rest 1.5 m below	BT-1	Remembering
	level ground level is on cohesive soil. The unit weight is 17.6kN/m ³ .		
	What is the safe load if cohesion is 30kN/m3 Factor of safety 2.4? Angle		
	of internal friction 33° by IS code.		
2.	How to find the bearing capacity from Standard penetration test and	BT-1	Remembering
	static cone penetration test?		
3.	A square footing located at a depth of 1.5 m below the ground surface in	BT-2	Understanding
	Cohesionless soil carries a column load of 1280 kN. The soil is		
	submerged having an effective unit weight of 11.5 kN/m3 and an angle		
	of shearing resistance of 300. Show and find the size of the footing for		
	Fs = 3 by Terzaghi's theory of general shear failure.		
4.	In a plate bearing test on pure clayey soil failure occurred at a load of	BT-2	Understanding
	12.2 tonnes. The size of the plate was 45 cm x 45 cm and the test was		
	one at a depth of 1.0 m below ground level. Calculate the ultimate		
	bearing capacity for a 1.5 m wide continuous wall footing with its base		
	at a depth of 2m below ground level. The unit wt. of clay may be taken		

	as 1.9 gm/ c.c.		
5.	A plate load test was conducted with a 30 cm square plate at a depth of	BT-2	Understanding
	1.2 m below the ground level, in a cohesive soil having $\Phi = 0$. The		
	failure was observed at a load of 36 kN. The water table was observed to		
	be at a depth of 4.7 m below ground surface.Compute the ultimate		
	bearing capacity for a strip footing, 1m wide with its base located at the		
	same level as the test plate, and in the same soil. Take the bulk unit		
	weight of the soil as 16.8 $kN/m3$. Also, calculate the safe bearing		
	capacity of factor at a safety of 3.		
6.	A strip footing 2m wide carries a load intensity of 400 kN/m2 at a depth	BT-3	Applying
	of 1.2 m in sand. The saturated unit weight of sand is 19.5 kN/m3 and		
	unit weight above water table is 16.8 kN/m3. The shear strength		
	parameters are C=0 and Φ = 350 . Determine the factor of safety with		
	respect to shear failure for the following cases of location of water table		
	(a) Water table is 4m below G.L		
	(b) Water table is 1.2 m below G.L		
	(c) Water table is 2.5 m below G.L		
	(d) Water table is 0.5 m below G.L		
	(e) Water table is G.L itself		
7.	Discuss about the Plate load test for determining the Bearing capacity of	BT-4	Analyzing
	foundation and How do you estimate the settlement of a footing on sand		
	using the results of a plate load test?		
8.	An infinite slope made of soil with c' =20 kPa, ϕ = 20°, e = 0.65	BT-1	Remember
	and G=2.7 is 10m high. The slope angle is 25° . Find the factor of		
	safety with respect to height for the following conditions		
	a. When the soil is dry		
	b. When the slope issubmerged.		
9.	List the techniques used to improve the stability of slopes in brief.	BT-1	Remember
10.	i. Explain Taylor"sstabilitynumber. (6)	BT-2	Understand
	ii. Outline some of the uses of Taylor"'s charts and its		
	applicability (7)		
11.	i. A slope is to be constructed at an inclination of 30° with the	BT-3	Apply
	horizontal. Determine the safe height of the slope at factor of		

	safety of 1.5. The soil has the following properties.c=15		
	$kN/m^2, \phi = 22.5^\circ, \gamma = 20 \ kN/m^2 \ (S_n = 0.046).$ (6)		
	ii. Develop some points on total stress method ofanalysisof		
	stabilityofslopes. (7)		
12.	i. Develop points on differences between finite and infinite	BT-3	Apply
	slope. (6)		
	ii. Build up points on FOS of a finite slope possessing both		
	cohesion and friction(c - ϕ) by methodofslices. (7)		
13.	An embankment of 10m high is inclined at 35° to the horizontal. A	BT-4	Analyze
	stability analysis by method of slices gives the following forces:		
	Total normal forces = 900 kN; total tangential force = 420 kN;		
	total neutral force= 200kN. If the length of the failure arc is 23m,		
	examine the FOS with respect to shear strength. The soil has C=		
	20 kN/m ² and $\phi = 15^{\circ}$.	0	
14.	Analyze the stability of soil using friction circle method with neat	BT-4	Analyze
	sketch.		
	PART C		
1.	Explain terzaghi's analysis of bearing capacity of soil in general shear failure with assumptions.	BT-2	Understand
2.	A footing of 3m x 3m is to be constructed at a site at a depth of 1.5 m below ground level. The water table is at the base level of foundation.	BT-5	Evaluating
	The average static cone penetration resistance obtained at the site is 20		
	kg/m2. The soil is conesive determine the safe bearing capacity for a settlement of 40 mm.		
3.	Briefly explain about the method of analysis of finite slopes.	BT-2	Understand
4.	A cut 9 m deep is to be made in clay with a unit weight of 18		
	kN/m^3 and cohesion of 27 $kN/m^2.$ A hard Stratum exists at a depth		
	of 18 m below the ground surface. Determine from Taylor"scharts	BT-4	Analyze
	ifa300slopeisSafe.Ifafactorofsafetyof1.50isdesired,		
	examine the safe angle of slope?		

