SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF COMPUTER SCIENCE ANDENGINEERING

QUESTION BANK

V SEMESTER

1904007- DATA STRUCTURES

Regulation – 2019

Academic Year 2021 – 2022

Prepared by

Mr. N. LEO BRIGHT TENNISSON (Sr. G. / CSE)

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur-603203 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

OUESTION BANK

SUBJECT :**1904007- DATA STRUCTURES** SEM/YEAR: V/III

UNIT I - LINEAR DATA STRUCTURES - LIST

Introduction to structure-Abstract Data Types (ADTs) - List ADT - array-based implementation - linked list implementation - singly linked lists- circularly linked lists - applications of lists –Polynomial Manipulation.

PART – A					
Q.No	Questions	BT Level	Competence		
1	What is Circular list? Give an example with diagram.	BTL-1	Remember		
2	Differentiate linear and nonlinear data structures.	BTL-2	Understand		
3	Compare calloc () and realloc () function and mention its application in linked list.	BTL-4	Analyze		
4	Define ADT. Give any two examples.	BTL-1	Remember		
5	List out the areas in which data structures are applied extensively.	BTL-1	Remember		
6	Define iterators. Give example.	BTL-1	Remember		
7	Compare singly linked list with circular linked list.	BTL-5	Evaluate		
8	State the advantage of ADT.	BTL-1	Remember		
9	List out the advantage of circular linked list.	BTL-1	Remember		
10	Binary search cannot be performed on a linked list. Examine.	BTL-3	Apply		
11	Discuss the advantages and disadvantages of linked lists and arrays.	BTL-2	Understand		
12	Give an example for linked list application.	BTL-2	Understand		
13	Specify the use of Header node in a linked list.	BTL-6	Create		
14	Illustrate the use of linked list with an example.	BTL-3	Apply		
15	Show the ways in which list ADT can be implemented.	BTL-3	Apply		
16	Differentiate arrays and linked lists.	BTL-2	Understand		
17	Analyze and write a find routine in array implementation.	BTL-4	Analyze		
18	Analyze and write the array representation of a polynomial: $p(x) = 4x^3+6x^2+7x+9$	BTL-4	Analyze		

19	 Should arrays or linked lists be used for the following types of applications? Support your justification. 1. Many search operations in sortedlist. 2. Many search operations in Unsortedlist. 	BTL-5	Evaluate
20	Develop an algorithm for insertion operation in a singly linked list.	BTL-6	Create
	PART – B		
1	Describe the following: i. Polynomial manipulation(7) ii. Applications of lists.(6)	BTL-1	Remember
2	What is a linked list? Describe the suitable routine segments for any four operations in a linked list. (13)	BTL-1	Remember
3	List an algorithm to perform the following operations in a doubly linked list. i. Insert a node at the end of thelist.(7) ii. Delete the last node in the list.(6)	BTL-1	Remember
4	 i. Discuss the insertion and deletion procedures for cursor based linked lists. (7) ii. Give an algorithm for the deletion and reverse operations on doubly linked list. (6) 	BTL-2	Understand
5	i. Give the algorithm to perform insertion on a doubly linkedlist.(7)ii. Give the algorithm to perform deletion on a doubly linkedlist.(6)	BTL-2	Understand
6	Write an algorithm to demonstrate a polynomial using a linked list for i.Addition and Subtraction. (7) iii. Multiplication operations. (6)	BTL-3	Analyze
7	Analyze and write algorithm for Circular Linked list for the following operations using structure pointer.i. Create & Insert.(6)ii. Delete &Display.(7)	BTL-4	Analyze
8	Explain the application of linked list in detail.i. Radix sort. (7)ii. Multi list.(6)	BTL-4	Apply
9	Consider an array A[1: n] Given a position, write an algorithm to insert an element in the Array. If the position is empty, the element is inserted easily. If the position is already occupied the element should be inserted with the minimum number of shifts. (Note: The elements can shift to the left or to the right to make the minimum number of moves). (13)	BTL-5	Evaluate
10	Develop a program to add the values of the nodes of a linked list and then calculate the mean. (13)	BTL-6	Create
11	Describe the various operations of the list ADT with examples. (13)	BTL-1	Remember

12	 i. Illustratethepolynomialrepresentationfor6x3+9x2+7x+1usinglinkedlist. Writeproceduretoaddandmultiplytwopolynomialsandexplainwithsuitable example.(7) ii. What are the ways to insert a node in linked list? Write an algorithm for inserting a node before a given node in a linked list.(6) 	BTL-3	Analyze			
13	Explain the steps involved in the following insertion operations in a singly linked list.i. Insert the node in the start and End.(7)ii. Insert the node in the middle of the List(6)	BTL-4	Apply			
14	Discuss an algorithm for linked list implementation of list. (13)	BTL-2	Understand			
	PART – C					
1	Create an algorithm to add two polynomials using linked list. (15)	BTL-6	Create			
2	Explain an algorithm to split a linked list into two sub lists containing odd and given ordered elements in them respectively. (15)	BTL-5	Evaluate			
	even ordered elements in meni respectively. (15)					
3	Analyze how to merge two sorted linked lists into a single sorted list. (15)	BTL-4	Analyze			

UNIT II - LINEAR DATA STRUCTURES – STACKS, QUEUES

Stack ADT – Operations – Applications – Evaluating arithmetic expressions- Conversion of Infix to postfix expression – Queue ADT – Operations – Circular Queue – Priority Queue – deQueue – applications of queues.

	PART – A					
Q.No	Questions	BT Level	Competence			
1	Point out the advantage of representing stack using a linked list than array.	BTL-4	Analyze			
2	Point out the rules followed during the infix to postfix conversions.	BTL-4	Analyze			
3	Compare the working of stack and queue data structure.	BTL-5	Evaluate			
4	Develop an algorithm for inserting a new element into the stack.	BTL-6	Create			
5	What are priority queues? What are the ways to implement priority queue?	BTL-1	Remember			
6	List any four applications of stack.	BTL-1	Remember			
7	Given the prefix for an expression, write its postfix: -*-+abc/ef-g/hi	BTL-2	Understand			
8	Describe how the following "infix" expression is evaluated with the help of stack : $5 * (6+2) - 12/4$	BTL-2	Understand			
9	Give the postfix and prefix forms of the expression: $A + B^* (C - D) / (P - R)$	BTL-2	Understand			
10	Define double ended queue.	BTL-1	Remember			
11	List the applications of a queue.	BTL-1	Remember			

13What is circular queue?BTL-1Remember14Circular queue is better than standard linear queue, Why?BTL-3Understand15Classify the difference between a queues and linked lists with an example.BTL-3Apply16Illustrate the difference between a queues and linked lists with an example.BTL-3Apply17Complete a routine to display the contents of queue.BTL-3Apply18Analyze and write a routine to check whether the queue is full or empty.BTL-5Evaluate19For railway reservation the queue data structure is preferred—Justify.BTL-5Evaluate20Develop an algorithm for deleting an element in a double ended queue.BTL-1Remember1(13)BTL-1Remember2Explain array based implementation of stacks. (7) Explain linked list implementation of stacks.(6)BTL-1Remember3i. Describe about stack ADT in detail (7) ii. Explain any one application ofstack.(6)BTL-1Remember5rrackelaagorithm to convert an infix expression to a postfix expression. Tracethealgorithm to convert an infix expression to a postfix expression.(8)BTL-5Evaluate5i. Otscualgorithm foroperationsonstackusingalinkedlist.(7) ii. Justify the need for lnfix and Postfix expression (sh) ii. Justify the need for lnfix and Postfix expression to postfix expression using stack.(6)BTL-1Remember6ii. Justify the need for lnfix and Postfix expression to postfix expression using stack.(6)BTL-1Analyze7ii. Describe the process	12	What are the applications of priority queue?		Remember
14 Circular queue is better than standard linear queue, Why? BTL-2 Understand 15 Classify the different types of queues. BTL-3 Apply 16 Illustrate the difference between a queues and linked lists with an example. BTL-3 Apply 17 Complete a routine to display the contents of queue. BTL-4 Analyze 18 Analyze and write a routine to check whether the queue is full or empty. BTL-4 Analyze 19 For railway reservation the queue data structure is preferred -Justify. BTL-5 Evaluate 20 Develop an algorithm for deleting an element in a double ended queue. BTL-6 Create PART - B 1 Describewithanexamplehowtoevaluatearithmeticexpressionsusingstacks. BTL-1 Remember 2 Explain array based implementation of stacks. BTL-3 Apply 3 i. Describe about stack ADT in detail.(7) BTL-1 Remember 4 Explain any one application of stack.(6) BTL-1 Remember 5 .Describe about stack ADT in detail.(7) BTL-3 Apply 6 i. Giveanalgorithmforoperationsonstackusingalinkcdlist.(7) BTL-5 Evaluate	13	What is circular queue?	BTL-1	Remember
15 Classify the different types of queues. BTL-3 Apply 16 Illustrate the difference between a queues and linked lists with an example. BTL-3 Apply 17 Complete a routine to display the contents of queue. BTL-4 Analyze 18 Analyze and write a routine to check whether the queue is full or empty. BTL-5 Evaluate 20 Develop an algorithm for deleting an element in a double ended queue. BTL-6 Create 21 Describewithanexamplehowtoevaluatearithmeticexpressionsusingstacks. (13) BTL-1 Remember 2 Explain array based implementation of stacks. (7) Explain linked list implementation of stacks. (6) BTL-1 Remember 3 i. Describe about stack ADT in detail (7) BTL-1 Remember 4 Explain ary one application ofstack.(6) BTL-1 Remember 5 repression. BTL-3 Apply 6 i. Uvrite an algorithm to convert an infix expression to a postfix expression.(8) BTL-5 Evaluate 7 i. Justify the need for Infix and Postfix expression (a+b)*c/d+e/P*toapostfix expression.(8) BTL-2 Understand expression loss of stack.(6) 8 i. Overribetheprocessof conversion from infix expression to postfix expression using stack.(6) BTL-2 Understand expression using stack.(6) 7 i. Describe the pr	14	Circular queue is better than standard linear queue, Why?	BTL-2	Understand
16 Illustrate the difference between a queues and linked lists with an example. BTL-3 Apply 17 Complete a routine to display the concents of queue. BTL-3 Apply 18 Analyze and write a routine to check whether the queue is full or empty. BTL-4 Analyze 19 For railway reservation the queue data structure is preferred -Justify. BTL-5 Evaluate 20 Develop an algorithm for deleting an element in a double ended queue. BTL-6 Create 1 (13) BTL-1 Remember 2 Explain array based implementation of stacks. (7) Explain linked list implementation of stacks. (7) Explain linked list implementation of stacks. (7) Explain any one application ofstack.(6) BTL-1 Remember 3 i. Describe abut stack ADT in detail.(7) BTL-3 Apply 5 expression. BTL-3 Apply 6 i. Discribe abut stack ADT in detail.(7) BTL-3 Apply 6 i. Write an algorithm to convert an infix expression to a postfix expression. BTL-3 Apply 7 ii. Justify the need for Infix and Postfix expression.(5) BTL-4 Luderstand queue with necessary algorithms.(6) 8 is down and diltion and deletion operations performed on a circular queue with necessary algorithms.(6) BTL-4 Analyze 9 ii. Describe the process of	15	Classify the different types of queues.	BTL-3	Apply
17 Complete a routine to display the contents of queue. BTL-3 Apply 18 Analyze and write a routine to check whether the queue is full or empty. BTL-4 Analyze 19 For railway reservation the queue data structure is preferred -Justify. BTL-5 Evaluate 20 Develop an algorithm for deleting an element in a double ended queue. BTL-6 Create PART - B 1 Describewithanexamplehowtoevaluatearithmeticexpressionsusingstacks. BTL-1 Remember 2 (7) Explain array based implementation of stacks. BTL-3 Apply 3 i. Describe about stack ADT in detail (7) BTL-1 Remember 4 Explain any one application of stack.(6) BTL-1 Remember 5 Tracethealgorithm to convert an infix expression to a postfix expression. BTL-5 Evaluate 5 Tracethealgorithmtoconvertheinfixexpression'(a+b)*c/d+e/f*toapostfix expression.(8) BTL-5 Evaluate i Justify the need for Infix and Postfix expression to postfix expression to postfix expression to postfix expression to postfix BTL-2 Understand 6 i. Describe the process of conversion from infix expression to postfix expression to postfix BTL-2 Underst	16	Illustrate the difference between a queues and linked lists with an example.	BTL-3	Apply
18 Analyze and write a routine to check whether the queue is full or empty. BTL-4 Analyze 19 For railway reservation the queue data structure is preferred -Justify. BTL-5 Evaluate 20 Develop an algorithm for deleting an element in a double ended queue. BTL-6 Create 1 Describewithanexamplehowtoevaluatearithmeticexpressionsusingstacks. (13) BTL-1 Remember 2 Explain array based implementation of stacks. (7) Explain linked list implementation of stacks.(6) BTL-1 Remember 3 i. Describe about stack ADT in detail.(7) BTL-1 Remember 5 explain any one application ofstack.(6) BTL-3 Apply 5 expression. Tracethealgorithm to convert an infix expression to a postfix expression.(8) BTL-5 Evaluate 6 ii. Giveanalgorithmforoperationsonstackusingalinkedlist.(7) BTL-2 Understand queue with necessary algorithms.(6) BTL-2 Understand 7 ii. Describe the process of conversion from infix expression to postfix expression using stack.(6) BTL-4 Analyze 8 stack and illustrate with an example.(7) BTL-5 Evaluate 9 i. Write analgorithmtanet becksifexpressioniscorrectlyparenthesizedusing stack and illus	17	Complete a routine to display the contents of queue.	BTL-3	Apply
19For railway reservation the queue data structure is preferredJustify.BTL-5Evaluate20Develop an algorithm for deleting an element in a double ended queue.BTL-6Create21Describe withanexamplehowtoevaluatearithmeticexpressionsusingstacks.BTL-1Remember2Explain array based implementation of stacks. (7) Explain linked list implementation of stacks. (6)BTL-1Remember3i. Describe about stack ADT in detail.(7) ii. Explain any one application ofstack.(6)BTL-1Remember4Explain the infix, prefix and postfix expressions with an example. (13)BTL-3Apply5about stack ADT in detail.(7) ii. Explain any one application ofstack.(6)BTL-1Remember4Explain the infix, prefix and postfix expressions with an example. (13) ii. Justify the need for Infix and Postfix expression. (a+b)*c/d+c/f*toapostfix expression.(8)BTL-5BTL-5i< Giveanalgorithmforoperationsonstackusingalinkedlist.(7) ii. Discuss about addition and deletion operations performed on a circular queue with necessary algorithms.(6)BTL-2Understand7ii. Obscribe the process of conversion from infix expression to postfix expression using stack.(6)BTL-4Analyze8ii. Write anal gorithm that checks/fexpressioniscorrect/parenthesizedusing stack and illustrate with an example.(7) ii. Write the function to examine whether the stack is full () or empty ().(6)BTL-1Remember9ii. Describe about queue ADT in detail.(7) ii. Write anal algorithm to implement queue with acample.(13) ii. Write anal algorithm to implement queue functions using arra	18	Analyze and write a routine to check whether the queue is full or empty.	BTL-4	Analyze
20 Develop an algorithm for deleting an element in a double ended queue. BTL-6 Create PART – B 1 Describewithanexamplehowtoevaluatearithmeticexpressionsusingstacks. (13) BTL-1 Remember 2 Explain array based implementation of stacks. (7) Explain linked list implementation of stacks. (6) BTL-1 Remember 3 i. Describe about stack ADT in detail.(7) BTL-1 Remember 4 Explain the infix, prefix and postfix expressions with an example. (13) BTL-3 Apply 5 i. Write an algorithm to convert an infix expression to a postfix expression. Tracethealgorithmforepretionsonstackusingalinkedlist.(7) BTL-5 Evaluate 6 i. Discuss about addition and deletion operations performed on a circular queue with necessary algorithms.(6) BTL-2 Understand 7 ii. Describe theprocess of conversion from infix expression to postfix expression using stack.(6) BTL-4 Analyze 8 ii. Write analgorithmtatchecksifexpressioniccorrectlyparenthesizedusing stack and illustrate with an example.(7) BTL-4 Analyze 9 i. Describe about quee ADT in detail.(7) BTL-1 Remember 9 i. Describe the process of onversion from infix expressio	19	For railway reservation the queue data structure is preferred – Justify.	BTL-5	Evaluate
PART – B 1 Describewithanexamplehowtoevaluatearithmeticexpressionsusingstacks. (13) BTL-1 Remember 2 Explain array based implementation of stacks. (7) Explain linked list implementation of stacks. (6) BTL-3 Apply 3 i. Describe about stack ADT in detail.(7) BTL-1 Remember 4 Explain any one application ofstack.(6) BTL-1 Remember 5 i. Write an algorithm to convert an infix expression to a postfix expression. Tracethealgorithmtoconvertheinfixexpression*(a+b)*c/d+e/f*toapostfix expression.(8) BTL-5 Evaluate 6 i. Discuss about addition and deletion operations performed on a circular queue with necessary algorithms.(6) BTL-2 Understand expression using stack.(6) 7 i. Describetheprocess of conversion from infix expression to postfix expression using stack.(6) BTL-2 Understand 8 i. Write analgorithmthathethecksifexpressioniscorrectlyparenthesized expression using stack.(6) BTL-4 Analyze 8 i. Write the function to examine whether the stack is full () or empty ().(6) BTL-1 Remember 9 i. Describe about quee ADT in detail.(7) BTL-1 Remember 11 Analyze Analyze and write an algorithm to implement queue functions using arrays. (13)	20	Develop an algorithm for deleting an element in a double ended queue.	BTL-6	Create
1Describe (13)BTL-1Remember2Explain array based implementation of stacks. (7) Explain linked list implementation of stacks. (6)BTL-3Apply3i. Describe about stack ADT in detail.(7) ii. Explain any one application of stack.(6)BTL-1Remember4Explain the infix, prefix and postfix expressions with an example. (13)BTL-3Apply5i. Write an algorithm to convert an infix expression to a postfix expression. Tracethealgorithmtoconverttheinfix expression '(a+b)*c/d+e/f' toapostfix expression.(8) ii. Justify the need for Infix and Postfix expression.(5)BTL-5Evaluate6i Giveanalgorithmforoperationsonstackusingalinkedlist.(7) ii. Discuss about addition and deletion operations performed on a circular queue with necessary algorithms.(6)BTL-2Understand7ii. Describe the process of conversion from infix expression to postfix expression using stack.(6)BTL-2Understand8stack and illustrate with an example.(7) ii. Write the function to examine whether the stack is full () or empty ().(6)BTL-1Analyze9i. Describe the operations of queue with suitable example.(6)BTL-1Remember10Briefly describe the operations of queue with examples.(13)BTL-1Analyze11Analyze and write an algorithm to implement queue functions using arrays. (13)BTL-4Analyze12Develop an algorithm to perform the four operations in a double endequeue that is implemented as an array. (13)BTL-4Analyze13Discuss in detail about the circular queue operations on double ende		PART – B		
2Explain array based implementation of stacks. (7) Explain linked list implementation of stacks. (6)BTL-3Apply3i. Describe about stack ADT in detail.(7) ii. Explain any one application of stack.(6)BTL-1Remember4Explain the infix, prefix and postfix expressions with an example. (13)BTL-3Apply5Tracethealgorithm to convert an infix expression to a postfix expression. Tracethealgorithmtoconvertheinfixexpression'(a+b)*c/d+e/f'toapostfix expression.(8) ii. Justify the need for Infix and Postfix expression.(5)BTL-5Evaluate6i. Discuss about addition and deletion operations performed on a circular queue with necessary algorithms.(6)BTL-2Understand7i. Writeanalgorithmthatchecksifexpressionicorrectlyparenthesizedusing stack and illustrate with an example.(7) ii. Write the function to examine whether the stack is full () or empty ().(6)BTL-1Remember8i. Describe about queue ADT in detail.(7) ii. Explain any one application of queue with suitable example.(6)BTL-1Remember9i. Describe about queue ADT in detail.(7) ii. Explain any one application of queue with examples. (13)BTL-1Remember10Brefly describe the operations of queue with suitable example.(6)BTL-1Remember11AnalyzeAnalyzeCreate12Develop an algorithm to perform the four operations in a double 	1	Describe withanexamplehowtoevaluatearithmeticexpressionsusingstacks. (13)	BTL-1	Remember
3i. Describe about stack ADT in detail.(7) ii. Explain any one application ofstack.(6)BTL-1Remember4Explain the infix, prefix and postfix expressions with an example. (13)BTL-3Applyi. Write an algorithm to convert an infix expression to a postfix expression. Tracethealgorithmtoconvertheinfixexpression'(a+b)*c/d+e/f'toapostfix expression.(8) ii. Justify the need for Infix and Postfix expression.(5)BTL-5Evaluate6i. Giveanalgorithmforoperationsonstackusingalinkedlist.(7) ii. Discuss about addition and deletion operations performed on a circular queue with necessary algorithms.(6)BTL-2Understand7ii. Describetheprocessofpostfixexpressionicorrectlyparenthesizedusing stack and illustrate with an example.(7) ii. Write the function to examine whether the stack is full () or empty ().(6)BTL-4Analyze9i. Describe about queue ADT in detail.(7) ii. Explain any one application of queue with example.(13)BTL-1Remember10Briefly describe the operations of queue with suitable example.(6)BTL-1Analyze11Analyze and write an algorithm to implement queue functions using arrays. (13)BTL-1Remember12Develop an algorithm to perform the four operations in a double endedqueue that is implemented as an array. (13)BTL-2Understand13Discuss in detail about the circular queue and its implementation. (13)BTL-2Understand	2	Explain array based implementation of stacks.(7) Explain linked list implementation of stacks. (6)	BTL-3	Apply
4Explain the infix, prefix and postfix expressions with an example. (13)BTL-3Applyi. Write an algorithm to convert an infix expression to a postfix expression. Tracethealgorithmtconverttheinfixexpression'(a+b)*c/d+e/f*toapostfix expression.(8) ii. Justify the need for Infix and Postfix expression.(5)BTL-5Evaluate6i. Giveanalgorithmforoperationsonstackusingalinkedlist.(7) ii. Discuss about addition and deletion operations performed on a circular queue with necessary algorithms.(6)BTL-2Understand7i. Describetheprocessofpostfixexpressionevaluationwithanexample.(7) ii. Describet the process of conversion from infix expression to postfix expression using stack.(6)BTL-2Understand8stack and illustrate with an example.(7) ii. Write the function to examine whether the stack is full () or empty ().(6)BTL-4Analyze9i. Describe about queue ADT in detail.(7) ii. Explain any one application of queue with suitable example.(6)BTL-1Remember10Briefly describe the operations of queue with examples. (13)BTL-4Analyze11Analyze and write an algorithm to implement queue functions using arrays. (13)BTL-4Analyze12Develop an algorithm to perform the four operations in a double endedqueue that is implemented as an array. (13)BTL-2Understand13Discuss in detail about the circular queue and its implementation. (13)BTL-2Understand	3	i. Describe about stack ADT in detail.(7)ii. Explain any one application of stack.(6)	BTL-1	Remember
i. Write an algorithm to convert an infix expression to a postfix expression. Tracethealgorithmtoconvertheinfixexpression'(a+b)*c/d+e/f'toapostfix expression.(8)BTL-5Evaluate6i. Justify the need for Infix and Postfix expression.(5)i. Giveanalgorithmforoperationsonstackusingalinkedlist.(7) i. Discuss about addition and deletion operations performed on a circular queue with necessary algorithms.(6)BTL-2Understand7i. Describetheprocessofpostfixexpressionevaluationwithanexample.(7) ii. Describe the process of conversion from infix expression to postfix expression using stack.(6)BTL-2Understand8i. Writeanalgorithmthatchecksifexpressioniscorrectlyparenthesizedusing stack and illustrate with an example.(7) ii. Explain any one application of queue with suitable example.(6)BTL-1Remember9i. Describe the operations of queue with suitable example.(6)BTL-1Remember10Briefly describe the operations of queue with examples. (13)BTL-4Analyze11Analyze and write an algorithm to implement queue functions using arrays. (13)BTL-4Analyze12Develop an algorithm to perform the four operations in a double endedqueue that is implemented as an array. (13)BTL-2Understand13Discuss in detail about the circular queue and its implementation. (13)BTL-2Understand14Illustrate the enqueue and dequeue operations on double ended queues.BTL-4Analyze	4	Explain the infix, prefix and postfix expressions with an example. (13)	BTL-3	Apply
a Giveanal gorithm for operations on stack using all inkedlist. (7)BTL-2Understand6i. Giveanalgorithm for operations on stack using all inkedlist. (7)BTL-2Understand7ii. Describe the process of postfix expression evaluation with an example. (7)BTL-2Understand7ii. Describe the process of conversion from infix expression to postfix expression using stack. (6)BTL-2Understand8i. Write analgorithm that checks if expression is correctly parenthesized using stack and illustrate with an example. (7)BTL-4Analyze9ii. Describe about queue ADT in detail. (7)BTL-1Remember10Briefly describe the operations of queue with suitable example. (6)BTL-1Remember11Analyze and write an algorithm to implement queue functions using arrays. (13)BTL-4Analyze12Develop an algorithm to perform the four operations in a double ended queue that is implemented as an array. (13)BTL-2Understand13Discuss in detail about the circular queue and its implementation. (13)BTL-2Understand	5	 i. Write an algorithm to convert an infix expression to a postfix expression. Tracethealgorithmtoconverttheinfixexpression'(a+b)*c/d+e/f'toapostfix expression.(8) ii. Justify the need for Infix and Postfix expression.(5) 	BTL-5	Evaluate
i. Describe the process of postfix expression evaluation with an example. (7) ii. Describe the process of conversion from infix expression to postfix expression using stack.(6)BTL-2Understand8i. Write analgorithm that checks if expression is correctly parenthesized using stack and illustrate with an example. (7) ii. Write the function to examine whether the stack is full () or empty ().(6)BTL-4Analyze9i. Describe about queue ADT in detail. (7) ii. Explain any one application of queue with suitable example. (6)BTL-1Remember10Briefly describe the operations of queue with examples. (13)BTL-1Remember11Analyze and write an algorithm to implement queue functions using arrays. (13)BTL-4Analyze12Develop an algorithm to perform the four operations in a double endedqueue that is implemented as an array. (13)BTL-2Understand13Discuss in detail about the circular queue and its implementation. (13)BTL-2Understand14Illustrate the enqueue and dequeue operations on double ended queues.BTL-4Analyze	6	 i. Giveanalgorithmforoperationsonstackusingalinkedlist.(7) ii. Discuss about addition and deletion operations performed on a circular queue with necessary algorithms.(6) 	BTL-2	Understand
i. Writeanalgorithmthatchecksifexpressioniscorrectlyparenthesizedusing stack and illustrate with an example.(7) ii. Write the function to examine whether the stack is full () or empty ().(6)BTL-4Analyze9i. Describe about queue ADT in detail.(7) ii. Explain any one application of queue with suitable example.(6)BTL-1Remember10Briefly describe the operations of queue with examples. (13)BTL-1Remember11Analyze and write an algorithm to implement queue functions using arrays. (13)BTL-4Analyze12Develop an algorithm to perform the four operations in a double endedqueue that is implemented as an array. (13)BTL-2Understand13Discuss in detail about the circular queue and its implementation. (13)BTL-2Understand14Illustrate the enqueue and dequeue operations on double ended queues.BTL-4Analyze	7	 i. Describetheprocessofpostfixexpressionevaluationwithanexample.(7) ii. Describe the process of conversion from infix expression to postfix expression using stack.(6) 	BTL-2	Understand
9i. Describe about queue ADT in detail.(7) ii. Explain any one application of queue with suitable example.(6)BTL-1Remember10Briefly describe the operations of queue with examples. (13)BTL-1Remember11Analyze and write an algorithm to implement queue functions using arrays. (13)BTL-4Analyze12Develop an algorithm to perform the four operations in a double endedqueue that is implemented as an array. (13)BTL-6Create13Discuss in detail about the circular queue and its implementation. (13)BTL-2Understand14Illustrate the enqueue and dequeue operations on double ended queues.BTL-4Analyze	8	 i. Writeanalgorithmthatchecksifexpressioniscorrectlyparenthesizedusing stack and illustrate with an example.(7) ii. Write the function to examine whether the stack is full () or empty ().(6) 	BTL-4	Analyze
10Briefly describe the operations of queue with examples. (13)BTL-1Remember11Analyze and write an algorithm to implement queue functions using arrays. (13)BTL-4Analyze12Develop an algorithm to perform the four operations in a double endedqueue that is implemented as an array. (13)BTL-6Create13Discuss in detail about the circular queue and its implementation. (13)BTL-2Understand14Illustrate the enqueue and dequeue operations on double ended queues.BTL-4Analyze	9	i. Describe about queue ADT in detail.(7)ii. Explain any one application of queue with suitable example.(6)	BTL-1	Remember
11Analyze and write an algorithm to implement queue functions using arrays. (13)BTL-4Analyze12Develop an algorithm to perform the four operations in a double endedqueue that is implemented as an array. (13)BTL-6Create13Discuss in detail about the circular queue and its implementation. (13)BTL-2Understand14Illustrate the enqueue and dequeue operations on double ended queues.BTL-4Analyze	10	Briefly describe the operations of queue with examples. (13)	BTL-1	Remember
12Develop an algorithm to perform the four operations in a double endedqueue that is implemented as an array. (13)BTL-6Create13Discuss in detail about the circular queue and its implementation. (13)BTL-2Understand14Illustrate the enqueue and dequeue operations on double ended queues.BTL-4Analyze	11	Analyze and write an algorithm to implement queue functions using arrays. (13)	BTL-4	Analyze
13Discuss in detail about the circular queue and its implementation. (13)BTL-2Understand14Illustrate the enqueue and dequeue operations on double ended queues.BTL-4Analyze	12	Develop an algorithm to perform the four operations in a double endedqueue that is implemented as an array. (13)	BTL-6	Create
14Illustrate the enqueue and dequeue operations on double ended queues.BTL-4Analyze	13	Discuss in detail about the circular queue and its implementation. (13)	BTL-2	Understand
•	14	Illustrate the enqueue and dequeue operations on double ended queues.	BTL-4	Analyze

	(13)		
	PART – C		
1	Develop the simulation using stack for the following expression conversion: $12 + 3 * 14 - (5 * 16) + 7$. (15)	BTL-6	Create
2	Analyze the algorithm which implements the stack ADT. Explain any one application f stack. (15)	BTL-4	Analyze
3	Assess the difference between double ended queue and circular queue. Show the simulation using stack for the following expression to convert infix to postfix: $p * q - (r-s/t)$. (15)	BTL-5	Evaluate
4	Develop an algorithm to explain Priority Queue, deQueue and theapplications of queues. (15)	BTL-6	Create

Binary Trees – Binary tree representation and traversals – Application of trees: – Graph and its representations – Graph Traversals – Connected components.

Q.No	Questions	BT Level	Competence
	PART – A		·
1	If the depth of the binary tree is k, the maximum number of nodes in the binary tree is 2^{k} -1. Justify	BTL 5	Evaluate
2	For the given binary search tree, if we remove the root and replace it with something from left subtree. What will be the value of the new root? Justify your answer. $ \begin{array}{r} 14 \\ 2 \\ 1 \\ 5 \\ 20 \\ 4 \\ 17 \\ 40 \end{array} $	BTL5	Evaluate
3	Define a fully binary tree.Give an example.	BTL 1	Remember
4	Createa binary tree with four nodes	BTL 6	Create
5	Howbinary search tree differ from binary tree?	BTL 4	Analyze
6	Whatare the rules to be followed to construct a binary search tree?	BTL 1	Understand
7	List the applications of trees.	BTL 1	Remember
8	What is a complete binary tree? Give example with diagram.	BTL 2	Understand
9	Defineheight of a tree	BTL 1	Remember
10	How to calculate the maximum number of nodes in a binary tree with depth k?	BTL 2	Understand
11	Simulatepreorder tree traversal for the following tree	BTL 6	Create

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
12 Discuss with respect to following tree: a) List the siblings for node E. b) Compute the height	BTL 2	Understand
¹³ Number the following binary tree to traverse it in i.Preorder ii.Inorder	BTL 2	Understand
¹⁴ Explain why binary search cannot be performed on a linked list.	BTL 4	Analyze
¹⁵ How do you calculate the in-degree and out-degree of each node in the given graph?	BTL 3	Apply

16	List out various types of graph.	BTL 1	Remember
17	List out two applications of graph	BTL 1	Remember
18	Illustrate the steps in the construction of adjacency matrix for the following graph	BTL 3	Apply
19	Differentiate cyclic and acyclic graph	BTL 4	Analyze
20	Show that the number of edges in a complete graph of n vertices $inn(n-1)/2$	BTL 3	Apply
	PART – B		1
1	Write an algorithm for preorder, inorder and postorder traversal of a binarytree. (13)	BTL 1	Remember
2	 Explain the following operations on a binary search tree with suitablealgorithms Find a node (6) Find the minimum and maximum elements of binary search tree (7) 	BTL 4	Analyze
3	Describe representation of binary tree using arrays and linked list.	BTL 1	Remember
4	Write an algorithm for inserting and deleting a node in a binary search tree.(13)	BTL 1	Remember
5	Discuss in detail the various methods in which a binary tree can berepresented. Discuss the advantage and disadvantage of each method (13)	BTL 2	Understand
6	Construct the binary search tree using following elements: 35,15,40,7,10,100,28,82,53,25,3. Show diagrammatically each step of construction of BST. (13)	BTL 5	Evaluate
7	Discuss the different traversal technique inbinary tree with suitablealgorithms and examples? (13)	BTL 2	Understand
8	Develop an algorithm to compute the shortest path using Dijkstra's algorithm. Validate the algorithm with suitable example. (13)	BTL 6	Create
9	Describe in detail about the following representations of a graph. i. Adjacency Matrix (7)	BTL 1	Remember

	ii. Adjacency List (6)		
10	Differentiate depth-first search and breadth-first search traversal of a graph	BTL 4	Analyze
	with suitable examples. (13)		
11	i. Write short notes on Bi-connectivity. (7)	BTL 2	Remember
	ii. Express different types of graphs with example. (6)		
12	Explain the depth first approach of finding articulation points in a	BTL 4	Analyze
	connected graph with necessary algorithm.(13)		
13	Illustrate depth-first search and breadth-first search traversal of a graph with suitable exemples (12)	BTL 3	Apply
14	i Show that the maximum number of adapts in a simple graph with n	BTI 3	Apply
14	1. Show that the maximum number of edges in a simple graph with in vertices is $n(n-1)/2$ (7)	DILJ	дрргу
	ii Prove that if a graph has exactly two vertices of odd degree, there must		
	be path joining these two vertices (6)		
	PART – C		
1	Consider the binary search tree given below.	BTL 5	Evaluate
1	Find the result of in-order, pre-order, and post-order traversals.		
	Show the deletion of the root node		
	Insert 11, 22, 33, 44, 55, 66, and 77 in the tree (15)		
	(45)		
	33 30		
	(12) (54) (78)		
	(10) (34) (67) (89)		
	(32) (81)		
2	Create a binary search tree and Find the position of element 29 using binary search	BTL 6	Create
	method in an array 'A' given below : $A = \{11, 5, 21, 3, 29, 17, 2, 43\}$ (15)		
3	Given the adjacency matrix of a graph, write an algorithm to calculate the	BTL 4	Analyze
	in-degree and the out-degree of a node N in the graph. (15)		

4	Conside Bangalo shown in graph.(1	r five cities: (1) Nev ore, and (5) Kolkata, n the following table 5)	v Delhi, (2) Mu and a list of fli e.Use the given	mbai, (3) Chennai, (4) ghts that connect these ci information to construc	ities as t a	BTL 6	Create
		Flight No	Origin	Destination			
		101	2	3			
		102	3	2			
		103	5	3			
		104	3	4			
		105	2	5			
		106	5	2			
		107	5	1			
		108	1	4			
		109	5	4			
	_	110	4	5	_		

UNIT-IV: SORTING

Selection sort-Insertion sort – Merge sort – Quick sort – Heap sort – Bubble sort- Shell sort – Radix sort.

PART – A			
Q.No	Questions	BT Level	Competence
1	What is sorting?	BTL1	Remember
2	Defineradix sort.	BTL1	Remember
3	Give the fast sorting algorithm.	BTL2	Understand
4	What is meant by internal and external sorting? Give any two examples for each type.	BTL1	Remember
5	Give the time complexities of bubble sort and quick sort.	BTL2	Understand
6	Listany four sorting techniques.	BTL1	Remember
7	Describe the complexity of bubble sort.	BTL1	Remember
8	Predict the fastest sorting algorithm, justify.	BTL2	Understand
9	Compare internal and external sorting.	BTL4	Analyze
10	Distinguish which sorting technique are in-place sort and which are not.	BTL2	Understand
11	Classify the different sorting methods.	BTL3	Apply

12	Develop an algorithm for a quick sort.	BTL6	Create
13	Which sorting technique is best and illustrate with an example?	BTL3	Apply
14	Summarize the shell sort.	BTL5	Evaluate
15	Point out the advantages of using quick sort.	BTL4	Analyze
16	Compare the internal and external sorting techniques.	BTL4	Analyze
17	Select the best sorting method out of the following - insertion sort, quick sort and merge sort and give justification.	BTL5	Evaluate
18	Illustrate the time complexity of insertion sort with an example.	BTL3	Apply
19	Identify the advantage of shell sort over insertion sort.	BTL1	Remember
20	Develop a simple algorithm for bubble sort.	BTL6	Create
	PART – B	1	
1	Describehowtheisimplemented (13)	BTL1	Remember
2	Describe the algorithm to sort the following array: 77, 33, 44, 11, 88, 22, 66, 55 i. Insertion sort(7) ii. Shall Sort(6)	BTL1	Remember
3	i. List the different types of sorting techniques?(7)ii. Explain any one sorting technique in detail with an Example.(6)	BTL1	Remember
4	 i. Write algorithm for merge sort. (7) ii. Discuss the running time of Divide-and-Conquer Merge sort algorithm.(6) 	BTL2	Understand
5	i. Sort the sequence 3, 1, 4, 1, 5, 9, 2, 6, 5 usingInsertion sort. (7) ii. Describe the routine for insertion sort.(6)	BTL2	Understand
6	Writeanalgorithmtosortasetof N'numbersusingquicksort. Demonstrate quick sort for the followingdata:88,11,22,44,66,99,32,67,54,10.	BTL3	Apply
7	(13) Explain Quicksort in detail with an example (13)	BTI 4	Analyze
8	Compare the below different Sorting methods and discuss about each method in a very detailed Manner. i.Bucket Sort.(7) ii.Selection Sort.(6)	BTL4	Analyze
9	 i. Sort the given integers and Explain the intermediate results using shell sort: 35,12,14,9,15,45,32,95,40,5. (7) ii. Write and explainaalgorithm to sort an integer array.(6) 	BTL5	Evaluate
10	i. Create a algorithm to perform a insertion sort.(7)ii. Develop an algorithm for Merge sort with anexample.(6)	BTL6	Create
11	i. Write short notes on BubbleSort.(5)ii. Illustrate an algorithm to sort the elements using bubble sort.(8)	BTL4	Analyze

12	Describe the following sorting techniques in detail with an example. i. Shell sort. (7) ii.Radix sort. (6)	BTL1	Remember
13	 i. Explain bubble sort. Sort the following numbers using bubble sort 35,12,14,9,15,45,32,95,40,5(9) ii. Explain the radix sort.(4) 	BTL3	Apply
14	Describe quick sort with algorithm. Explain the time complexity of quicksort (13)	BTL2	Understand
PART – C			
1	Develop an algorithm for quick sort and explain with suitable example Give its worst case, average case and best case time complexities.(15)	BTL6	Create
2	Analyze how to sort an integer array using Selection Sort and Radix Sort.(15)	BTL4	Analyze
3	Explain an algorithm for Shell Sort and Merge Sort and explain withexample.(15)	BTL5	Evaluate
4	Prepare a quick sort algorithm and explain with suitable example Give its worst case, average case and best case time complexities.(15)	BTL6	Create

UNIT-V: SEARCHING AND INDEXING

Linear Search – Binary Search - Hash tables – Overflow handling – Hash Index – B-Tree Indexing.

PART – A			
Q.No	Questions	BT Level	Competence
1	What is hashing?	BTL1	Remember
2	Define extendible hashing.	BTL1	Remember
3	Give the fastest searching algorithm.	BTL2	Understand
4	What is hash function?	BTL1	Remember
5	Give example for hash function.	BTL2	Understand
6	Name the applications of linear each technique.	BTL1	Remember
7	Name the applications of binary search techniques.	BTL1	Remember
8	Predict the fastest, justify.	BTL2	Understand
9	Point out the procedure for select good hash function.	BTL4	Analyze
10	Distinguish between linear and binary search technique.	BTL2	Understand
11	Classify the different hashing techniques.	BTL3	Apply
12	Develop an algorithm linear search.	BTL6	Create
13	Which hashing technique is best and illustrate with an example?	BTL3	Apply
14	Summarize the open addressing hashing method with an example.	BTL5	Evaluate
15	Point out the advantages of using binary search.	BTL4	Analyze
16	Compare the working of linear and binary search techniques.	BTL4	Analyze

17	Does a B tree have disadvantage? Justify.	BTL5	Evaluate
18	How do you calculate the depth of a B-Tree?	BTL3	Apply
19	List out the various operations that can be performed on B-trees	BTL1	Remember
20	Develop a simple algorithm for a binary search.	BTL6	Create
	PART – B		
1	Describe how the divide and conquer technique is implemented in binary search. (13)	BTL1	Remember
2	Describe the following search algorithms to search the number 88 from the following array: 77, 33, 44, 11, 88, 22, 66, 55 i. Linear Search (7) ii. Binary Search (6)	BTL1	Remember
3	i, List the different types of hashing techniques? (7)ii, Explain them in detail with an Example. (6)	BTL1	Remember
4	 i, Interpret the result of inserting the keys 2, 3, 5, 7, 11, 13, 15, 6, 4 into an initially empty extendible hashing data structure with M = 3. (7) ii. Discuss the points to be followed in selecting a hash function. (6) 	BTL2	Understand
5	 i. Search the element 2 from the sequence 3, 1, 4, 1, 5, 9, 2, 6, 5 using Binary search.(7) ii. Describe hash tables. (6) 	BTL2	Understand
6	Write a hash function to index a set of 'N' numbers and demonstratehashingfor the following data: 88,11,22,44,66,99,32,67,54,10. (13)	BTL3	Apply
7	Explain various collision resolution techniques in detail with an example. (13)	BTL4	Analyze
8	Compare the below different Hashing methods and discuss about each method in a very detailed Manner. i.Static Hashing. (7) ii. Dynamic Hashing .(6)	BTL4	Analyze
9	i. Index the following keys using B Tree Indexing: 35,12,14,9,15,45,32,95,40,5. (7) ii. Write the method to find the element 45 using the B Tree. (6)	BTL5	Evaluate
10	i. Create an algorithm to perform a binary Search. (7)ii. Develop a hash function and demonstrate hashing.(6)	BTL6	Create
11	i. Write short notes on Hash Tables.(5) ii. Illustrate rehashing. (8)	BTL4	Analyze
12	Describe the following collision resolution techniques in detail with an example. i.Separate chaining. (7) ii.Rehashing. (6)	BTL1	Remember
13	i. Explain different hashing technique. (5) ii. Explain the rehashing technique with suitable example. (8)	BTL3	Apply
14	Describe the open addressing and chaining methods of collusion resolution techniques in hashing. (13)	BTL2	Understand
PART – C			

1	Develop an algorithm to search a number in a given set of numbers using	BTI 6	Create
	binary	DILO	Cicate
	search. Develop and algorithm to explain Extendible Hashing.(15)		
2	Explaining the following with example	DTL 5	
	i. Hashing (3)	BTL5	Evaluate
	ii. Hash function (4)		
	iii. Hash Table (3)		
	iv. Bucket overflow (5)		
3	Explain B Tree with example. Analyze the advantages and disadvantages		
	of B Tree. (15)	BILS	Evaluate
4	i. Develop an index using a B Tree and explain the index can be used to	DTI 6	Creata
	search an element. (8)	DILO	Create
	ii. Explain various collision resolution techniques. (7)		