SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF

COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

IV SEMESTER

1904402 - DESIGN AND ANALYSIS OF ALGORITHMS

Regulation – 2019

Academic Year 2021 – 22

Prepared by

Dr. B. Muthu Senthil, Associate Professor/CSE Dr. A. Samydurai , Associate Professor/CSE Mr. T. Rajasekaran , Assistant Professor / CSE

SRM VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

SUBJECT CODE/NAME: 1904402 DESIGN AND ANALYSIS OF ALGORITHMS

SEM / YEAR: IV/II

UNIT I - INTRODUCTION					
Notion of an Algorithm – Fundamentals of Algorithmic Problem Solving – Important Problem Types –					
Fundamentals of the Analysis of Algorithmic Efficiency –Asymptotic Notations and their properties. Analysis					
Framework – Empirical analysis - Mathematical analysis for Recursive and Non-recursive algorithms -					
Visualization					
PART – A					
Q.					

Q. No	Questions	BT Level	Competence
1.	Define algorithm and list the desirable properties of an algorithm.	Remember	Competence BTL-1
2.	Define best, worst and average time complexity.	Remember	BTL-1
3.	How to measure the algorithm running time?	Remember	BTL-1
4.	List the steps to write an Algorithm.	Remember	BTL-1
5.	Prove that if $f(n)=O(g(n))$ ad $g(n) = O(f(n))$, then $f(n)=\Theta g(n)$.	Apply	BTL-3
6.	Evaluate an algorithm for computing gcd(m,n) using Euclid's Algorithm	Evaluate	BTL-5
7.	Design the equality $gcd(m,n)=gcd(n,m \mod n)$ for every pair of positive integers m and n.	Create	BTL-6
8.	What do you mean by the "Worst Case efficiency" of an algorithm?	Remember	BTL-1
9.	Identify how you will measure input size of algorithms.	Remember	BTL-1
10.	Explain the various types of problems that can be solved using algorithm.	Analyze	BTL-4
11.	Apply the common technique for proving the correctness of an algorithm.	Apply	BTL-3
12.	List the most important problem types.	Remember	BTL-1

13.	Define Big 'Oh' notation.	Remember	BTL-1
14.	Formulate the order of growth. Compare the order of growth n! and 2^{n} .	Create	BTL-6
15.	Differentiate between Best, average and worst case efficiency.	Understand	BTL-2
16.	Discuss the concepts of asymptotic notations and its properties.	Understand	BTL-2
17.	Analyze the order of growth.	Analyze	BTL-4
	(i). $F(n) = 2n^2 + 5$ and $g(n) = 7n$. Use the $\Omega(g(n))$ notation.		
18.	Differentiate Algorithm VS Program.	Evaluate	BTL-5
19.	Discuss the General plan for analyzing efficiency of Non recursive & Recursive algorithms	Understand	BTL-2
20.	 Discuss the following questions by consider the definition based algorithm for adding two n by n matrices. 1. What is basic operation? 2. How many times it is performed as a function of the matrix order n? 3. How many times it is performed as a function of the total number of elements in the input matrices? 	Understand	BTL-2

	PART - B		
1.	Give the General Plan for Analyzing the Time Efficiency of		
	Recursive Algorithms and use recurrence to find number of moves	Understand	BTL-2
	for Towers of Hanoi problem n (13)		
2.	(i) Consider the following algorithm for the searching problem. (8)		
	ALGORITHM Linear search (A[0,n-1],key)		
	// Searches an array for a key value by Linear search.		
	//Input: Array A [0n-1] of values and a key value to		
	search.		
	//Output: Returns index if search is successful.		
	For $i \leftarrow 0$ to n-1 do		
	If $[key = A[i])$		
	Return i.	Apply	BTL-3
	a) Apply this algorithm to search the list 10,	r r -J	
	92,38,74,56,19,82,37 for a key value 74.		
	b) Is this algorithm efficient?		
	c) When can this algorithm be used?		
	(ii) What are the most important problem types are used to illustrate		
	different algorithm design techniques and methods of algorithm		
	analysis. (5)		
	unury 515. (J)		

3.	Write the asymptotic notations used for best case, worst case average case of algorithms. Create an algorithm to find the maximum element in an array best, worst and average case complexities.	(7)	Create	BTL-6
4.	 For each of the following algorithms, Compute n! Asses & find the largest element in a list of n numbers werespect to the following conditions: A natural size metric for its inputs. (b). Its basic operation. (c). Whether the basic operation count can be different for input he same sizes. 	Analyze	BTL-5	
5.	Discuss various methods used for mathematic analysis for recursive and non-recursive algorithms. (13)		Understand	BTL-2
6.	What are the rules of manipulate Big Oh expressions and about the typical growth rates of algorithms?	(13)	Analyze	BTL-4
7.	Illustrate briefly on Big oh Notation, Omega Notation and Theta Notations. Depict the same graphically and explain.	(13)	Evaluate	BTL-3
8.	(i)Define a Mathematical analysis of recursive algorithms. (ii)Examine the efficiency of factorial of some number n wi the help of General plan.	· · ·	Remember	BTL-1
9.	(i) Define a Mathematical analysis of Non-recursive algorithm (ii) Tell about the efficiency of finding the element with maximum value in a given Array with the help of General pl		Remember	BTL-1
10.	(i) Define Towers of Hanoi problem. (ii) Describe the time complexity of Towers of Hanoi problem	(3) n. (10)	Remember	BTL-1
11.	Explain in detail about Analysis Framework with a suitable Example	(13)	Analyze	BTL-4
12.	 Analyze the recursive and non-recursive versions of the factorial function. i) Examine how much each function requires as 'n' becomes large. ii) Find the time complexity and space complexity 	(7) (6)	Analyze	BTL-4
13.	Evaluate the recurrence relations. (i). $x (n) = x (n-1) + 5$ for $n>1$. (ii). $X (n) = x(n/3) + 1$ for $n > 1, x(1) = 1$. (Solve for $n = 3k$)	(7) (6)	Apply	BTL-4
14.	Discuss in detail about the fundamentals of algorithmic problem solving.	(13)	Understand	BTL-2

	PART C			
1.	Evaluate the following equalities are correct:		Evaluate	BTL-5
	$i)5n^2-6n=\Theta(n^2)$	(4)		
	$ii)n!=O(n^n)$	(4)		

	$\begin{array}{l} \text{iii})n^{5} + 10^{6}n^{2} = \Theta(n^{5}) \\ \text{iv})2n^{2}2^{n} + n\log n = \Theta(n^{2}2^{n}) \end{array} \tag{4}$		
2.	Evaluate the following recurrences completelyi) $T(n) = T(n/2) + 1$, where $n=2^k$ for all $k \ge 0$ (4)ii) $T(n) = T(n/3) + T(2n/3) + cn$, where 'c' is a(4)constant and 'n' is the input size.(4)iii) Explain the steps involved in problem solving(7)	Evaluate	BTL-5
3.	Design a consecutive integer checking algorithm and middle- school procedure algorithm. (15)	Create	BTL-6
4.	Consider the problem of finding the smallest and largest elementsin an array of n numbers.i) Design a presorting-based algorithm for solving this problem anddetermine its efficiency class(7)ii) Compare the efficiency of the three algorithms:(8)a)The Brute-force algorithmb)This presorting –based algorithm andc) The divide-and conquer algorithm.	Create	BTL-6

Brute Force – Computing an – String Matching - Closest-Pair and Convex-Hull Problems - Exhaustive Search - Travelling Salesman Problem - Knapsack Problem - Assignment problem.

	PART – A						
Q.No	Questions	BT Level	Competence				
1.	State Brute force approach.	Remember	BTL-1				
2.	Examine a brute force algorithm for string matching problem.	Apply	BTL-3				
3.	Give an example of a text of length n and a pattern of length m that constitutes a worst case input for the brute force string matching algorithm. Formulate and find how many character comparisons will be made for such input.	Create	BTL-6				
4.	Define the term exhaustive search.	Remember	BTL-1				
5.	Examine a brute force algorithm for counting the number of vowels in a given text.	Apply	BTL-3				
6.	Give an example problem that cannot be solved by a Brute force approach and also how to decide?	Remember	BTL-1				
7.	Describe brute force approach. What are the advantages and disadvantages of this approach?	Analyze	BTL-4				

8.	Define closest pair problem.	Remember	BTL-1
0.			2121
9.	Define convex hull problem.	Remember	BTL-1
10.	Formulate is the length of the step-in jump search?	Create	BTL-6
11.	Analyze the objective of the knapsack problem?	Analyze	BTL-4
12.	Describe the concepts of Travelling Salesman Problem.	Analyze	BTL-4
13.	You are given a knapsack that can carry a maximum weight of 60. There are 4 items with weights {20, 30, 40, 70} and values {70, 80, 90, 200}. What is the maximum value of the items you can carry using the knapsack? of the following methods can be used to solve the Knapsack problem?	Understand	BTL-2
14.	What is the time complexity of the brute force algorithm used to solve the Knapsack problem?	Apply	BTL-3
15.	Define the Time complexity of knapsack 0/1 where n is the number of items and W is the capacity of knapsack.	Understand	BTL-2
16.	Give an example for knapsack problem.	Understand	BTL-2
17.	Evaluate the methods can be used to solve the Knapsack problem?	Evaluate	BTL-5
18.	Given items as {value,weight} pairs {{60,20},{50,25},{20,5}}. The capacity of knapsack=40. Find the maximum value output assuming items to be divisible and nondivisible respectively.	Evaluate	BTL-5
19.	Define Assignment problem.	Remember	BTL-1
20.	What is the advantage of recursive approach than an iterative approach?	Understand	BTL-2
	PART – B		
1.	Explain the concepts of the following.(7)(i)Brute force string matching Algorithm.(7)(ii)Closest pair and convex hull problems by brute force(6)	Evaluate	BTL-5
2.	Can you design a more efficient algorithm than the one based on the brute-force strategy to solve the closest-pair problem for n points x1, x2,,xn on the real line? (13)	Understand	BTL-2
3.	What is brute force strategy and explain the sequential search with suitable example problem.(13)Examina in datail about Exhausting search techniques(12)	Analyze	BTL-4
4.	Examine in detail about Exhaustive search techniques.(13)i)What is the convex hull problem?(3)ii)Explain the brute force approach to solve convex-hull with an example.(6)	Remember	BTL -1
5.	iii)Derive the time complexity. (4)	Remember	BTL-1
6.	Determine the number of character comparisons made by the brute- force algorithm in searching for the pattern GANDHI in the text	Create	BTL-6

	THE	RE_IS_MO	RE_TO_LIFE	_THAN_INCR	EASING_ITS_SPE	E	
	D						
			ength of the tex				
			search starts	accessful and ur	(13) nsuccessful) will be		
				m in searching			
7.		•	-	text of one thou		Remember	BTL-1
					losest points in a set		
8.	of n p	oints in k-di	mensional spa	ce.	(13)	Apply	BTL-3
9.	Solve	travelling sa	les man probl	em using brute	force technique. (13))	
				10 2	8		
			20	· T			
			6 13	13 8 10	100		
				1			
			E.	12 4			
			-	9		Apply	BTL-3
	Expla	in the memo	ry function me	ethod for the kn	apsack problem and		DIL-5
10.	-	he algorithm	-		(13)	Understand	BTL-2
				ve travelling sal	esman problem. (6)		
11.					haustive search. (7)	Understand	BTL-2
				olution for the as	-		
		em given bel			(13)		
	Job 1	Job 2	Job 3	Job 4			
	4	3	8	6			
	4	5	0	0			
	5	7	2	4			
	16	9	3	1			
12.	2	5	3	7		Analyze	BTL-4
10					hal solution for the		
13.			m with one ex		(13)		BTL-1
14.				ent problem wh ment of its cost	ose optimal solution		BTL-1
14.	ubes I	iot menude ti	ie smanest ele	ment of its cost	matrix. (13)	Kennennber	DIL-1

PART – C		
 Solve using Brute force approach to evaluate and find whether the given string follows the specified pattern and return 0 or 1 accordingly. Examples: Pattern "abba" input: "redblueredblue" should return 1 Pattern "aaaa" input: "asdasdasdasd" should return 1 Pattern "aabb" input: "xyzabcxyzabc" "should return 0 (15) 	Evaluate	BTL-5
Consider the problem of counting, in a given text, the number of substrings that start with an A and end with a B. For example,there are four such substrings in CABAAXBYA.	Evaluate	BTL-5

	i). Design a brute its efficiency clas ii) Design a more	ss.	-	problem and	determine (8) (7)		
3.	There are 4 peop person per job) a minimum total co the assignment p	nd the problem ost. The assign roblem by exl	m to find an nment costs naustive sear	assignment v is given belo	with the w, solve (15)	Create	BTL-6
	Person 1 Person 2 Person 3 Person 4	9 6 5 7	2 4 8 6	7 3 1 9	8 7 8 4		
4.	Formulate and g of length <i>m</i> that c string-matching comparisons will	constitutes a v algorithm.	vorst-case in Exactly hov	put for the bi	rute-force	Create	BTL-6

	plication of Large Integers- Closest-Pair and Convex - Hull Problen	18.	
	PART – A		
Q. No	Questions	BT Level	Competence
1.	Define Divide and conquer methodology.	Remember	BTL-1
2.	List the sorting methods would be most suitable for sorting a list.	Remember	BTL-1
3.	Prove asymptotic complexity in terms of n.	Apply	BTL-3
4.	Evaluate total number of comparisons made in quick sort for sorting a file of size n.	Evaluate	BTL-5
5.	Design the correct order of the efficiency of the following sorting algorithms according to their overall running time comparison.	Create	BTL-6
6.	How do you measure the efficiency of an algorithm for divide and conquer method?	Remember	BTL-1
7.	Examine an algorithm for binary search.	Apply	BTL-3
8.	Identify The number of swapping's needed to sort the numbers 8, 22, 7, 9, 31, 19, 5, 13 in ascending order, using bubble sort.	Remember	BTL-1
9.	How many approaches can be applied to solve quick hull problem	Analyze	BTL-4
10.	Explain the various types of problems does quick hull belong.	Analyze	BTL-4
11.	Apply the common technique for proving to find the 'n' points that lie in a convex quadrilateral.	Apply	BTL-3
12.	Define space complexity of merge sort.	Remember	BTL-1

13.	Define worst case time complexity of merge sort.	Remember	BTL-1
	Formulate the Pattern of Problems in Divide and Conquer approach	Create	BTL-6
15.	Differentiate between Merge sort and Heap sort efficiency.	Understand	BTL-2
16.	Discuss the concepts of Quick sort and its properties.	Understand	BTL-2
17.	Analyze the Run Time of Merge Sort .	Analyze	BTL-4
18.	Evaluate the Time Complexity of binary search tree.	Evaluate	BTL-5
	A machine needs a minimum of 200 sec to sort 1000 elements by Quick sort. What is the minimum time needed to sort 200 elements will be approximately	Understand	BTL-2
	Apply Quick sort on a given sequence 7 11 14 6 9 4 3 12. What is the sequence after first phase, pivot is first element?	Understand	BTL-2

	PART-B			
1	Explain in detail about the closest pair and convex hull problems by using Divide and conquer method.	13	BTL -1	Remember
2	Analyze in detail about divide and conquer strategy with a scenario.		BTL -4	Analyze
3	What is divide and conquer strategy and explain the binary search with suitable example problem.		BTL -4	Analyze
4	i. Differentiate sequential search from binary search technique. ii. Illustrate an algorithm for Quicksort and write its time complexity with example list are 5,3,1,9,8,2,4,7.		BTL -3	Apply
5	Describe in detail about the operation of binary search algorithm for the input -15, -6, 0, 7, 9, 23, 54, 82, 101,112, 125,131,142,151 if you are searching for the element 9.	13	BTL -2	Understand
6	Analyze the pros and cons of convex hull problem and the solution involved in detail.		BTL -4	Analyze
7	Discuss in detail and write an algorithm to sort a given list of elements using heap sort. Show the operation of the algorithm, on the list 14,12,9,8,7,10,8.	13	BTL -2	Understand
8	Write the algorithm for quicksort. Provide a complete analysis of quick sort for the given set of numbers 12,33,23,43,44,55,64,77 and 76.	13	BTL -5	Evaluate
9	Describe in details about the three processing steps in Quick sort.	13	BTL -1	Remember
10	Write the algorithm to perform the working of multiplication of large numbers with an example.	13	BTL -1	Remember
11	(i)Find the number of comparisons required to search for '6' in the given Sequence of numbers: 10, 19, 7, 9, 6, 15.(ii)Analyze the time efficiency and drawbacks of merge sort algorithm.	7	BTL -3	Apply
12	Write a program implementing the divide-conquer algorithm for the closest pair and convex-hull problem.	13	BTL -1	Remember

13	Write the mergeort algorithm and explain it with an example. Derive the worst case and average case time complexity.	13	BTL -2	Understand
14	(i) Multiply 23 * 14 using divide and conquer strategy(ii)Compute the complexity for multiplication of large numbers.	7 6	BTL -6	Create

	PART – C		
1.	(i)Solve 2138 × 4967 by applying the Divide and Conquer method. (8) (ii)Analyze the time and space complexity of Divide and conquer methodology. (7)	Evaluate	BTL-5
2.	Examine that the procedure SEARCH of binary search algorithm gives the Smallest possible expected search time if all elements in the universal set are equally likely to be sought. (15)	Evaluate	BTL-5
	(i) Design a Quick sort algorithm(7)(ii) Develop Best, worst and Average case analysis for Quicksort method.(8)	Create	BTL-6
4.	Discuss the topic on merge sort. Illustrate the algorithm with numeric Example. Predict the complete analysis for the same. Is merge sort stable sorting algorithm? Justify your answer. (15)	Create	BTL-6

UNIT IV - DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE Dynamic programming – Principle of optimality - Coin changing problem, Computing a Binomial Coefficient – Floyd's algorithm – Multi stage graph - Optimal Binary Search Trees – Knapsack Problem and Memory functions. Greedy Technique – Container loading problem - Prim's algorithm and Kruskal's Algorithm – 0/1 Knapsack problem, Optimal Merge pattern - Huffman Trees.

	PART – A								
Q.									
No	Questions	BT Level	Competence						
1.	How is a transportation network represented?	Remember	BTL-1						
2.	State the principle of optimality.	Remember	BTL-1						
3.	Define Transitive closure of a directed graph.	Remember	BTL-1						
4.	What is the constraint for binary search tree insertion?	Remember	BTL-1						
5.	Compare Divide & Conquer and Dynamic Programming.	Analyze	BTL-4						
6.	Discover the pseudo code of the Warshall's algorithm.	Apply	BTL-3						
7.	Summarize feasible and optimal solution.	Understand	BTL-2						
8.	Contrast Greedy algorithm and Dynamic programming.	Analyze	BTL-4						

9.	List the properties of Dynamic programming approach	Remember	BTL-1
10.	Define the minimum spanning tree problem	Remember	BTL-1
11.	Explain how the Binomial coefficient is computed.	Evaluate	BTL-5
12.	Estimate the time and space complexity for Warshall's algorithm.	Understand	BTL-2
13.	Demonstrate the obstacles in constructing a minimum spanning tree by an exhaustive search.	Apply	BTL-3
14.	Estimate the space and time complexity of a prim's algorithm.	Understand	BTL-2
15.	Analyze the time complexity of optimal Binary search Tree algorithm.	Analyze	BTL-4
17.	Distinguish prim's and Kruskal's algorithm.	Understand	BTL-2
18.	Summarize Huffman trees and its applications	Evaluate	BTL-5
19.	Integrate Minimum spanning tree concepts and Prim's algorithm.	Create	BTL-6
20.	Develop an algorithm for memory function knapsack problem.	Create	BTL-6

	a) Wri b) Ana distanc	ite the f	ollowing dist loyd's algor e shortest pa the source n each of the	ithm and ge th and the c ode to the d	orrespone orrespone	ding n node	stance matrix. (7) (6)	Analyze	BTL-4
			3 8 4		5	Ó			
2.	i) Illus	strate a	ll-pair short	est path pro	blem algo	orithm.	(4)	Apply	BTL-3
					n problen	n for the o	diagraph with		
	the we	ighted i	matrix giver	i below.			(9)		
			a	b	с	d			
		a	0	α	3	α			
		b	2	0	α	α			
		с	Α	7	0	1			
		d	6	α	α	0			

	finding the s	ingle-so	ource s	horte	st pat	ths fo	Dijkstra's algorithm r the given graph.	(13)	Understand	BTL-2
		4	11	7	0 0 0 0 0	7	9 14 10			
1.	Describe and $C(n, k) = C(n)$						nt by the formula	(13)	Analyze	BTL-4
5.		algorith	nm by	apply	ving t	he fol	llowing keys and	(13)	Analyze	BTL-4
		A					D	(15)		
).1	0.			0.4	0.3			
	Trobability			2		0.4	0.5			
	Construct th	ie optin	nai bin	ary so	earch	tree	as a minimum cost	tree (7)		
7.	algorithm to Plan the fol	o compu	ute the	$\frac{1}{10000000000000000000000000000000000$	$\frac{1}{1000}$ the 0,	ptima $\sqrt{1, kn}$	apsack problem gi	he (6) ven	Create	BTL-6
7.	algorithm to Plan the fol the knapsac	o compu	ute the	$\frac{1}{10000000000000000000000000000000000$	$\frac{1}{1000}$ the 0,	ptima $\sqrt{1, kn}$	l sub trees.	he (6) ven	Create	BTL-6
7.	algorithm to Plan the fol	o compu	instance instance ity in	roots ce of W=5	the 0, using	ptima $\sqrt{1, kn}$	l sub trees.	he (6) ven	Create	BTL-6
7.	algorithm to Plan the fol the knapsac explain it.	o compu lowing k capac	instand instand ity in ght	roots ce of W=5	the 0, using value \$10	ptima $\sqrt{1, kn}$	l sub trees.	he (6) ven	Create	BTL-6
7.	algorithm to Plan the fol the knapsac explain it.	lowing k capac	instance instance ity in ght 4 3	roots ce of W=5	s of op the 0, using <u>alue</u> \$10 \$20	ptima $\sqrt{1, kn}$	l sub trees.	he (6) ven	Create	BTL-6
7.	algorithm to Plan the fol the knapsac explain it.	lowing k capac	instand instand ity in ght	roots ce of W=5	the 0, using value \$10	ptima $\sqrt{1, kn}$	l sub trees.	he (6) ven	Create	BTL-6
7.	algorithm to Plan the fol the knapsac explain it. Item 1 2 3 4 (i)Define Hu	o compu lowing k capac Wei	instance instance ity in ⁷ ght 4 3 2 5 ree. Lis n's alg	roots ce of W=5	s of op the 0, using value \$10 \$20 \$15 \$25 ypes on. Cor	ptima /1, km g dyna of Enconstruc	l sub trees.	he (6) ven and ee. (8)	Create	BTL-6 BTL-1
	algorithm to Plan the fol the knapsac explain it. Item 1 2 3 4 (i)Define Hu (ii)Write the	o compu lowing k capac Wei	instance instance ity in ⁷ ght 4 3 2 5 ree. Lis n's alg	roots ce of W=5	s of op the 0, using value \$10 \$20 \$15 \$25 ypes on. Cor	ptima /1, km g dyna of Enconstruc	ll sub trees. hapsack problem gi amic programming	he (6) ven and ee. (8) for the		
	algorithm to Plan the fol the knapsac explain it. Item 1 2 3 4 (i)Define Hu (ii)Write the following da	o compu lowing k capac Wei Grant ffman tr Huffma ta and o	instance instance ity in ght 4 3 2 5 ree. Lis pres. Lis potain it	roots ce of W=5 V	alue \$10 \$20 \$15 \$25 ypes on fman	of Encorected	apsack problem gi amic programming coding in Huffman tr t the Huffman's tree	he (6) ven and ee. (8) for the		
	algorithm to Plan the fol the knapsac explain it. Item 1 2 3 4 (i)Define Hu (ii)Write the following da Character Probabilit	o compu lowing k capac Wei ffman tr Huffma ta and o A y 0.5 minimu son betw	instance instance ity in ght 4 3 2 5 ree. Lis n's alg btain it B 0.35 m span ween Pr	roots ce of W=5 V t the t orithm s Huf C 0.5 ning t	s of of the 0, using alue \$10 \$20 \$15 \$25 ypes on fman D 0.1 ree us and K	of Encode. E 0.4 ing K	I sub trees. hapsack problem gi amic programming coding in Huffman tr t the Huffman's tree _(Underscore)	he (6) ven and ree. (8) for the (5)		

	(ii)Describe minimum spanning tree using Prim's algorithm. 4^{2} 6^{3} 9^{4} 6^{3} 9^{4} 6^{5} 3^{4} 5^{6} 3^{4} 5^{6} 3^{4} 5^{6} 3^{6} 10^{6} 10^{7} 3^{9} 5^{7} 10^{7} 3^{9} 5^{7} 8^{2} 2^{9}	(8)		
	 (i)List out the short notes on optimal binary search tree. (ii) Label the optimization technique used for optimal binary search algorithm. 	(7) (6)	Remember	BTL-1
12. 1 13. (Explain the steps in building Huffman Tree.Find the codes for the alphabets given below according to the frequency. Let _(Space)= $4 A= 2$, $E = 5$, $H = 1$, $I = 2$, $L = 2$, $M = 2$, $P = R = 1, S = 2$, $X = 1$ (i) Examine Coin changing problem with a suitable example (ii)Illustrate how the problem can be solved by dynamic programming approach.		Analyze Apply	BTL-4 BTL-3
	Explain multistage graph and explain memory functions problem		Understand	BTL-2
	PART – C Asses and solve all-pair shortest path problem for the digraph with the weight matrix given below: (15) \overline{A} \overline{B} \overline{C} \overline{D} \overline{A} $\overline{0}$ ∞ $\overline{3}$ \overline{B} 2 0 ∞ $\overline{3}$ \overline{B} 2 0 ∞ ∞ \overline{C} ∞ 7 0 1 \overline{D} $\overline{6}$ ∞ ∞ $\overline{0}$		Evaluate	BTL-5
2.	(i)What is optimal merge pattern? (ii)How greedy method is useful to obtain an optimal merge pa (iii)Give the example of optimal merge pattern.	attern. ((5) Evaluate	BTL-5
	Apply Warshall's algorithm to find the transitive closure of the digraph defined by the following adjacency matrix	e	Create	BTL-6

	$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ i) Prove that the time efficiency of Warshall's algorithm is cubic ii) Explain why the time efficiency of Warshall's algorithm is inferior to that of the traversal-based algorithm for sparse graphs represented by their adjacency lists.	(7)		
4.	Apply the greedy technique to find the minimum spanning tree using Prim's algorithm for the given graph. (15)		Create	BTL-6

UNIT V - COPING WITH THE LIMITATIONS OF ALGORITHM POWER

Lower - Bound Arguments - P, NP NP- Complete and NP Hard Problems. Backtracking – n-Queen problem - Hamiltonian Circuit Problem – Subset Sum Problem. Branch and Bound – LIFO Search and FIFO search - Assignment problem – Knapsack Problem – Travelling Salesman Problem - Approximation Algorithms for NP-Hard Problems – Travelling Salesman problem – Knapsack problem.

PART – A					
Q. No	Questions	BT Level	Competence		
1.	What are tractable and non-tractable problems?	Remember	BTL-1		
2.	Compare class P and class NP.	Analyze	BTL-4		
3.	Define NP complete problem.	Remember	BTL-1		
4.	Discuss the principle of backtracking.	Understand	BTL-2		
5.	How is the accuracy of approximation algorithm measured ?	Evaluate	BTL-5		
6.	State Hamiltonian Circuit problem.	Remember	BTL-1		
7.	What are the additional items required for branch and bound? compare backtracking technique.	Analyze	BTL-4		
8.	Point out some examples of lower bound.	Analyze	BTL-4		
9.	Describe the term heuristics	Remember	BTL-1		
10.	Define Knapsack problem.	Remember	BTL-1		
11.	Discuss the term best first branch bound.	Understand	BTL-2		
12.	State whether backtracking always produces optimal	Create	BTL-6		
13.	Decide the termination point of the search path in a state space tree of branch and bound algorithm.	Evaluate	BTL-5		
14.	Show formal definition of the n-queens problem.	Apply	BTL-3		
15.	Describe the term state space tree.	Understand	BTL-2		
16.	What is Hamiltonian path? Generalize that Hamiltonian cycle is an undirected graph.	Create	BTL-6		
17.	What does NP-hard mean? Demonstrate approximation algorithm for NP hard problem.	Apply	BTL-3		
18.	How is lower bound found by problem reduction?	Remember	BTL-1		
19.	Examine the subset sum problem.	Apply	BTL-3		
20.	Give some examples of P and NP problem.	Understand	BTL-2		

	PART-B			
1.	Explain in detail about the Backtracking	13	Remember	BTL-1
2.	 (i) Evaluate the subset sum problem with set as {3, 5, 6, 7, 2} and the sum =15.Derive all the subsets. (ii) Evaluate the following instance of the knapsack problem using the branch and bound algorithm. Knapsack capacity W=10. 	7 6	Evaluate	BTL-5

	Item Weight Value			
	Item Weight Value 1 4 \$40			
	2 7 \$42			
	3 5 \$25			
	4 3 \$12			
3.	(i) Identify an example for the best-case input for the branch			
	and bound algorithm for the assignment problem.	7	Remember	BTL-1
	(ii) Describe NP-hard and NP-completeness.	6		
4.	Using Back-Tracking enumerate how can you solve the			
	following problems.	7	Apply	BTL-3
	(i)4-queens problem.	6	Apply	DIL-3
	(ii)Hamiltonian circuit problem.	0		
5.	Find the optimal solution using Branch and Bound for the			
	following assignment problem.			
	Job1 Job 2 Job 3 Job 4/			
	A 9 2 7 8 4	13	Apply	BTL-3
	B 6 4 3 7	15	Apply	DIL-J
	D 7 6 9 4			
6.	Consider the travelling salesperson instance defined by the			
	following cost matrix.			
	∞ 20 30 10 11			
	$15 \infty 16 4 2$	10		
	3 5 ∞ 2 4	13	Understand	BTL-2
	19 6 18 ∞ 3			
	16 4 7 16 ∞			
	Draw the state space tree and show the reduced matrices			
	corresponding to each of the node.			
7.	(i) Explain how to implement an algorithm for Knapsack problem			
/•	using NP-Hard approach.	7	Analyze	BTL-4
	(ii) Distinguish between the P and NP problems.	6	1 mary 20	DIL
8.	Describe about the following:			
	(i)Approximation algorithms for the knapsack problem.	6	Remember	BTL-1
	(ii) Approximation algorithms for Traveling sales man problem.	7		
9.	(i)Explain the backtracking problem.			
-	(ii) Analyze and explain elaborately on backtracking	7	Analyze	BTL-4
	algorithm.	6		
10.	Write an algorithm for subset sum and explain with an example.	13	Apply	BTL-2
11.	Explain in detail about assignment problem using branch and bound	13	Remember	BTL-1
	technique.	15		
12.	Apply Branch and Bound algorithm to solve the travelling salesman			
	problem for			
	(a)(b)			
	T T			
		13	Create	BTL-6
	5 3			
	8 7			
	(C)(d)			
12	With an anomala summarize here the here 1 and 1	10	D ana 1-1	דידו ב
13.	With an example, summarize how the branch and bound	13	Evaluate	BTL-5

	technique is used to solve 0/1 knapsack problem.			
14.	There are 5 distinct numbers {1,2,5,6,8}. Identify the combinations of these numbers such that the sum is 9. Use the backtracking model to arrive at the solution.	13	Remember	BTL-1

	PART-C			
1.	Explain the 4-Queen's problem using backtracking. Write the algorithms. Give the estimated cost for all possible solutions of 4-Queen's problem. Specify the implicit and explicit constraints.	15	Create	BTL-6
2.	Find a Hamiltonian circuit or disprove its existence in the graph given below.	15	Evaluate	BTL-5
3.	Solve the following instance of Knapsack problem by branch and bound algorithm. Item weight profit 1 5 \$40 2 7 \$35 3 2 \$18 W=15 4 4 \$4 5 5 \$10 6 1 \$2	15	Create	BTL-6
4.	Let w={5,7,10,12,15,18,20} and m=35. Compute all possible subset of w whose sum is equivalent to m. Draw the portion of state space tree for this problem.	15	Evaluate	BTL-5