SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF CIVIL ENGINEERING

QUESTION BANK

IV SEMESTER

1903403–SOIL MECHANICS

Regulation – 2019

Academic Year 2021–22

Prepared by

Ms.THARINI K, Assistant Professor/CIVIL

SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203 DEPARTMENT OF CIVIL ENGINEERING

QUESTION BANK

SUBJECT CODE/NAME: 1903403- SOIL MECHANICS SEM/YEAR: IV/II

	UNIT I - SOIL CLASSIFICATION		
History	- formation and types of soil - composition - Index properties	s – clay m	nineralogy structural
arranger	nent of grains – description – Classification – BIS – US – phase rela	tionship.	
	PART A		
		BT	
Q.NO	QUESTIONS R M	LEVEL	COMPETENCE
1.	Define degree of saturation and shrinkage ratio.	BT-1	Remember
2.	What are the Atterberg's limits? List its types.	BT-1	Remember
3.	If the volume of voids is equal to the volume of solids in a given soil sample, Find void ratio and porosity.	BT-1	Remember
4.	Define air content in soil.	BT-1	Remember
5.	Draw the Three Phase diagram.	BT-2	Understand
6.	A soil has void ratio of 0.65 and specific gravity 2.80.Determine unit weight of soil.	BT-3	Apply
7.	Define plasticity index and flow index.	BT-2	Understand
8.	Discuss about water content of a soil mass	BT-2	Understand
9.	Differentiate between plasticity and consistency.	BT-2	Understand
10.	The natural water content of an excavated soil from the borrow pit is 35%. Its liquid limit is 65% and plasticity limit is 25%. Determine the Liquidity Index of the soil and comment about the consistency of the soil.	BT-2	Understand
11.	A compacted sample of soil with a bulk unit weight of 19.62 kN/m ³ has a water content of 15 percent. Calculate its dry density and degree of saturation? Assume G = 2.65.	BT-3	Apply
12.	How will you represent silty clay and poor graded gravel?	BT-3	Apply

13.	Derive the relationship between void ratio and porosity.	BT-3	Apply
14.	Write down the particle size for clay and silt.	BT-4	Analyse
15.	List out methods to determine water content of soil	BT-4	Analyse
16.	A compacted sample of soil with a dry unit weight of	BT-4	Analyse
	17.84kN/m ³ has a water content of 11 percent. Calculate its dry		
	density.		
17.	Compose a relation for γ_{sat} with G, γ_w and e.	BT-5	Evaluate
18.	A dry clay has a mass of 30g and volume of 15cc, What will be	BT-5	Evaluate
	the shrinkage limit if the specific gravity of solids is 2.65		
19.	Draw the phase diagram for completely dry and fully saturated	BT-6	Create
	soil mass.		
20.	Two clay samples A and B have the following properties:	BT-6	Create
	Soil properties Clay A Clay B		
	Liquid limit 44% 55%		
	Plastic limit 29% 35% Natural water content 30% 50%		
	Which of the clays A or B would experience larger settlement under identical loads? Conclude with your comments by classifying the soils.		
21.	Write the expression for Unit weight and Saturated Unit weight.		
22.	Differentiate porosity and void ratio	BT-4	Analyse
23.	Define Liquid Limit	BT-2	Understand
24.	Differentiate Air content and Percentage air voids.	BT-3	Apply
25.	Dry unit weight of soil is 13.75KN/m ³ and water content is 17%.Determine the bulk unit weight.	BT-5	Evaluate
	PART B		
1.	Explain Indian Standard soil classification system	BT – 1	Remember
2.	(i) By three phase soil system, show that the degree of saturation S (as ratio) in terms of mass unit weight(γ), void ratio (e),specific gravity of soil grains(G) and unit weight of water (γ_w) is given by the expression: $\gamma = \frac{(G + eS)\gamma_w}{1 + e}$ (6)	BT – 1	Remember

	(ii) A compacted cylindrical specimen 50 mm diameter and 100 mm long is to be prepared from dry soil. If the specimen is required to have a water content of 15% and the percentage of air voids is 20, calculate the weight of soil and water required in the preparation of soil where specific gravity = 2.69 . (7)		
3.	In an earth dam under construction, the bulk unit weight is 16.5 kN/m^3 at water content 11%. If the water content has to be increased to 15%, compute the quantity of water to be added per cu.m of soil. Assume no change in void ratio. Determine the degree of saturation at this water content. Take G = 2.7.	BT – 1	Remember
4.	 (i) A partially saturated soil from an earth fill has a natural water content of 22% and a bulk unit weight of 19 kN/m³. Assuming the specific gravity of soil solids as 2.65, compute the degree of saturation and void ratio. If subsequently the soil gets saturated, determine the dry density, buoyant unit weight and saturated unit weight.(8) (ii) Explain Indian Standard soil classification system for classifying coarse grained soil. (5) 	BT – 2	Understand
5.	Discuss about the grain size distribution of soil by i) Sieve analysis. ii) Sedimentation analysis	BT – 2	Understand
6.	Sandy soil in a borrow pit has unit weight of solids as 25.8kN/m ³ , water content equal to11% and bulk unit weight equal to 16.4kN/m ³ . How many cubic meter of compacted fill could be constructed of 3500m ³ of sand excavated from the borrow pit, if the required value of porosity in the compacted fill is 30%. Also calculate the change in degree of saturation.	BT -3	Apply
7.	Explain the IS soil classification system for soil.	BT- 4	Analyse
8.	(i)A soil has bulk density of 20.1 kN/m ³ and water content of 15%.Calculate the water content if the soil partially dries to density of 19.4 kN/m ³ and void ratio remains unchanged(5) (ii) A soil sample is found to have the following properties. Classify the soil according to IS classification system. Passing 75 μ sieve = 10%; passing 4.75 mm sieve = 70%; Uniformity coefficient =8; coefficient of curvature = 2.8; Plasticity index = 4%. (8)	BT – 4	Analyse
9.	Explain the procedure for determining Liquid Limit and Plastic Limit.	BT- 5	Evaluate
10.	 (i) A cubic meter of soil in its natural state weighs 17.75 kN, after being dried it weighs 15.08 kN. The specific gravity of the soil is 2.70. Determine the degree of saturation, void ratio, porosity and water content of the original soil sample. (7) (ii)Discuss the Fine grain classification of soils (6) 	BT- 6	Create
11.	In its natural condition, a soil sample has a mass of 22.9 N and a volume of $1.15 \times 10^{-3} \text{ m}^3$. After being completely dried in the	BT – 1	Remember

	oven sample weighs 20.35 N. Find bulk density, water content, void ratio, porosity, degree of saturation, air content, dry density and percentage air voids.		
12.	(i) Derive the relationship between porosity and void ratio. (5) (ii) A partially saturated sample from a borrow pit has a natural moisture content of 15% and bulk unit weight of 1.9 g/cc. $G = 2.7$. Determine the degree of saturation and void ratio. What will be the unit weight of the soil if it gets saturated.(8)	BT – 2	Understand
13.	 (i) Describe three Atterberg Limits of a soil in detail. (7) (ii) Draw the diagram and mark the various soil phases. (3) (iii) Define Sensitivity and Thixotropy for a soil. (3) 	BT – 3	Apply
14.	A partially saturated soil samples collected from a pit has a natural moisture content of 18% and bulk unit weight of 20 kN/m ³ . G = 2.68. Estimate the void ratio and degree of saturation. What will be the unit weight of the soil sample on saturation?	BT – 4	Analyse
	PART-C	L	
1.	A soil mass in its natural state is partially saturated having a water content of 17.5 percent and void ratio of 0.87. Determine the degree of saturation, total unit weight, dry unit weight what is the weight of water required to make a mass of 10 m ³ volume to get saturated assume $G = 2.69$.	BT-1	Remember
2.	500 gms of dry soil was used for sieve analysis the masses of soil retained on each sieve is given below:I.S.2mm1.4mm1mm 500μ 250μ 125μ 75μ Sieve1018601351455645Mass1018601351455645In gmsgms1018601351455645Plot the grain size distribution curve and compute the following: a) Percentage of gravel, coarse sand, medium sand, fine sand and silt as per I.S 1498 b)Uniformity coefficient c) Coefficient of curvature, classify the soil.	BT – 3	Apply
3.	Test on a soil sample from a borrow area resulted specific gravity of 2.7, void ration = 0.65 and water content of 15%. What is the quantity of soil required to construct an embankment volume of 8000 m3, if the borrow materials compacted to achieve maximum dry density of 18 kN/m3 at a moisture content 18%. Calculate addition quantity of water required for every cubic meter of compacted soil.	BT-2	Understand

4.	A sample of clay was coated with paraffin wax and its mas, including the mass of wax, was found to be 697.5 g. The sample was immersed in water and the volume of the water displaced was found to be 355 ml. The mass of the sample without wax was 690 g, and the water content of the representative specimen was 18%. Determine the bulk density, dry density, void ratio and the degree of saturation. The specific gravity of the solids was 2.7 and that of the wax was 0.89.	BT-2	Understand
----	--	------	------------

UNIT II- EFFECTIVE STRESS AND PERMEABILITY

Soil - water – Static pressure in water - Effective stress concepts in soils – Capillary phenomena– – Permeability – Darcy's law – Determination of Permeability – Laboratory Determination (Constant head and falling head methods) and field measurement pumping out in unconfined and confined aquifer – Factors influencing permeability of soils – Seepage - Two dimensional flow – Laplace's equation – Introduction to flow nets – Simple problems Sheet pile and wier.

	PART A						
	SRM F	BT					
Q.NO	QUESTIONS	LEVEL	COMPETENCE				
1.	List out the methods of drawing flow net.	BT-1	Remember				
2.	List the methods of finding field-permeability	BT-1	Remember				
3.	What are the different types of soil water?	BT-1	Remember				
4.	Define capillary rise.	BT-1	Remember				
5.	Define permeability.	BT-1	Remember				
6.	Write down the methods available for determination of	BT-5	Evaluate				
	permeability in the laboratory?						
7.	State Darcy's law.	BT-5	Evaluate				
8.	State the assumptions in construction of flow net.	BT-2	Understand				
9.	What are the factors affecting permeability?	BT-2	Understand				
10.	Write typical range of co-efficient of permeability for gravel, sand, silt and clay.	BT-6	Create				
11.	List out the methods of drawing flow net.	BT -3	Apply				
12.	What are the various types of field permeability test.	BT-1	Remember				
13.	Define flow net. Draw a neat sketch.	BT-5	Evaluate				
14.	What is Quick sand condition? List the conditions for the	BT-1	Remember				
	occurrence of quick sand condition.						

15.	Explain the factors that affect the coefficient of permeability.	BT-2	Understand
16.	 For a homogeneous earth dam 52m high and 2m freeboard, a flow net was constructed and following results were obtained: i. Number of potential drops= 25 ii. Number of flow channels = 4 Calculate the discharge per metre length of the dam, if the 	BT-4	Analyze
	coefficient of permeability of the dam material is 3×10^{-5} m/sec.		
17.	Illustrate the various uses of Flow net in Engineering practices.	BT-2	Understand
18.	In a laboratory permeability test on a clayey soil, the diameter of the stand pipe is 2 cm and the diameter of the permeameter is 120 cm. The height of the mould is 130 cm. Determine the time taken for the head of water in the stand pipe to drop from 190 cm to 150 cm.	BT -3	Apply
19.	Summarize the assumptions made in construction of flow net.	BT-2	Understand
20.	Differentiate between discharge and seepage velocity.	BT-6	Create
21.	Give the expression for Darcy's Law.	BT-4	Analyze
22.	Define effective stress.	BT-2	Understand
23.	What is meant by total stress, neutral stress and effective stress and give its relationship.	BT-2	Understand
24.	Define hydraulic gradient.	BT-4	Analyze
25.	List out the factors affecting hydraulic conductivity.	BT -3	Apply
	PART B		
1.	 Water table is 2m below ground surface. Above water table there is capillary rise up to ground surface. Also draw total stress diagram up to 10m. A stratified soil deposit is shown in Fig.1. Along with the coefficient of permeability of the individual strata. Determine the ratio of KH and KV. Assuming an average hydraulic gradient of 0.3 in both horizontal and vertical seepage. Find i. Discharge value and discharge velocities in each layer for horizontal flow and ii. Hydraulic gradient and loss in head in each layer for vertical flow. 	BT-5	Evaluate
2.	 i. The falling head permeability test was conducted on a soil sample of 4cm diameter and 18cm length. The head fell from 1.0m to 0.40m in 20 minutes. If the cross-sectional area of the stand pipe was 1cm2, determine the coefficient of permeability. ii. Compute the total, effective and pore pressure at a depth of 	BT – 1	Remember

	20m below the bottom of a lake 6 m deep. The bottom of		
	lake consists of soft clay with a thickness of more than		
	20m. The average water content of the clay is 35% and		
	specific gravity of the soil may be assumed to be 2.65.		
3.	i. Write a short note on quick sand conditions in soil. (4)	BT – 1	Remember
	ii. Find the value of the effective stress at 2m, 4m, 6m, 8m		
	and 10m is a soil mass having $\gamma s = 21 \text{ KN/m}^3$. Water table		
	is 2m below ground surface. Above water table there is		
	capillary rise up to ground surface. Also draw total stress		
	diagram up to 10.00 m. (12)		
4.	A layer of saturated clay 4 m thick is overlain by sand 5m deep, the	BT – 2	Understand
	water table is 3m below the surface. Saturated unit weight for clay		
	is 19 kN/ m3 and sand is 20 kN/ m3. Bulk unit weight of sand		
	above water table is 17 kN/m3.		
	(i) Plot the total stress, effective stress against depth. If sand to a		
	height of 1m above water table is saturated with capillary water,		
	how are the above stress affected.		
	(ii) If in 1 st case a 4 m deep sand layer of bulk unit weight is 20		
	kN/m3 is placed over the surface. Find the effective vertical stress		
	at the centre of clay layer immediately after the fill has been		
	placed and many years after the fill has been placed.		
5.	Describe in detail with neat sketches, the field determination of	BT – 2	Understand
	permeability.		
6.	The water table in a deposit of sand 8m thick is at a depth of 3m	BT -3	Apply
	below the ground surface. Above the water table, the sand is		
	saturated with capillary water. The bulk density of sand is		
	19.62kN/m ³ . Calculate the effective pressure at 1m, 3m and 8m		
	below the ground surface. Hence plot the variation of total		
	pressure, neutral pressure and effective pressure over the depth of		
	8m.		
7.	In a falling head permeability test the length and area of cross	BT – 1	Remember
	section of soil specimen are 0.17 m and 21.8 x 10^{-4} m ²		
	respectively. Calculate the time required for the head to drop from		
	0.25 m to 0.10 m. The area of cross section of stand pipe is 2.0 x		
	10^{-4} m ² . The sample has three layers with permeabilities 3 x 10^{-5}		
	m/sec for first 0.06 m, 4 x 10^{-5} m/sec for second 0.06 m and 6 x		
	10^{-5} m/sec for the third 0.05 m thickness. Assume the flow is		
1			
	taking place perpendicular to the bedding plane.		
8.	taking place perpendicular to the bedding plane.A soil sample of height 60 mm, area of cross section 10,000mm²	BT – 4	Analyze
8.	 taking place perpendicular to the bedding plane. A soil sample of height 60 mm, area of cross section 10,000mm² subjected to falling head permeability test. Determine coefficient 	BT – 4	Analyze

	dropped from 600mm to 200mm .If the cross sectional area of the		
	stand pipe Of 200mm ² and if the soil sample is subjected to		
	constant head of 180mm, calculate the total quantity of water		
	collected in 1 hr after flowing through the soil sample.		
9.	Describe the Unconfined Pumping Out Flow and determine the	BT- 2	Understand
	coefficient of permeability of soil. Also explain Draw Down		
	Curve.		
10.	i. Explain about various factors affecting Co-efficient of	BT-4	Analyze
	permeability.(8)		
	ii. The falling head permeability test was conducted on a soil		
	sample of 4cm diameter and 18cm length. The head fell		
	from 1.0m to 0.40m in 20 minutes. If the cross-sectional		
	area of the stand pipe was 1cm2, determine the coefficient		
	ofpermeability. (5)		
11.	i. A field pumping test has been carried out in a well was	BT-4	Analyze
	sunk through a horizontal stratum of sand 15 m thick and		
	underlain by a clay stratum. Two observation wells were		
	sunk at horizontal distances of 18 m and 35 m respectively		
	from the pumping well. The initial position of the water		
	table was 2.5 m below the ground level. At a steady state		
	pumping rate of 925litres/min. The drawdown curves in		
	the observation wells were found to be 2.50 m and 1.50 m		
	respectively. Estimate the coefficient of permeability of the		
	sand. (8)		
	ii. Define flow net. Discuss about its uses. (5)		
12.	i. Derive the Laplace equation for two dimensional flow. (8)	BT- 2	Understand
	ii. In a falling head permeameter test the initial head is 40cm.		
	The head drops by 5cm in 10 minutes. Calculate the time		
	required to run the test for the final head to be at 20 cm. If		
	the sample is 6 cm height and 50cm^2 cross sectional area.		
	Calculate the coefficient of permeability, take area of		
	standpipe is 0.5cm^2 . (5)		
13.	Calculate the ratio of average permeability in horizontal direction	BT-6	Create
	to that in the vertical direction for a soil deposit consisting of three		
	Horizontal layers, if the thickness and permeability of second		
	layer are twice of those of the first and those of the third layer		
	twice those of second?		
14.	i. For a homogenous earth dam of 52 m height and 2 m free	BT- 1	Remember
	board, the flow net has 22 potential drops and 5 flow		
	channels. Calculate discharge per meter length of the dam,		
	given $k = 22 \times 10^{-6}$ m/sec, and exit hydraulic gradient (7)		

	ii. List the characteristics of flow nets. (6)		
	PART C		
1.	The sub soil strata at a site consist of fine sand 1.8m thick overlying a stratum of clay 1.6m thick. Under the clay stratum lies a deposit of coarse sand extending to a considerable depth. The water table is 1.5m below the ground surface. Assuming the top fine sand to be saturated by capillary water, calculate the effective pressures at ground surface and at depths of 1.8m, 3.4 m and 5.0m below the ground surface. Assume for fine sand G=2.65, e=0.8 and for coarse sand G=2.66, e=0.5.What will be the change in effective pressure at depth 3.4m, if no capillary water is assumed to be present in the fine sand and its bulk unit weight is assumed to be16.68kN/m ³ .The unit weight of clay may be assumed as 19.32 kN/m ³ .	BT – 1	Remember
2.	Explain in detail with neat sketches, the laboratory determination of permeability methods.	BT- 2	Understand
3.	 i. A constant head permeability test was conducted on a sandy soil of 160mm in length,cross sectional area is 6000mm² and porosity is 40% under a constant head of 300mm. Discharge was found out to be 45x10³mm³ in 18 seconds. Calculate the coefficient of permeability, discharge velocity and seepage velocity. (8) ii. List out the four methods of obtaining flow net. (7) 	BT – 4	Analyze
4.	 i. A drainage pipe beneath a dam has become clogged with sand; coefficient of permeability of the sand is 7.5 m/day. The average difference in head water and tail water elevation is 21 m and it has been observed that there is a flow of 160 litres per day through the pipe. The pipe is 97 m long and has a cross-sectional area of 0.02m². Find out up to what length of the pipe is filled with sand? (7) ii. A flow net analysis was performed for estimating the seepage loss through the foundation of a coffer dam, results of the flow net analysis gave a number of flow line 'N_f'=6 and number of drops 'N_d'=16. The head of water lost during seepage was 5m. Assume the co-efficient of permeability of the soil is 'k'=4x10⁻⁵ m/min. Estimate the seepage loss per meter length of the coffer dam per day. Also estimate the exit gradient if the average length of the last flow field is 0.9m. (8) 	BT – 1	Remember

UNIT III - COMPACTION AND CONSOLIDATION

Compaction – theory – laboratory and field technology – field Compaction method – factors influencing compaction–Components of settlement — Immediate and consolidation settlement – Factors influencing settlement – Terzaghi's one dimensional consolidation theory – Computation of rate of settlement. — \sqrt{t} and log t methods. e-log p relationship consolidation settlement N-C clays – O.C clays – Computation

PART A						
Q.NO	QUESTIONS	BT LEVEL	COMPETENCE			
1.	Define compaction.	BT-1	Remember			
2.	Define coefficient of compressibility.	BT-1	Remember			
3.	Define primary and secondary consolidation.	BT-1	Remember			
4.	Define over consolidated, normal consolidated and under consolidated soils.	BT-1	Remember			
5.	Define coefficient of consolidation and compression index.	BT-1	Remember			
6.	What are the stages of consolidation.	BT-1	Remember			
7.	Differentiate between coefficient of consolidation and degree of consolidation.	BT-2	Understand			
8.	Explain about the assumptions made in Terzaghi's one dimensional consolidation theory?	BT-2	Understand			
9.	List various field compaction equipments along with its suitability.	BT-3	Apply			
10.	Explain the terms immediate settlement and co-efficient of volume compressibility.	BT-2	Understand			
11.	Define Optimum Moisture content.	BT-1	Remember			
12.	Solve the compression index of remoulded soil sample with liquid limit of 40%.	BT-3	Apply			
13.	Write the use of consolidation test data?	BT-3	Apply			
14.	What is a zero air voids line? Draw a compaction curve and show the zero air voids line.	BT-4	Analyze			
15.	Identify the limitations of Terzaghi's analysis in one dimensional consolidation theory.	BT-4	Analyze			
16.	State whether the following statement is true or false and justify your answer. The efficiency of compaction improves with increase in compactive effort.	BT-4	Analyze			
17.	Difference between modified and standard compaction test.	BT-5	Evaluate			
18.	State Drainage path lengths for single and double drainage	BT-5	Evaluate			

	conditions for a soil layer of height H.								
19.	Draw a consolid consolidated clay	lation c	BT-6	Create					
20.	List any four equ	ipment	BT-6	Create					
21.	List various facto	ors affe	BT-1	Remember					
22.	What are the fact	ors infl	uencing	settlem	ent?			BT-3	Apply
23.	Differentiate bety	ween co	ompactio	n and c	onsolidat	ion.		BT-2	Understand
24.	What are the stag	ges of so	ettlemen	t?				BT-3	Apply
25.	Give the expressi	on for	immedia	te settle	ement.			BT-5	Evaluate
	1				PART	В		<u> </u>	
1.	Explain in detail the procedure of Modified Proctor Compaction								Remember
2.	Discuss the effec of soils.	t of cor	BT-3	Apply					
3.	In a laboratory consolidometer test on a 20mm thick sample of saturated clay taken from a site,50% consolidation point was reached in10minutes. Estimate the time required for the clay layer of 5m thickness at the site for 50% compression if there is drainage only towards the top. What is the time required for the clay layer to reach 50% consolidation if the layer has double								Remember
4.	Discuss the facto	rs affec	ting con	paction	n in detail	/		BT-1	Remember
5	The following data obtained in a compaction test. Specific Gravity = 2.65.Determine OMC and Maximum Dry Density. Draw Zero Air Void Line								Analyze
	content (%)Wet Density(kN/m³)	20.2	20.8	21.7	22.0	22.1	22.0		
6.	A clay layer of 8 in 2 years. The found to be 6 consolidation set undergo 90 % of	3 m thic co-eff x 10-3 ttlemen this ult	BT-2	Understand					
7.	Illustrate with a compaction test.	neat s	ketch th	e proc	edure of	Standard	Proctor	BT-1	Remember

8.	i.	Draw the compaction curve and explain the procedure for determine OMC and Maximum Dry density (5)	BT-3	Apply
		determing OMC and Maximum Dry density. (5)		
	ii.	A clay layer 4m thick is subjected to a pressure of 55 kN/m ² ,If the layer has a double drainage and undergoes 50% consolidation in one year, determine the coefficient of consolidation. Take time factor as 0.196. If the coefficient of permeability is 0.02m/yr , Determine the settlement in one year.(8)		
9.	i.	List the different components of settlement? Explain their	BT-4	Analyze
		occurrence with respect to the change in soil systems.(3)		
	11.	in laboratory with drainage allowed through top and		
		bottom. Sample reaches 50% consolidation in 35 min. If		
		clay layer from which sample was obtained is 3m thick and		
		is free to drain through top and bottom surfaces, calculate		
		the time required for same degree of consolidation in the		
		field. What is the time required if the drainage in the field is only through the top $2(10)$		
10.	i.	Explain in detail of the determination of coefficient of	BT-5	Evaluate
		consolidation using root t method (7)	-	
	ii.	Explain in detail of the determination of coefficient of		
		consolidation using log t method.(6)		
11.	i.	A layer of soft clay is 6m thick and lies under a newly	BT-6	Create
		clay layer produces a pressure of 26kg/cm^2 and the new		
		construction increases the pressure y_1^2 . If the		
		compression index is 0.5. Compute the settlement. Water		
		content is 40% and specific gravity of grains is 2.65.(7)		
	ii.	Explain in detail the laboratory determination of co-		
12	A ala	efficient of consolidation.(6)	DT 4	Analyzina
12.	A Cla	y layer of 10 m thickness undernes a sand stratum of 10 m verlies a pervious layer. The sand layer carries a point load	Б1-4	Analyzing
	of 10	MN. Assume e =0.7 and G = 2.72. L.L. = 60% and C_v = 25 x		
	10 ⁻⁴ c	$cm^2/sec.$ the water table is located 5 m above the top of the		
	clay l	ayer. Find how long would the clay take to settle 4.7 cm.		
13.	i.	Discuss the effect of compaction on various engineering	BT-4	Analyze
		properties of soils (5)		
	11.	A I cm thick laboratory soil sample reaches 60%		
		consolitation in 55 sec. under double dramage condition.		

	Find how much time will be required for a 10 m thick layer		
	in the field to reach the same degree of consolidation if it		
	has drainage face on one side only? (8)		
14.	A laboratory compaction test on soil having G= 2.67 gave a	BT-2	Understand
	maximum dry unit weight of 17.8 KN/m3 and a water content of		
	15%. Determine the degree of saturation, air content and		
	percentage air voids at the maximum dry unit weight. What would		
	be theoretical maximum dry unit weight corresponding to zero air		
	voids at the optimum water content?		
	PART C		
1.	Derive the equation for Terzaghi's theory of one dimensional	BT-1	Remember
	consolidation with a neat sketch.		
2.	Subsurface exploration at the side of the proposed building reveals	BT-5	Evaluate
	the existence of 2.4m thick layer of soft clay below a stratum of		
	coarse sand which is 4m thick and extends from the ground		
	surface upto the top of the clay layer. The ground water table is		
	2.5m below the ground surface. Laboratory tests indicate the		
	natural water content of the clay as 40%, average liquid limit 45%		
	and specific gravity of solids as 2.75. The unit weight of the sand		
	above and below water table is 17.8kN/m ³ and 21kN/m ³ . Estimate		
	the probable settlement of the building, if its construction will		
	increase average vertical pressure on the clay layer by 71Kpa.		
3.	A 5m thick saturated soil stratum has a compression index of 0.25	BT-6	Create
	and coefficient of permeability 3.2×10^{-3} mm/sec. If the void ratio		
	is 1.9 m at vertical stress of 0.15 N/mm ² . Compute the void ratio		
	when the vertical stress is increases to 0.2 N/mm ² , also Estimate		
	the settlement due to above stress increase and time required for		
	50% consolidation and 90% consolidation.		
4.	Differentiate Modified and Standard compaction test.	BT-4	Analyze

UNIT IV - STRESS DISTRIBUTION AND SHEAR STRENGTH

Stress distribution in homogeneous and isotropic medium – Boussines of theory – (Point load, Line load and udl) Use of Newmarks influence chart - Shear strength of cohesive and cohesion less soils – Mohr-Coulomb failure theory – shear strength - Direct shear, Triaxial compression, UCC and Vane shear tests.

PART A				
	OUESTIONS	BT		
Q.NO	QUESTIONS	LEVEL	COMPETENCE	
1.	Define Cohesion.	BT-1	Remember	

2.	What do you meant by Thixotropy?	BT-1	Remember
3.	What is the effect of pore pressure on shear strength of soil?	BT-1	Remember
4.	What is angle of internal friction?	BT-1	Remember
5.	Why triaxial shear test is considered better than direct shear test?	BT-1	Remember
6.	When is vane shear test adopted? Write the expressions to determine the shear strength of soil.	BT-1	Remember
7.	Show the coulomb's expression for shear strength.	BT-2	Understand
8.	List the assumptions made in Boussinesq's analysis of stress distribution.	BT-2	Understand
9.	Classify the types of shear test based on drainage conditions?	BT-2	Understand
10.	Describe the sensitivity of soils.	BT-2	Understand
11.	Write the principle behind Newmark's influence chart?	BT-3	Apply
12.	Write down the expressions to determine the shear strength of soil by vane shear test.	BT-3	Application
13.	Write down the Mohr's-Coulomb failure criterion for soils and explain the terms involved.	BT-3	Application
14.	List out the advantages of direct shear test.	BT-4	Analyze
15.	Outline the Boussinesq formula for vertical stress distribution in soil under a point load.	BT-2	Understand
16.	Compare Boussinessq's and Westerguard analysis for stress distribution.	BT-4	Analyze
17.	Explain the merits of triaxial test.	BT-5	Evaluate
18.	Explain the term Deviator stress.	BT-5	Evaluate
19.	Draw the Mohr's Circle diagram for UCC test and mention the salient features.	BT-6	Create
20.	Draw the typical stress-strain curve for specimens failed by brittle failure and plastic failure.	BT-6	Create
21.	Define stress path.	BT-1	Remember
22.	Discuss the disadvantages of direct shear test.	BT-4	Analyze
23.	Explain the term stress isobar or pressure bulb.	BT-6	Create
24.	List out the shear stress parameters	BT-4	Analyze
25.	Explain the demerits of triaxial test.	BT-5	Evaluate
	PART B		
1.	The stress on a failure plane in a drained test on a cohesion-less	BT-1	Remember
	soil are as under:		

	Normal stress (σ) =	100 kN/m ²					
	Shear stress $(\tau) = 40$	0 kN/m^2 .					
	i. Find the an	gle of shearin	g resistance ar	nd the angle v	which		
	the failure p	lane makes w	ith the major p	rincipal plane	. (7)		
	ii. Find the ma	jor and minor	principal stress	ses.	(6)		
2.	A concentrated poi	nt load of 20	0 kN acts at t	he ground su	rface.	BT-1	Remember
	Find the intensity of	f vertical pres	ssure at a depth	of 10m belo	w the		
	ground surface and	situated on t	he axis of the	loading. Wha	ut will		
	be the vertical pres	sure at a poin	t at a depth of	5m and at a	radial		
	distance of 2m from	n the axis of lo	bading? Use Bo	oussinesq anal	lysis.		
3.	i. Describe the	Newmark's	chart and its ap	plication.	(5)	BT-1	Remember
	ii A concentra	ited load of 2	22.5 kN acts o	n the surface	e of a		
	homogeneous	soil mass of	f large extent	. Find the	stress		
	intensity at a c	lepth of 3m,	6m, $9m$, $12m$,	and 15m di	rectly		
	diagram along y	vertical axis.	(8)	suess uisuit	Jution		
4.	i The regults	of three coner	lidated undrain	ad trianial to	ata on	BT-1	Remember
	i. The results	of three consc	ondated undran		(7)		
		cillens of a p		e as ionows.	. (/)		
	Test No.	1	2	3	0		
		3	SRN	n	m		
	Confining	200	300	<u>400</u>	9		
	stress, kPa				111		
	Derrictorio	244	214	01	_		
	Deviatoric	244	514	04			
	stress at						
	реак, кга						
	Pore water	55	107	159			
	pressure at						
	peak, kPa						
	Find the volue of te	tol and offect	va chaon strong	th normator			
	ii A sheer you	rar and effection $rar and effection rar and effection rate of rar and rate of rate of a rat$	diameter and	11 cm lengt	5. h waa		
	ii. A shear vane of 7.5 cm diameter and 11 cm length was used to measure the shear strength of soft clay. If a torque of 600 N m was required to shear the soil. Find the shear						
		mus require	to shour the s		Jincui		
5	strength (6)						
5.	Strength.(6)	was performe	ed on 60 mm v	60 mm sam	nle of	BT-2	Understand
	A direct shear test dry sand The nort	was performe nal load was	ed on 60 mm x 360 N.The fa	60 mm sam	ple of d at a	BT-2	Understand
	A direct shear test dry sand. The norn shear load of 180	was performe nal load was) N. Plot th	ed on 60 mm x 360 N.The fa ne Mohr stren	60 mm sam ilure occurred gth envelope	ple of d at a e and	BT-2	Understand
	A direct shear test dry sand. The norn shear load of 180 determine b. Assur	was performe nal load was) N. Plot th ne $c = 0$. Also	ed on 60 mm x 360 N.The fa e Mohr stren o. Identify the t	60 mm samp ilure occurred gth envelope principal stres	ple of d at a e and sses at	BT-2	Understand

6.	Descr adopte Subme	Describe the Vane Shear test in detail and classify the methods adopted in this test-Fully Submerged Vane and Partially Submerged Vane.					Understand
7.	A series of three consolidated undrained tests were conducted on an identical clay specimen of 50 mm diameter and height of 120 mm. Deviator load at failure 'p _t ', confining pressure ' σ_3 ' and pore water pressure 'U' recorded are presented below. Identify the total and effective strength parameters both by analytical and Mohr circle method.					BT-2	Understand
		Trial No	$\mathbf{p}_{t}(\mathbf{N})$	$\sigma_{\rm s}({\rm kN/m^2})$	$U (kN/m^2)$		
		1	100	510	-65		
		2	200	720	-10		
		3	40	11 0	80		
8.	 i. A concentrated load 10kN acts on the surface of a soil mass. Using Boussinesq analysis find the vertical stress at points a. 3m below the surface on the axis of loading and b. at radial distance of 2m from axis of loading but at same depth of 3m. (8) ii. Explain Taylor's square root time method for determining an afficient of appsalidation (5) 					BT-3	Application
9.	In a triaxial test, a soil specimen was consolidated under a cell pressure of 200kPa and simultaneously a back pressure of 100 kPa is applied to saturate the specimen .Thereafter, with drainage prevented, the cell pressure was raised to 250 kPa resulting in an increased pore pressure of 149kPa. Maintaining the same cell pressure of 250kPa, now the deviator stress was increased to 170 kPa and pore pressure of 220kPa was observed. Identify the pore pressure parameters A and B				BT-3	Application	
10.	An unconfined compression test was conducted on an undisturbed clay sample. The sample had a diameter of 37.5 mm and length 80 mm. Load at failure measured by proving ring was 28N and the axial deformation at failure point was 13mm. Determine the unconfined compressive strength and the undrained shear strength of clay. Examine and plot all the results on Mohr's Circle.					BT-4	Analyze
11.	Two id First sj the cel	dentical soil spe pecimen failed a l pressure was 2	ecimens were at a deviator s 200 (kPa) kN	e tested in a tria stress of 770 (kP $/m^2$. Second spe	xial apparatus. a) kN/m ² when cimen failed at	BT-4	Analyze

	1	6 1050 101/	11 6 400			
	a deviator stres	s of 1370 kN/1				
	kN/m ² . Examine	the value of c a				
	is tested in a di	rect shear appar	ratus with a no	ormal stress of 600		
	kN/m^2 , estimate	the shear stress	at failure.			
12.	i. Direct She	ar Test was con	ducted on Com	pacted Sand Shear	BT-4	Analyze
	Box Dime	nsions 60mm x	60 mm. The	readings are listed		
	below.					
	Normal load	110				
	(N)					
	Peak shear	95	195	294		
	load (N)					
	Ultimate	65	135	200		
	shear load					
	(N)					
	Examine the ang	le of shearing re	esistance in			
	a. Dense co	mpacted state	ENGINI			
	b. Loose st	ate		(9)		
	ii. Define De	eviator stress a	ts significance in			
	Triaxial sh	ear strength test.		(4)		
13	Discuss in detai	1 about the Bo	ussinea's analy	sis to find vertical	BT-5	Evaluate
101	stress and horizontal shear stress for point load.				210	
	stress and norizontal shear stress for point lota.					
14.	i. An unco	nfined compres	ssion test was	carried out on a	BT-6	Create
	sample o	f clay had a diai	<mark>neter</mark> of 38 mm	and a length of 76		
	mm. The	load at failure	measured by th	e proving ring was		
	45 N and	the axial deform	nation of the sa	mple at failure was		
	15 mm. Estimate the unconfined compressive strength, undrained shear strength and undrained cohesion of the clay sample. (7)					
	ii. How do	you find the s	hear strength o	of soil using Vane		
	Shear te	st and derive the	he formula use	ed to calculate the		
	shear stre	ength. Invent wh	ere this test is n	mostly used? (7)		
			PART	С		
1.	Explain the tria	axial shear tes	ts based on d	Irainage and their	BT-2	Understand
	applicability. Me	ention its merits	and demerits.	-		
2.	i. What is t	he shear strengt	th in terms of e	ffective stress on a	BT-1	Remember
	plane wit	hin a saturated	soil mass at a po	oint where the total		
	normal s	tress is 295 kN/	m^2 and the por	e water pressure is		
	120 kN/r	n ² ? The effectiv	e stress parame	ters for the soil are		
	c' = 12 k	N/m^2 and $\varphi'=30$	⁰ .	(10)		
	ii. List adva	ntages and disad	lvantages of dir	rect shear test. (5)		

3.	An embankment consists of clay fill for which $c'=25 \text{ kN/m}^2$ and	BT-5	Evaluate
	$\phi'=27^{\circ}$ (from consolidated undrained tests with pore-pressure		
	measurement). The average bulk unit weight of the fill is 20		
	kN/m ³ . Estimate the shear-strength of the material on a horizontal		
	plane at a point 20 m below the surface to the embankment, if the		
	pore pressure at this point is 180 kN/m^2 as shown by a piezometer.		
4.	In vane shear test conducted in a soft clay deposit failure occurred	BT-3	Application
	at torque of 42 Nm afterwards. The vane was allowed to rotate		
	rapidly and test was repeated in the remoulded soil. The torque at		
	failure in the remoulded soil was 17 Nm. the sensitivity of soil. In		
	both cases the vane was pushed completely inside soil. The height		
	of vane and diameter across blades are 100 mm and 80mm		
	respectively. What will be the change in the above results if top of		
	the vane is not in contact with soil?		

	UNIT 5-	SLOPE STABILITY
--	---------	-----------------

Infinite slopes and finite slopes — Friction circle method – Use of stability number –Guidelines for location of critical slope surface in cohesive and c - soil – Slope protection measures.

PART A					
Q.NO	QUESTIONS	BT LEVEL	COMPETENCE		
1.	Name the different types of slope failure?	BT-1	Remember		
2.	Define finite slope.	BT-1	Remember		
3.	Write the formula for finding factor of safety with respect to cohesion and friction.	BT-1	Remember		
4.	What are the factors leading to failures of slope?	BT-1	Remember		
5.	List the types of FOS used in stability of slopes.	BT-1	Remember		
6.	Define Taylor's Stability Number and mention its utilization for slope stability analysis.	BT-1	Remember		
7.	Draw a Slip Circle for a failure plane in a slope and show the forces involved.	BT-2	Understand		
8.	State the influence of tension crack in factor of safety if the cracks are filled with water and without water.	BT-2	Understand		
9.	Sketch the slip circle for a failure plane in a slope and show the	BT-2	Understand		

	forces involved.					
10.	Explain critical depth.	BT-2	Understand			
11.	Identify when and where the circular failure surface is mobilized.	BT-3	Apply			
12.	Write the expression for FOS for friction.	BT-5	Evaluate			
13.	Why circular failure surface is mobilized?	BT-3	Apply			
14.	Distinguish between finite slope and infinite slope.	BT-4	Analyze			
15.	Classify the different modes of failure of finite and infinite slopes.	BT-4	Analyze			
16.	List the three forces acting in circular failure while analysing	BT-4	Analyze			
	through friction circle method?					
17.	A cuffing is to be made in clay for which the cohesion is	BT-5	Evaluate			
	350 kN/m ² ; Bulk unit weight is 20 kN/m ³ , Determine the					
	maximum depth for a cutting of side slope 1.5 to 1. Factor of					
	safety to be 1.5. Take the stability number as 0.17.					
18.	Evaluate the maximum depth of soil having undrained cohesion is	BT-5	Evaluate			
	50kN/m ² , Unit weight of soil is 19kN/m ³ , Stability number is					
	0.20.					
19.	Elaborate the effect of depth of failure surface on the stability of	BT-6	Create			
	infinite slope in Cohesionless soil.					
20.	Discuss about the three critical conditions for which the stability	BT-6	Create			
	analysis of an earth dam is carried out.					
21.	Give the expression for stability number.	BT-3	Apply			
22.	Define infinite slope.	BT-1	Remember			
23.	Develop points on various slope protection measures.	BT-3	Apply			
24.	Write the expression for FOS for cohesion.	BT-5	Evaluate			
25.	When will you adopt friction circle method?	BT-6	Create			
	PART B					
1.	A slope of very large extent of soil with properties $c'= 0$ and $\phi=$	BT-1	Remember			
	32° is likely to be subjected to seepage parallel to the slope with					
	water level at the surface. What will be the maximum angle of					
	slope for a FOS is 1.5 treating it as an infinite slope. For this angle					
	of slope what will be the FOS if the water level were to come					

	down well below the surface? The saturated unit weight of the soil		
	is 20kN/m ³ .		
2.	An infinite slope made of soil with c' =20 kPa, ϕ = 20°, e = 0.65	BT-1	Remember
	and G=2.7 is 10m high. The slope angle is 25° . Find the factor of		
	safety with respect to height for the following conditions		
	a. When the soil is dry		
	b. When the slope is submerged.		
3.	i. An infinitely long slope having an inclination of 26° in an area	BT-1	Remember
	underlined by firm cohesive soil ($G = 2.72$ and $e = 0.50$). There is		
	a thin, weak layer of soil 6m below and parallel to the slope		
	surface (c = 25 kN/m2 , $\phi'\!\!=\!\!16^\circ$. Find the FOS when the slope is		
	dry. (7)		
	ii. If the ground water flow could occur parallel to the slope on		
	ground surface, what FOS would result- Solve. (6)		
	List the techniques used to improve the stability of alongs in brief	DT 1	Domomhor
4.	List the techniques used to improve the stability of slopes in orier.	B1-1	La dereter d
5.	i.Explain Taylor's stability number. (6)	D1-2	Understand
	ii.Outline some of the uses of Ta <mark>ylor's charts and its</mark>		
	applicability.(7)		
6		DT 2	Understand
0.	Explain the various methods to protect slopes from failure with	D1-2	Understand
	clear sketch. Also list out the factors to be considered in selection		
	of suitable method.		
7.	A canal with a depth of 5m has banks with slope 1:1 the properties	BT-2	Understand
	of soil are C=20 kN/m2, $\phi = 15^{\circ}$, $e = 0.7$, G= 2.6. Interpret the		
	factor of safety with respect to cohesion.		
	a. When canal runs full and		
	b. It is suddenly and completely emptied.		
8.	i. A slope is to be constructed at an inclination of 30° with the	BT-3	Apply
	horizontal. Determine the safe height of the slope at factor of		
	safety of 1.5. The soil has the following properties. $c=15$		

	$kN/m^2,\phi=22.5^\circ, \gamma=20 \ kN/m^2 \ (S_n=0.046).$ (6)		
	ii.Develop some points on total stress method of analysis of		
	stability of slopes. (7)		
9.	i. Develop points on differences between finite and infinite	BT-3	Apply
	slope. (6)		
	ii. Build up points on FOS of a finite slope possessing both		
	cohesion and friction(c - ϕ) by method of slices. (7)		
10.	An embankment of 10m high is inclined at 35° to the horizontal. A	BT-4	Analyze
	stability analysis by method of slices gives the following forces:		
	Total normal forces = 900 kN; total tangential force = 420 kN;		
	total neutral force= 200kN. If the length of the failure arc is 23m,		
	examine the FOS with respect to shear strength. The soil has C=		
	$20 \text{ kN/m}^2 \text{ and } \phi = 15^{\circ}.$		
11.	Analyze the stability of soil using friction circle method with neat	BT-4	Analyze
	sketch.		
12.	A new canal is excavated to a Depth of 5m with banks having 1:1	BT-4	Analyze
	slope. The properties of the soil are cohesion $=14 \text{ kPa}$, angle of		
	internal friction = 20° , void ratio = 0.65 and specific gravity of		
	solids =2.70. Examine the factor of safety with respect to cohesion		
	when the canal is running full. What will be the factor of safety if		
	the slope is changed to be 30° to vertical? The Taylor's stability		
	number is given in the table for different slope angles for angle of		
	internal friction = 20° .		

	Slope angle	30°	45°	60°	75°	90°			
	Stability number	0.025	0.062	0.097	0.134	0.182			
13.	·							BT-5	Evaluate
101	i. A 45° slope has been excavated to a depth of 8 m in a saturated								
	clay, which has following properties; $C_u = 60 \text{ kN/m}^2$, $\phi_u = 0$; and								
	unit weight = 2	20 kN/m	² . Deterr	nine the f	actor of s	atety for t	he trial		
	tailure surface	whose	radius is	12 m an	nd arc lei	ngth is 18	6.84 m.		
	The area of the	e trial w	/edge 1s	/0 m² an	d centre	of gravity	of the		
	trail wedge is 4	1.5 m aw	ay from	the centre	e of the fa	allure surfa	ace.(7)		
	ii. Derive from the first principles, the FOS of an infinite slope								
	a. Coh	esionles	s soil				S		
	b.C - φ	soil.			SRN	n	(6)		
14.	An infinite	sandy	soil slop	e <mark>has</mark> a	saturated	<mark>l unit w</mark> ei	ight of	BT-6	Create
	$\gamma_{sat}=19.5$ kN/m ³ and angle of internal friction $\phi = 35^{\circ}$. The								
	minimum f	factor o	f safety	needed	for the	slope aga	inst is		
	1.3.Estimate the safe angle of slope								
	a. When the slope is dry without seepage								
	b. If seepage occurs at and parallel to surface of the slope						pe.		
	Ĩ	C		1			L		
PART C									
1.	Briefly explain about the method of analysis of finite slopes							BT-2	Understand
2	A cut 9 m dee	n is to	be made	in clay	with a u	nit weight	t of 18		
2.	kN/m^3 and cohesion of 27 kN/m^2 A hard Stratum exists at a depth						a depth		
	of 18 m below the ground surface. Determine from Taylor's charts						BT-4	Analyze	
	if a 300 slope is Safe. If a factor of safety of 1.50 is desired.						esired.		220
	examine the sa	fe angle	of slope	?					

3.	Fig below shows the details of an embankment made of cohesive		
	soil with $\phi=0$ and c=30 kN/m ² . The unit weight of the soil is 18.9		
	kN/m ³ .Determine the factor of safety against sliding along the trial		
	circle shown. The weight of the sliding mass is 360 kN acting at		
	an eccentricity of 5m from the center of rotation .Assume that no		
	tension crack develops. The central angle is 70°.		
	6 m 1 d d d d d d d d d d d d d d d d d d	BT-5	Evaluate
4.	Discuss the stability analysis of slopes by method of slices for c- ϕ soil.	BT-6	Create

