

1

SRM VALLIAMMAI ENGINEERING

COLLEGE
 (An Autonomous Institution)

SRM Nagar, Kattankulathur-603203

DEPARTMENT OF INFORMATION TECHNOLOGY

ACADEMIC YEAR: 2020-2021

ODD SEMESTER

(REGULATION - 2019)

THIRD SEMESTER

THIRD SEMSTER

B.Tech - Information Technology

Prepared By

Mr.K.ELAIYARAJA, A.P (Sr.G) / IT

Ms.R.SHANTHI, A.P (Sr.G) / IT

1908305–DATA STRUCTURES

LABORATORY

LAB MANUAL

2

INDEX

E.NO EXPERIMENT NAME Pg. No.

A PEO,PO,PSO 4-6

B Syllabus 7

C Introduction/ Description of major Software & Hardware involved in lab 8

D CO, CO-PO Matrix, CO-PSO Matrix 9

E Mode of Assessment 10

1.1 Array Implementation of List ADTs 11-16

1.2 Linked List Implementation of List ADTs 17-22

2.1 Array Implementation of Stack ADTs 23-27

2.2 Linked List Implementation of Stack ADTs 28-33

3.1 Array Implementation of Queue ADTs 34-39

3.2 Linked List Implementation of Queue ADTs 40-45

4.1 Applications of List : Polynomial Manipulation 46-51

4.2 Applications of Stack: Infix To Postfix Expression 52-57

5
Implementation of Binary trees And operations of
Binary trees

58-63

6 Implementation of Binary Search Trees 64-74

7 Implementation of AVL Trees 75-82

8 Implementation of Heaps Using Priority Queues 83-89

9.1 Depth First Search 90-93

9.2 Breadth First Search 94-98

10 Applications of Graphs 99-101

3

11.1 Linear Search 102-104

11.2 Binary Search 105-107

11.3 Bubble Sort 108-110

11.4 Insertion Sort 111-112

12.1 Hashing With Separate Chaining 113-116

12.2 Hashing With Open Addressing 117-124

- TOPIC BEYOND THE SYLLABUS “ Implementation of Doubly Linked List” 125-133

4

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

1. To afford the necessary background in the field of Information Technology to deal with engineering problems

to excel as engineering professionals in industries.

2. To improve the qualities like creativity, leadership, teamwork and skill thus contributing towards the growth

and development of society.

3. To develop ability among students towards innovation and entrepreneurship that caters to the needs of Industry

and society.

4. To inculcate and attitude for life-long learning process through the use of information technology sources.

5. To prepare then to be innovative and ethical leaders, both in their chosen profession and in other activities.

PROGRAMME OUTCOMES (POs)

After going through the four years of study, Information Technology Graduates will exhibit ability to:

PO# Graduate Attribute Programme Outcome

1 Engineering knowledge

 Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization for the solution

of complex engineering problems.

2 Problem analysis

 Identify, formulate, research literature, and analyze complex

engineering problems reaching substantiated conclusions using

first principles of mathematics, natural sciences, and engineering

sciences.

3

Design/development of

solutions

 Design solutions for complex engineering problems and design

system components or processes that meet the specified needs

with appropriate consideration for public health and safety, and

cultural, societal, and environmental considerations.

4

Conduct investigations of

complex problems

 Use research-based knowledge and research methods including

design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions

5 Modern tool usage Create, select, and apply appropriate techniques, resources, and

5

modern engineering and IT tools, including prediction and

modeling to complex engineering activities, with an

understanding of the limitations.

6 The engineer and society

Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal, and cultural issues and the

consequent responsibilities relevant to the professional

engineering practice

7

Environment and

sustainability

Understand the impact of the professional engineering solutions

in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8 Ethics
Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice

9 Individual and team work
Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings

10 Communication

Communicate effectively on complex engineering activities with

the engineering community and with the society at large, such

as, being able to comprehend and write effective reports and

design documentation, make effective presentations, and give

and receive clear instructions

11

Project management and

finance

Demonstrate knowledge and understanding of the engineering

and management principles and apply these to one’s own work,

as a member and leader in a team, to manage projects and in

multidisciplinary environments

12 Life-long learning

Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest

context of technological change

6

PROGRAMME SPECIFIC OUTCOMES (PSOs)

By the completion of Information Technology program the student will have following Program specific

outcomes

1. Design secured database applications involving planning, development and maintenance using state of the

art methodologies based on ethical values.

2. Design and develop solutions for modern business environments coherent with the advanced technologies

and tools.

3. Design, plan and setting up the network that is helpful for contemporary business environments using latest

hardware components.

4. Planning and defining test activities by preparing test cases that can predict and correct errors ensuring a

socially transformed product catering all technological needs.

7

1908305 DATA STRUCTURES LABORATORY L T P C

 0 0 4 2

OBJECTIVES

 To implement linear and non-linear data structures

 To implement non-linear data structures

 To understand the different operations of search trees

 To implement graph traversal algorithms

 To get familiarized to sorting and searching algorithms

1. Array and Linked list implementation of List ADT

2. Array and Linked list implementation of Stack ADT

3. Array and Linked list implementation of Queue ADT

4. Applications of List, Stack and Queue ADTs.

5. Implementation of Binary trees and operations of Binary trees.

6. Implementation of Binary Search Trees

7. Implementation of AVL Trees

8. Implementation of Heaps using Priority Queues.

9. Graph representation and Traversal algorithms

10. Applications of Graphs

11. Implementation of searching and sorting algorithms

12. Hashing – any two collision techniques

 Total: 60 Periods

8

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS

HARDWARE

 Standalone desktops 30 Nos

SOFTWARE

 C / C++ / Turbo C / Equivalent Software

C

 C programming is a general-purpose, procedural, imperative computer programming language

developed in 1972 by Dennis M. Ritchie at the Bell Telephone Laboratories to develop the UNIX operating

system. C is the most widely used computer language. It keeps fluctuating at number one scale of popularity

along with Java programming language, which is also equally popular and most widely used among modern

software programmers.

 The UNIX OS was totally written in C.

 Today C is the most widely used and popular System Programming Language.

 Most of the state-of-the-art software have been implemented using C.

 Today's most popular Linux OS and RDBMS MySQL have been written in C.

C++

 C++ is a middle-level programming language developed by Bjarne Stroustrup starting in 1979 at Bell

Labs. C++ runs on a variety of platforms, such as Windows, Mac OS, and the various versions of UNIX.

This C++ tutorial adopts a simple and practical approach to describe the concepts of C++ for beginners to advanced

software engineers.

Turbo C

 Turbo C was an integrated development environment (IDE) for programming in the C language. It was developed

by Borland and first introduced in 1987. At the time, Turbo C was known for its compact size, comprehensive manual,

fast compile speed and low price.

9

COURSE OUTCOMES

1908305.1
Write functions to implement linear and non-linear data structure

operations.

1908305.2
Suggest appropriate linear data structure operations for solving a given

problem.

1908305.3
Appropriate use of linear / non-linear data structure operations for a given
problem.

1908305.4
Apply appropriate hash functions that result in a collision free scenario for

data storage and retrieval.

1908305.5 Apply the searching and sorting algorithms for problem solving.

CO- PO MATRIX

CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

1908305.1 3 - - - 2 - - - - - - -

1908305.2 2 2 - - - - - - - - - -

1908305.3 2 2 - - - - - - - - - -

1908305.4 3 3 3 - 2 - - - - - - -

1908305.5 3 2 3 - 2 - - - - - - -

Average 3 2 3 - 2 - - - - - - -

CO- PSO MATRIX

1908305 PSO 1 PSO 2

1908305.1 3 2

1908305.2 3 2

1908305.3 3 -

1908305.4 3 2

1908305.5 3 2

Average 3 2

10

EVALUATION PROCEDURE FOR EACH EXPERIMENTS

S.No Description Mark

1. Aim & Pre-Lab discussion 20

2. Observation 20

3. Conduction and Execution 30

4. Output & Result 10

5. Viva 20

Total 100

INTERNAL ASSESSMENT FOR LABORATORY

S.No Description Mark

1. Conduction & Execution of Experiment 25

2. Record 10

3. Model Test 15

Total 50

11

Ex.No:1.1 ARRAY IMPLEMENTATION OF LIST ADTs

AIM

To write a C program to implement list using an array

PRE LAB DISCUSSION

Array of list is an important data structure used in many applications. It is an interesting

structure to form a useful data structure. It combines static and dynamic structure. Static means

array and dynamic means linked list used to form a useful data structure. Array elements can be

stored in consecutive manner in memory. Insert and delete operation takes more time in array.

Array elements cannot be added, deleted once it is declared. In array, elements can be modified

easily by identifying the index value. Pointer cannot be used in array. So, it does not require extra

space in memory forpointer.

ALGORITHM

Step 1: Start.

Step 2: Declare the necessary functions for implementation.

Step 3: Get the input from the user and store it an array.

Step 4: In Insertion, half of the elements to be shifted upwards and in deletion half of the

elements to be shifted downwards.

Step 5: Display the output using an array.

Step 6: Stop.

PROGRAM

#include<stdio.h>

#include<conio.h>

#define MAX 10

void create();

void insert();

void deletion();

12

void search();

void display();

int a,b[20], n, p, e, f, i, pos;

void main()

{

//clrscr();

int ch;

char g='y';

do

{

printf("\n main Menu");

printf("\n 1.Create \n 2.Delete \n 3.Search \n 4.Insert \n 5.Display\n 6.Exit \n");
printf("\n Enter your Choice");

scanf("%d", &ch);

switch(ch)

{

case 1:
create();

break;

case 2:
deletion();

break;

case 3:
search();

break;

case 4:
insert();

break;

case 5:
display();

break;

case 6:
exit();

break;

default:

printf("\n Enter the correctchoice:");

}

printf("\n Do u want tocontinue:::");

13

scanf("\n%c", &g);

}

while(g=='y'||g=='Y');
getch();

}

void create()

{

printf("\n Enter the number of nodes");
scanf("%d", &n);

for(i=0;i<n;i++)

{
printf("\n Enter the Element:",i+1);
scanf("%d", &b[i]);

}

}

void deletion()

{
printf("\n Enter the position u want to delete::");

scanf("%d", &pos);

if(pos>=n)

{

printf("\n Invalid Location::");

}

else

{

for(i=pos+1;i<n;i++)

{

b[i-1]=b[i];

}

n--;

}
printf("\n The Elements after deletion");

for(i=0;i<n;i++)

{

printf("\t%d", b[i]);

}

}

void search()

{

printf("\n Enter the Element to be searched:");
scanf("%d", &e);

for(i=0;i<n;i++)

14

{

if(b[i]==e)

{

printf("Value is in the %d Position", i);

}

else

{
printf("Value %d is not in the list::", e);

continue;

}

}

}

void insert()

{
printf("\n Enter the position u need to insert::");

scanf("%d", &pos);

if(pos>=n)

{

printf("\n invalid Location::");

}

else

{

for(i=MAX-1;i>=pos-1;i--)

{

b[i+1]=b[i];

}

printf("\n Enter the element to insert::\n");

scanf("%d",&p);

b[pos]=p;

n++;

}

printf("\n The list after insertion::\n");

display();

}

void display()

{

printf("\n The Elements of The list ADT are:");
for(i=0;i<n;i++)

{

printf("\n\n%d", b[i]);

}

}

15

OUTPUT

Main Menu

1.Create

2.Delete

3.Search

4.Insert

5.Display

6.Exit

Enter your Choice1

Enter the number of nodes 2

Enter theElement:2

Enter theElement:3

Do u want to continue:::y

Main Menu

1.Create

2.Delete

3.Search

4.Insert

5.Display

6.Exit

Enter your Choice 5

The Elements of The list ADT are:

2

3

Do u want to continue:::y

Main Menu

1.Create

2.Delete

3.Search

4.Insert

5.Display

6.Exit

16

Enter your Choice 4

Enter the position u need to insert::0

Enter the element to inert::5

The list after insertion::

The Elements of the list ADT are:

5

2

3

Do u want to continue:::y

Main Menu

1.Create

2.Delete

3.Search

4.Insert

5.Display

6.Exit

Enter your Choice 2

Enter the position u want to delete::1

The Elements after deletion

5

3

Do u want to continue:::

VIVA (PRE & POST LAB) QUESTIONS

1. How to delete an element using array inlist?

2. How to insert an element using array inlist?

3. Which data structure refers to linear collection of dataitems.

4. How to search an element inlist?

5. What happens when there is no space left in free storagelist?

RESULT

 Thus the C program to implement list using array was completed successfully.

17

Ex.No: 1.2 LINKED LIST IMPLEMENTATION OF LIST ADTS

AIM

To write a C program to implement singly linked list.

PRE LAB DISCUSSION

Linked list is a linear data structure. It is a collection of data elements, called nodes

pointing to the next node by means of a pointer. In linked list, each node consists of its own data

and the address of the next node and forms a chain.

Linked list contains a link element called first and each link carries a data item. Entry point intothe

linked list is called the head of the list. Link field is called next and each link is linked with its next

link. Last link carries a link to null to mark the end of thelist.

Linked list is a dynamic data structure. While accessing a particular item, start at the head and

follow the references until you get that data item.

Linked list is used while dealing with an unknown number of objects:

Linked list contains two fields - First field contains value and second field contains a link to the

next node. The last node signifies the end of the list that means NULL.

The real life example of Linked List is that of Railway Carriage. It starts from engine and then

the coaches follow. Coaches can traverse from one coach to other, if they connected to each

other.

18

ALGORITHM

Step 1: Start

Step 2: Creation: Get the number of elements, and create the nodes having structures

DATA,LINK and store the element in Data field, link them together to form a

linked list.

Step 3: Insertion: Get the number to be inserted and create a new node store the value in

DATA field. And insert the node in the required position.

Step 4: Deletion: Get the number to be deleted. Search the list from the beginning and

locate the node then delete the node.

Step 5: Display: Display all the nodes in the list.

Step 6: Stop.

PROGRAM

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

#define NULL 0

typedef struct list

{

int no;

struct list *next;

}LIST;

LIST *p,*t,*h,*y,*ptr,*pt;

void create(void);

void insert(void);

void delet(void);

void display (void);

int j,pos,k=1,count;

void main()

19

{
int n,i=1,opt;

clrscr();

p = NULL;

printf("%d",sizeof(LIST));
printf("Enter the no of nodes :\n ");

scanf("%d",&n);

count = n;

while(i <= n)

{
create();
i++;

}

printf("\nEnter your option:\n");

printf("1.Insert \t 2.Delete \t 3.Display \t 4.Exit\n");

do

{
scanf("%d",&opt);

switch(opt)

{

case 1:
insert();

count++;

break;

case 2:

delet();

count--;

if (count == 0)

{

printf("\n List is empty\n");

}

break;

case 3:

printf("List elements are:\n");
display();

break;

}

printf("\nEnter your option \n");
}while(opt != 4);

getch();

}

void create ()

{

if(p== NULL)

20

{
p = (LIST *) malloc (sizeof (LIST));

printf("Enter the element:\n");

scanf("%d",&p->no);

p->next = NULL;

h = p;

}

else

{
t= (LIST *) malloc (sizeof(LIST));

printf("\nEnter the element");

scanf("%d",&t->no);

t->next = NULL;

p->next = t;

p = t;

}
}

void insert()

{

t=h;
p = (LIST *) malloc (sizeof(LIST));

printf("Enter the element to be inserted:\n");

scanf("%d",&p->no);

printf("Enter the position to insert:\n");

scanf("%d",&pos);

if(pos == 1)

{

h = p;

h->next = t;

}

else

{
for(j=1;j<(pos-1);j++)

t = t->next;

p->next = t->next;

t->next = p;

t=p;

}

}

void delet(){

printf("Enter the position to delete:\n");
scanf("%d",&pos);

if(pos == 1)

{

21

h = h->next ;

}

else

{

t=h;
for(j=1;j<(pos-1);j++)

t = t->next;

pt=t->next->next;

free(t->next);

t->next= pt;

}

}

void display()

{

t= h;

while(t->next != NULL)

{

printf("\t%d",t->no);
t = t->next;

}

printf("\t %d\t",t->no);

}

OUTPUT

Enter the no of nodes: 3

Enter the element: 1

Enter the element 2

Enter the element 3

Enter your option:

1. Insert 2.Delete 3.Display 4.Exit

3

List elements are:

1 2 3

Enter your option 1

Enter the element to be inserted:

12

Enter the position to insert: 1

Enter your option 3

List elements are:

12 1 2 3

Enter your option 1
Enter the element to be inserted:

13

Enter the position to insert: 3

22

Enter your option 1

Enter the element to be inserted:

14
Enter the position to insert:6

Enter your option 3

List elements are:

12 1 13 2 3 14

Enter your option2

Enter the position todelete:1

Enter your option3

List elements are:

1 13 2 3 14

Enter your option2
Enter the position todelete:3

Enter your option3

List elements are:

1 13 3 14

Enter your option2

Enter the position todelete:4

Enter your option3

List elements are:

1 13 3

Enter your option:6

VIVA (PRE & POST LAB) QUESTIONS

1. How many modifications are required to delete a node at the beginning?

2 How many modifications are required to insert a node in the middle of the linked list?

3.Which node contains NULL pointer in a single linked list?

4.Which node points to the first node in list?

5.How does array differ from linked list?

RESULT

Thus the C program to implement List was completed successfully.

23

Ex. No: 2.1 ARRAY IMPLEMENTATION OF STACK ADTs

AIM

 To write a C program to implement Stack operations such as push, pop and display using array.

PRE LAB DISCUSSION

An array is a random access data structure, where each element can be accessed directly

and in constant time. A typical illustration of random access is a book - each page of the book can

be open independently of others. Random access is critical to many algorithms, for example

binarysearch.

A stack data structure can be implemented using one dimensional array. But stack

implemented using array, can store only fixed number of data values. This implementation is very

simple, just define a one dimensional array of specific size and insert or delete the values into that

array by using LIFO principle with the help of a variable 'top'. Initially top is set to -1. Whenever

we want to insert a value into the stack, increment the top value by one and then insert. Whenever

we want to delete a value from the stack, then delete the top value and decrement the top value by

one.

ALGORITHM

Step 1: Start.

24

Step 2: Initialize top = -1;

Step 3: Push operation increases top by one and writes pushed element to storage[top];

Step 4: Pop operation checks that top is not equal to -1 and decreases top variable by 1;

Step 5: Display operation checks that top is not equal to -1 and returns storage[top];

Step 6: Stop.

PROGRAM

#include<stdio.h>

#include<conio.h>

#include<process.h>

#define size 5

int item;

int s[10];

int top;

void display()

{

int i;

if(top==-1)

{

printf("\nstack is empty");

return;

}

printf("\nContent of stack is:\n");

for(i=0;i<=top;i++)

printf("%d\t",s[i]);

}

void push()

{

25

if(top==size-1)

{

printf("\nStack is full");

return;

}

printf("\nEnter item:\n");

scanf("%d",&item);

s[++top]=item;

}

void pop()

{

if(top==-1)

{

printf("\nstack is empty");

return;

}

printf("\nDeleted item is: %d",s[top]);

top--;

}

void main()

{

int ch;

top=-1;

clrscr();

printf("\n1.push\t\t2.pop\n3.display\t4.exit\n");

do{

printf("\nEnter your choice:\n");

scanf("%d",&ch);

switch(ch)

{

case 1:// printf("Enter item:\n");

26

//scanf("%d",&item);

push();

break;

case 2: pop();

break;

case 3: display();

break;

case 4: exit(0);

default: printf("\nWrong entry ! try again");

}

}while(ch<=4);

getch();

}

OUTPUT

1.push 2.pop

3.display 4.exit

Enter your choice:

1

Enter item:

100

Enter your choice:

1

Enter item:

200

Enter your choice:

1

Enter item:

300

Enter your choice:

2

27

Deleted item is: 300

Enter your choice:

3

Content of stack is:

100 200

Enter yourchoice:4

VIVA (PRE & POST LAB) QUESTIONS

1.How to remove an element from stack?

2.How to insert an element into a stack?

3.Is it possible to store any number of data elements in stack?

4.What are the demerits of stack?

5. What happens when you pop from an empty stack while implementing using the Stack

ADT ?

RESULT

 Thus the C program to implement stack using array was executed successfully.

28

Ex. No: 2.2 LINKED LIST IMPLEMENTATION OF STACK

AIM

To write a C program to implement Stack operations such as push, pop and display using

linked list.

PRE LAB DISCUSSION

The major problem with the stack implemented using array is, it works only for fixed

number of data values. That means the amount of data must be specified at the beginning of the

implementation itself. Stack implemented using array is not suitable, when we don't know the size

of data which we are going to use. A stack data structure can be implemented by using linked list

data structure. The stack implemented using linked list can work for unlimited number of values.

That means, stack implemented using linked list works for variable size of data. So, there is no

need to fix the size at the beginning of the implementation. The Stack implemented using linked

list can organize as many data values as wewant.

In linked list implementation of a stack, every new element is inserted as 'top' element.

That means every newly inserted element is pointed by 'top'. Whenever we want to remove an

element from the stack, simply remove the node which is pointed by 'top' by moving 'top' to its

next node in the list. The next field of the first element must be always NULL.

Example

In above example, the last inserted node is 99 and the first inserted node is 25. The order of

elements inserted is 25, 32,50 and 99.

29

There are two basic operations performed in a Stack:

1. Push():is used to add or insert new elements into thestack.

2. Pop():is used to delete or remove an element from thestack.

ALGORITHM

Step 1: Start.

Step 2: push operation inserts an element at the front.

Step 4: pop operation deletes an element at the front of the list;

Step 5: display operation displays all the elements in the list.

Step 6: Stop.

PROGRAM

#include "stdio.h"

#include "stdlib.h"

#include "conio.h"

void pop();

void push(int value);

void display();

struct node

{

int data;

struct node *link;

};

struct node *top=NULL,*temp;

30

void main()

{

int choice,data;

while(1) //infinite loop is used to insert/delete infinite number of elements in stack

{

printf("\n1.Push\n2.Pop\n3.Display\n4.Exit\n");

printf("\nEnter ur choice:");

scanf("%d",&choice);

switch(choice)

{

case 1: //To push a new element into stack

printf("Enter a new element :");

scanf("%d",&data);

push(data);

break;

case 2: // pop the element from stack

pop();

break;

case 3: // Display the stack elements

display();

break;

case 4: // To exit

exit(0);

}

}

getch();

//return 0;

}

void display()

{

temp=top;

31

if(temp==NULL)

{

printf("\nStack is empty\n");

}

printf("\n The Contents of the Stackare...");

while(temp!=NULL)

{

printf(" %d->",temp->data);

temp=temp->link;

}

}

void push(int data)

{

temp=(struct node *)malloc(sizeof(struct node)); // creating a space for thenew

element.

temp->data=data;

temp->link=top;

top=temp;

display();

}

void pop()

{

if(top!=NULL)

{

printf("The poped element is %d",top->data);

top=top->link;

}

else

{

printf("\nStack Underflow");

}

32

display();

}

OUTPUT

1. Push

2.Pop

3.Display

4.Exit

Enter ur choice:1

Enter a new element :10

The Contents of the Stack are... 10 ->

1. Push

2.Pop

3.Display

4.Exit

Enter ur choice:1

Enter a new element :20

The Contents of the Stack are... 20 -> 10 ->

1.Push

2. Pop

3.Display

4.Exit

Enter ur choice:1

Enter a new element :30

The Contents of the Stack are... 30 -> 20 -> 10 ->

1.Push

2.Pop

3.Display

4.Exit

33

Enter ur choice:2

The poped element is 30

The Contents of the Stack are... 20 -> 10 ->

1.Push

2.Pop

3.Display

4.Exit

Enter ur choice:3

The Contents of the Stack are... 20 -> 10 ->

1.Push

2.Pop

3.Display

4.Exit

Enter ur choice:4

VIVA (PRE & POST LAB) QUESTIONS

1. How an element can be pushed and popped intostack?

2. If the elements “A”, “B”, “C” and “D” are placed in a stack and are deleted one at a

time, what is the order ofremoval?

3. What is the top ofstack?

4. How to represent stack using linkedlist?

5. What is structure of stack?

RESULT

 Thus the C program to implement Stack using linked list was completed successfully.

34

Ex. No: 3.1 ARRAY IMPLEMENTATION OF QUEUE ADTS

AIM

To write a C program to implement Queue operations such as enqueue, dequeue and

display using array.

PRE LAB DISCUSSION

Queue implemented using array can store only fixed number of data values. The

implementation of queue data structure using array is very simple, just define a one dimensional

array of specific size and insert or delete the values into that array by using FIFO (First In First

Out) principle with the help of variables 'front'and 'rear'. Initially both 'front' and 'rear' are set to

-1. Whenever, we want to insert a new value into the queue, increment 'rear' value by one and then

insert at that position. Whenever we want to delete a value from the queue, then increment 'front'

value by one and then display the value at 'front' position as deleted element.

 The Front and Rear of the queue point at the first index of the array. (Array index starts

from0).

 While adding an element into the queue, the Rear keeps on moving ahead and always

points to the position where the next element will be inserted. Front remains at the first

index.

35

ALGORITHM

Step 1: Start.

Step 2: Initialize front=0; rear=-1.

Step 3: Enqueue operation moves a rear by one position and inserts a element at the rear.

Step 4: Dequeue operation deletes a element at the front of the list and moves the front by

one Position.

Step 5: Display operation displays all the element in the list.

Step 6: Stop.

PROGRAM

#include<stdio.h>

#include<conio.h>

#defineSIZE5 /* Size of Queue*/

intQ[SIZE],f=0,r=-1; /* Global declarations*/

Qinsert(int elem)

{ /* Function for Insert operation*/

if(Qfull())

printf("\n\n Overflow!!!!\n\n");

else

{

++r;

Q[r]=elem;

}

}

36

int Qdelete()

{ /* Function for Delete operation*/

int elem;

if(Qempty()){ printf("\n\nUnderflow!!!!\n\n");

return(-1); }

else

{

elem=Q[f];

f=f+1;

return(elem);

}

}

int Qfull()

{ /* Function to Check Queue Full*/

if(r==SIZE-1) return1;

return 0;

}

int Qempty()

{ /* Function to Check Queue Empty*/

if(f > r) return1;

return 0;

}

display()

{ /* Function to display status of Queue*/

inti;

if(Qempty()) printf(" \n Empty Queue\n");

else

37

{

printf("Front->");

for(i=f;i<=r;i++)

printf("%d ",Q[i]);

printf("<-Rear");

}

}

void main()

{ /* Main Program */

int opn,elem;

do

{

clrscr();

printf("\n ### Queue Operations using Arrays### \n\n");

printf("\n Press 1-Insert, 2-Delete,3-Display,4-Exit\n");

printf("\n Your option ? ");

scanf("%d",&opn);

switch(opn)

{

case 1: printf("\n\nRead the element to be Inserted ?");

scanf("%d",&elem);

Qinsert(elem); break;

case 2: elem=Qdelete();

if(elem != -1)

printf("\n\nDeleted Element is %d \n",elem);

break;

case 3: printf("\n\nStatus of Queue\n\n");

display(); break;

case 4: printf("\n\n Terminating \n\n"); break;

default: printf("\n\nInvalid Option !!! Try Again !! \n\n");

38

break;

}

printf("\n\n\n\n Press a Key to Continue . . . ");

getch();

}while(opn != 4);

getch();

}

OUTPUT

Queue Operations using Arrays###

Press 1-Insert, 2-Delete,3-Display,4-Exit

Your option ? 1

Read the element to be Inserted ?100

Press a Key to Continue . . .

Queue Operations using Arrays###

Press 1-Insert, 2-Delete,3-Display,4-Exit

Your option ? 1

Read the element to be Inserted ?200

Press a Key to Continue . . .

Queue Operations using Arrays###

Press 1-Insert, 2-Delete,3-Display,4-Exit

Your option ? 1

Read the element to be Inserted ?300

Press a Key to Continue . . .

Queue Operations using Arrays###

Press 1-Insert, 2-Delete,3-Display,4-Exit

Your option ? 2

Deleted Element is 100

Press a Key to Continue . . .

Queue Operations using Arrays###

39

Press 1-Insert,2-Delete,3-Display,4-Exit

Your option ?3

Status ofQueue

Front->200 300 <-Rear

Press a Key to Continue . ..

VIVA (PRE & POST LAB) QUESTIONS

1. If the elements “A”, “B”, “C” and “D” are placed in a queue and are deleted one at a

time, in what order will they beremoved?

2. When does a normal queue gets full if implemented using an array of sizeMAX_SIZE

3. What is the term for inserting into a full queue known as?

4.What is the advantage of circular queue over linear queue?

5.How to check an emptyqueue?

RESULT

Thus the C program to implement Queue using array was completed successfully.

40

Ex. No: 3.2 LINKED LIST IMPLEMENTATION OF QUEUE

AIM

To write a C program to implement Queue operations such as enqueue, dequeue and

display using linked list.

PRE LAB DISCUSSION

The major problem with the queue implemented using array is, It will work for only fixed

number of data. That means the amount of data must be specified in the beginning itself. Queue

using array is not suitable when we don't know the size of data which we are going to use. A queue

data structure can be implemented using linked list data structure. The queue which is implemented

using linked list can work for unlimited number of values. That means, queue using linked list can

work for variable size of data (No need to fix the size at beginning of the implementation). The

Queue implemented using linked list can organize as many data values as we want. In linked list

implementation of a queue, the last inserted node is always pointed by 'rear' and the first node is

always pointed by 'front'.

Example

In above example, the last inserted node is 50 and it is pointed by 'rear' and the first inserted

node is 10 and it is pointed by 'front'. The order of elements inserted is 10, 15, 22 and 50.

There are two basic operations performed on a Queue.

Enqueue():This function defines the operation for adding an element into queue. Dequeue():This

function defines the operation for removing an element from queue.

ALGORITHM

Step 1: Start.

Step 2: Enqueue operation inserts an element at the rear of the list.

Step 4: Dequeue operation deletes an element at the front of the list.

Step 5: Display operation display all the element in the list.

Step 6: Stop.

41

PROGRAM

#include<stdio.h>

#include<conio.h>

struct Node

{

int data;

struct Node *next;

}*front = NULL,*rear = NULL;

void insert(int);

void delete();

void display();

void main()

{

int choice, value;

clrscr();

printf("\n:: Queue Implementation using Linked List ::\n");

while(1){

printf("\n****** MENU ******\n");

printf("1. Insert\n2. Delete\n3. Display\n4. Exit\n");

printf("Enter your choice: ");

scanf("%d",&choice);

42

switch(choice){

case 1: printf("Enter the value to be insert: ");

scanf("%d", &value);

insert(value);

break;

case 2: delete(); break;

case 3: display(); break;

case 4: exit(0);

default: printf("\nWrong selection!!! Please try again!!!\n");

}

}

}

void insert(int value)

{

struct Node *newNode;

newNode = (struct Node*)malloc(sizeof(struct Node));

newNode->data = value;

newNode -> next = NULL;

if(front == NULL)

front = rear = newNode;

else{

rear -> next = newNode;

rear = newNode;

}

printf("\nInsertion is Success!!!\n");

}

void delete()

{

if(front == NULL)

printf("\nQueue is Empty!!!\n");

else{

43

struct Node *temp = front;

front = front -> next;

printf("\nDeleted element: %d\n", temp->data);

free(temp);

}

}

void display()

{

if(front == NULL)

printf("\nQueue is Empty!!!\n");

else{

struct Node *temp = front;

while(temp->next != NULL){

printf("%d--->",temp->data);

temp = temp -> next;

}

printf("%d--->NULL\n",temp->data);

}

}

44

OUTPUT

45

VIVA (PRE & POST LAB) QUESTIONS

1. What is structure ofqueue?

2. How an element can be inserted and deleted fromqueue?

3. How to represent queue using linkedlist?

4. In linked list implementation of a queue, where does a new element beinserted?

5. In linked list implementation of a queue, from where is the itemdeleted?

RESULT

 Thus the C program to implement Queue using linked list was completed successfully.

46

Ex.No:4.1 APPLICATIONS OF LIST

AIM

To write a ‘C’ program to represent a polynomial as a linked list and write functions for

polynomial addition

PRE LAB DISCUSSION

A polynomial equation is an equation that can be written in the form. axn + bxn-1 + . . . +

rx+ s = 0, where a, b, . . . , r and s are constants. We call the largest exponent of x appearing in a

nonzero term of a polynomial the degree of that polynomial.A Polynomial has mainly two fields

Exponent and coefficient.

Node of a Polynomial:

For example 3x^2 + 5x + 7 will represent as follows.

In each node the exponent field will store the corresponding exponent and the coefficient field

will store the corresponding coefficient. Link field points to the next item in the

polynomial.Given two polynomial numbers represented by a linked list. Write a function that

add these lists means add the coefficients which have same variable powers.

Example:

Input:

1st number = 5x^2 + 4x^1 + 2x^0

2nd number = 5x^1 + 5x^0

Output:

5x^2 + 9x^1 + 7x^0

47

ALGORITHM

Step1:Start the program

Step2:Get the coefficients and powers for the two polynomials to be added.

Step3:Add the coefficients of the respective powers.

Step4:Display the added polynomial.
Step5:Terminate the program.

PROGRAM

#include<stdio.h>

#include<conio.h>

struct polynomial

{

int coff;

int pow;

struct polynomial *link;
}*ptr,*start1,*node,*start2,*start3,*ptr1,*ptr2;

typedef struct polynomial pnl;

int temp1,temp2;

void main()

{

void create(void);

void prnt(void);

void suml(void);

void sort(void);

clrscr();

printf("Enrter the elements of the first polynomial :");

node = (pnl *) malloc(sizeof (pnl));

start1=node;

if (start1==NULL)

{

printf(" Unable to create memory.");
getch();

exit();

}

create();

printf("Enter the elements of the second poly :");

node = (pnl *) malloc(sizeof (pnl));

48

start2=node;

if (start2==NULL)

{

printf("Unable to create memory.");

getch();

exit();

}

create();

clrscr();
//printing the elements of the lists

printf("The elements of the poly first are :");

ptr=start1;

prnt();
printf("The elements of the poly second are :");

ptr=start2;

prnt();

printf("The first sorted list is :");

ptr=start1;

sort();

ptr=start1;

prnt();

printf("The second sorted list is :");

ptr=start2;

sort();

ptr=start2;

prnt();
printf("The sum of the two lists are :");
suml();

ptr=start3;

prnt();

getch();

}

/* */
voidcreate()

{

char ch;

while(1)

{
printf(" Enter the coff and pow :");

scanf("%d%d",&node->coff,&node->pow);

if (node->pow==0)

{

ptr=node;
node=(pnl *)malloc(sizeof(pnl));

node=NULL;

ptr->link=node;

49

break;

}

printf("Do u want enter more coff ?(y/n)");
fflush(stdin);

scanf("%c",&ch);
if (ch=='n')

{

ptr=node;

node=(pnl *)malloc(sizeof(pnl));
node=NULL;

ptr->link=node;
break;

}

ptr=node;

node=(pnl *)malloc(sizeof(pnl));
ptr->link=node;

}

}

/* */

voidprnt()

{

int i=1;

while(ptr!=NULL)

{

if(i!=1)

printf("+ ");

printf(" %dx^%d\n ",ptr->coff,ptr->pow);
ptr=ptr->link;

i++;

}

//printf(" %d^%d",ptr->coff,ptr->pow);

}

/* */

voidsort()

{

for(;ptr->coff!=NULL;ptr=ptr->link)

for(ptr2=ptr->link;ptr2->coff!=NULL;ptr2=ptr2->link)

{

if(ptr->pow>ptr2->pow)

{

temp1=ptr->coff;

temp2=ptr->pow;

ptr->coff=ptr2->coff;

ptr->pow=ptr2->pow;

ptr2->coff=temp1;

ptr2->pow=temp2;

50

}

}

}

/* */

voidsuml()

{
node=(pnl *)malloc (sizeof(pnl));

start3=node;

ptr1=start1;

ptr2=start2;

while(ptr1!=NULL && ptr2!=NULL)

{

ptr=node;

if (ptr1->pow > ptr2->pow)

{
node->coff=ptr2->coff;

node->pow=ptr2->pow;

ptr2=ptr2->link; //update ptr list B

}

else if (ptr1->pow < ptr2->pow)

{
node->coff=ptr1->coff;

node->pow=ptr1->pow;

ptr1=ptr1->link; //update ptr list A

}

else

{
node->coff=ptr2->coff+ptr1->coff;

node->pow=ptr2->pow;

ptr1=ptr1->link; //update ptr list A

ptr2=ptr2->link; //update ptr listB

}

node=(pnl *)malloc (sizeof(pnl));

ptr->link=node; //update ptr listC

}//end of while

if(ptr1==NULL) //end of listA

{

while(ptr2!=NULL)

{
node->coff=ptr2->coff;

node->pow=ptr2->pow;

ptr2=ptr2->link; //update ptr list B

51

ptr=node;
node=(pnl *)malloc (sizeof(pnl));

ptr->link=node; //update ptr list C

}

}

elseif(ptr2==NULL) //end of listB

{

while(ptr1!=NULL)

{
node->coff=ptr1->coff;

node->pow=ptr1->pow;

ptr1=ptr1->link; //update ptr list B

ptr=node;

node=(pnl *)malloc (sizeof(pnl));

ptr->link=node; //update ptr list C

}

}
node=NULL;

ptr->link=node;

}

OUTPUT

Enter the elements of the first polynomial : Enter the coff and pow :1 1

Do u want enter more coff ?(y/n)y

Enter the coff and pow :1 0
Enter the elements of the second poly : Enter the coff and pow :1 1

Do u want enter more coff ?(y/n)y

Enter the coff and pow :2 0

The elements of the poly first are : 1x^1 + 1x^0

The elements of the poly second are : 1x^1 + 2x^0

The first sorted list is : 1x^0 +1x^1

The second sorted list is : 2x^0 + 1x^1

The sum of the two lists are : 3x^0 +2x^1

VIVA (PRE & POST LAB) QUESTIONS

1. Give the linked representation of the following polynomial: 7x3y2 – 8x2y + 3xy + 11x – 4
2.Which data structure is suited for polynomial manipulation. Givereason.

3.How to add two polynomial using linked list.
4.Specify the need for malloc() function.

5. Mention the structure of polynomial node.

RESULT

Thus the C program to implement Polynomial using linked list was completed successfully.

52

Ex.No:4.2 APPLICATIONS OF STACK

AIM

Stack.

To write a C program to implement the conversion of infix to postfix expression using

PRE LAB DISCUSSION

One of the applications of Stack is in the conversion of arithmetic expressions in high-

level programming languages into machine readable form. An arithmetic expression may consist

of more than one operator and two operands e.g. (A+B)*C(D/(J+D)).These complex arithmetic

operations can be converted into polish notation using stacks which then can be executed in two

operands and an operator form.

Infix Expression:

Itfollows the scheme of <operand><operator><operand>i.e. an <operator> is preceded

and succeeded by an <operand>. Such an expression is termed infix expression. E.g.,A+B

Postfix Expression:

It follows the scheme of <operand><operand><operator>i.e. an <operator> is succeeded by
both the <operand>. E.g., AB+

Steps to convert Infix To Postfix
Let, X is an arithmetic expression written in infix notation. This algorithm finds the equivalent

postfix expression Y.

1. Push “(“onto Stack, and add “)” to the end ofX.

2. Scan X from left to right and repeat Step 3 to 6 for each element of X until the Stack is
empty.

3. If an operand is encountered, add it toY.

4. If a left parenthesis is encountered, push it ontoStack.

5. If an operator is encountered,then:
1. Repeatedly pop from Stack and add to Y each operator (on the top of Stack)

which has the same precedence as or higher precedence thanoperator.

2. Add operator toStack.

[End ofIf]

6. If a right parenthesis is encountered,then:
1. Repeatedly pop from Stack and add to Y each operator (on the top of Stack) until

a left parenthesis isencountered.

2. Remove the leftParenthesis.
[End ofIf]

[End of If]

7. END.

53

ALGORITHM

Step 1: Start.

Step 2: Create a stack to store operand andoperator.

Step 3: In Postfix notation the operator follows the two operands and in the infix notation

the operator is in between the twooperands.

Step 4: Consider the sum of A and B. Apply the operator “+” to the operands A and B

and write the sum as A+B is INFIX. + AB is PREFIX. AB+ isPOSTFIX

Step 5: Get an Infix Expression as input and evaluate it by first converting it to postfix and

then evaluating the postfix expression.

Step 6: The expressions with in innermost parenthesis must first be converted to postfix so

that they can be treated as single operands. In this way Parentheses can be

successively eliminated until the entire expression isconverted.

Step 7: The last pair of parentheses to be opened with in a group of parentheses encloses

the first expression with in that group to be transformed. This last-in first-out

immediately suggests the use of Stack. Precedence plays an important role in the

transforming infix to postfix.

Step 8: Stop.

PROGRAM

#include<stdio.h>

#include<conio.h>

#include<string.h>

#define MAX 20

int top=-1;

54

char pop();

char stack[MAX];

void push(char item);

int prcd(char symbol){

switch(symbol){

case '+':

case '-':return 2;

break;

case '*':

case '/':return 4;

break;

case '^':

case '$':return 6;

break;

case'(':

case')':

case '#':return 1;

break;

}

}

int isoperator(char symbol){

switch(symbol){

case '+':

case '-':

case '*':

case '/':

case'^':

case'$':

case '(':

55

case ')':return 1;

break;

default:

return 0;

}

}

void convertip(char infix[],char postfix[]){

int i,symbol,j=0;

stack[++top]='#';

for(i=0;i<strlen(infix);i++){

symbol=infix[i];

if(isoperator(symbol)==0){

postfix[j]=symbol;

j++;

}

else{

if(symbol=='(')

push(symbol);

else if(symbol==')'){

while(stack[top]!='('){

postfix[j]=pop();

j++;

}

pop();//pop out (.

}

else{

if(prcd(symbol)>prcd(stack[top]))

push(symbol);

else{

while(prcd(symbol)<=prcd(stack[top])){

postfix[j]=pop();

56

j++;

}

push(symbol);

}//end ofelse.

}//end ofelse.

}//end ofelse.

}//end of for.

while(stack[top]!='#'){

postfix[j]=pop();

j++;

}

postfix[j]='\0';//null terminate string.

}

void main(){

char infix[20],postfix[20];

clrscr();

printf("Enter the valid infix string:\n");

gets(infix);

convertip(infix,postfix);

printf("The corresponding postfix string is:\n");

puts(postfix);

getch();

}

void push(char item){

top++;

stack[top]=item;

}

char pop(){

char a;

a=stack[top];

57

top--;

return a;

}

OUTPUT

Enter the valid infix string:

(a+b)*c

The corresponding postfix string is:

ab+c*

VIVA (PRE & POST LAB) QUESTIONS

1. What is the output of the following expression: 2 3 4 5 + *-

2. What is the maximum difference between number of operators andoperands?

3. What is the advantage of postfixexpression?

4. Which expression doesn’t requireparenthesis?

5. What is the output of the following expression: + * - 2 3 45

RESULT

Thus the C program to convert infix to postfix expression using Stack was completed

successfully.

58

Ex.No:5 IMPLEMENTATION OF BINARY TREES AND OPERATIONS OF BINARY TREES

AIM

To write a C program to implement the binary trees and its operations.

PRE LAB DISCUSSION

A binary tree is a tree data structure in which each node has at most two children, which

are referred to as the left child and the right child.

Insertion:

In binary trees, a new node before insert has to specify 1) whose child it is going to be 2)

mention whether new node goes as left/right child. For example(below image),

To add a new node to leaf node, a new node should also mention whether new node goes as

left/right child.

59

Deletion:

For deletion, only certain nodes in a binary tree can be removed unambiguously.

Suppose that the node to delete is node A. If A has no children, deletion is accomplished by setting

the child of A's parent to null. If A has one child, set the parent of A's child to A's parent and set

the child of A's parent to A's child. In a binary tree, a node with two children cannot be deleted

unambiguously.

ALGORITHM

Step 1: Start.

Step 2: Create a Binary Tree for N elements.

Step 3: Insert an element in binary tree

Step 4: Traverse the tree in inorder.

Step 5: Traverse the tree in preorder

Step 6: Traverse the tree in postorder.

Step 7: Stop

PROGRAM

#include<stdio.h>

#include<conio.h>

struct node

{

int data;
struct node *rlink;

struct node *llink;

}*tmp=NULL;

typedef struct node NODE;

NODE *create();

void preorder(NODE *);
void inorder(NODE *);

60

void postorder(NODE *);

void insert(NODE *);

void main()

{

int n,i,m;
clrscr();

do

{

printf(“\n\n0.create\n\n1.insert \n\n2.preorder\n\n3.postorder\n\n4.inorder\n\n5.exit\n\n”);
printf(“\n\nEnter ur choice”);

scanf(“%d”,&m);
switch(m)

{

case 0:

tmp=create();
break;

case 1:
insert(tmp);

break;

case 2:
printf(“\n\nDisplay tree in Preorder traversal\n\n”);

preorder(tmp);

break;
case 3:

printf(“\n\nDisplay Tree in Postorder\n\n”);
postorder(tmp);

break;
case 4:

printf(“\n\nInorder\n\n”);
inorder(tmp);

break;
case5:

exit(0);

}

}

while(n!=5);

getch();

}

void insert(NODE *root)

{

NODE *newnode;
if(root==NULL)

{
newnode=create();

root=newnode;

61

}

else

{
newnode=create();

while(1)

{

if(newnode->data<root->data)

{

if(root->llink==NULL)

{

root->llink=newnode;

break;

}

root=root->llink;

}

if(newnode->data>root->data)

{

if(root->rlink==NULL)

{
root->rlink=newnode;

break;

}

root=root->rlink;

}

}

}

}

NODE *create()

{
NODE *newnode;

int n;

newnode=(NODE*)malloc(sizeof(NODE));

printf(“\n\nEnter the Data “);

scanf(“%d”,&n);

newnode->data=n;

newnode->llink=NULL;

newnode->rlink=NULL;

return(newnode);

}

void postorder(NODE *tmp)

{

if(tmp!=NULL)

{

postorder(tmp->llink);

62

postorder(tmp->rlink);

printf(“%d->”,tmp->data);

}

}

void inorder(NODE *tmp)

{

if(tmp!=NULL)

{

inorder(tmp->llink);

printf(“%d->”,tmp->data);

inorder(tmp->rlink);

}

}

void preorder(NODE *tmp)

{

if(tmp!=NULL)

{

printf(“%d->”,tmp->data);

preorder(tmp->llink);

preorder(tmp->rlink);

}

}

OUTPUT

0. Create

1.insert

2.preorder

3.postorder

4.inorder

5.exit

Enter ur choice 0

Enter the Data 3

Enter ur choice 1

Enter the Data 7

63

Enter ur choice 1

Enter the Data 8

Enter ur choice 1

Enter the Data 6

Enter ur choice 1

Enter the Data 4

Enter ur choice2

Display tree in Preorder traversal

3->7->6->4->8

Enter ur choice3

Display tree in Postorder 4 -> 6 -> 8 -> 7 ->3

Enter ur choice4

Inorder

3 -> 4 -> 6 -> 7 -> 8

Enter ur choice 5

VIVA (PRE & POST LAB) QUESTIONS

1. What are the data structures used for BinaryTrees?

2. Explain implementation of traversal of a binarytree.

3. How to perform insertion into a binarytree.

4. Define post-ordertraversal.

5. Define in-ordertraversal.

RESULT

Thus the C program to implement binary tree and its operation was completed

successfully.

64

Ex.No:6 IMPLEMENTATION OF BINARY SEARCH TREES

AIM

To write a C program to implement the binary search trees.

PRE LAB DISCUSSION

A binary search tree (BST) is a tree in which all nodes follows the below mentioned properties

 The left sub-tree of a node has key less than or equal to its parent node'skey.

 The right sub-tree of a node has key greater than or equal to its parent node's

key.Thus, a binary search tree (BST) divides all its sub-trees into two segments; left sub-

tree and right sub-tree and can be definedas

left_subtree (keys) ≤ node (key) ≤ right_subtree (keys)

Following are basic primary operations of a tree which are following.

 Search − search an element in atree.

 Insert − insert an element in atree.

 Delete – removes an existing node from thetree

 Preorder Traversal − traverse a tree in a preordermanner.

 Inorder Traversal − traverse a tree in an inordermanner.

 Postorder Traversal − traverse a tree in a postordermanner.

ALGORITHM

Step 1: Start the process.
Step 2: Initialize and declare variables.

Step 3: Construct the Tree

Step 4: Data values are given which we call a key and a binary search tree

Step 5: To search for the key in the given binary search tree, start with theroot

node and Compare the key with the data value of the root node. Ifthey

65

match, return the root pointer.
Step 6: If the key is less than the data value of the root node, repeat the process by

using the left subtree.

Step 7: Otherwise, repeat the same process with the right subtree until either a

match is found or the subtree under consideration becomes an empty tree.

Step 8:Terminate

PROGRAM

#include<stdio.h>

#include<conio.h>

#include<process.h>

#include<alloc.h>

struct tree

{

int data;
struct tree *lchild;

struct tree *rchild;

}*t,*temp;

int element;

void inorder(struct tree *);

void preorder(struct tree *);

void postorder(struct tree *);

struct tree * create(struct tree *, int);

struct tree * find(struct tree *, int);

struct tree * insert(struct tree *, int);

struct tree * del(struct tree *, int);

struct tree * findmin(struct tree *);

struct tree * findmax(struct tree *);

void main()

{

int ch;

do

{
printf("\n\t\t\tBINARY SEARCH TREE");

printf("\n\t\t\t****** ****** ****");

printf("\nMain Menu\n");

printf("\n1.Create\n2.Insert\n3.Delete\n4.Find\n5.FindMin\n6.FindMax");

printf("\n7.Inorder\n8.Preorder\n9.Postorder\n10.Exit\n");

printf("\nEnter ur choice :");

scanf("%d",&ch);

switch(ch)

{

66

case1:

case2:

case3:

case4:

printf("\nEnter the data:");

scanf("%d",&element);

t=create(t,element);

inorder(t);

break;

printf("\nEnter the data:");

scanf("%d",&element);

t=insert(t,element);

inorder(t);

break;

printf("\nEnter the data:");

scanf("%d",&element);

t=del(t,element);

inorder(t);

break;

printf("\nEnter the data:");

scanf("%d",&element);

temp=find(t,element);

if(temp->data==element)

printf("\nElement %d is at %d",element,temp);

case 5:

else

break;

printf("\nElement is not found");

case6:

case7:

case8:

case9:

temp=findmin(t);
printf("\nMax element=%d",temp->data);

break;

temp=findmax(t);
printf("\nMax element=%d",temp->data);

break;

inorder(t);

break;

preorder(t);

break;

postorder(t);
break;

case 10:exit(0);

67

}

}while(ch<=10);

}

struct tree * create(struct tree *t, int element)

{

t=(struct tree *)malloc(sizeof(structtree));
t->data=element;

t->lchild=NULL;

t->rchild=NULL;

return t;

}

struct tree * find(struct tree *t, int element)

{

if(t==NULL)

return NULL;
if(element<t->data)

return(find(t->lchild,element));

else

if(element>t->data)

return(find(t->rchild,element));

else

}

return t;

struct tree *findmin(struct tree *t)

{

if(t==NULL)

return NULL;

else

if(t->lchild==NULL)

return t;

else

}

return(findmin(t->lchild));

struct tree *findmax(struct tree *t)

{

if(t!=NULL)

{

while(t->rchild!=NULL)

t=t->rchild;

}

return t;

}

68

struct tree *insert(struct tree *t,int element)

{

if(t==NULL)

{

}

else

{

t=(struct tree *)malloc(sizeof(struct tree));

t->data=element;

t->lchild=NULL;

t->rchild=NULL;

return t;

if(element<t->data)

{

}

else

t->lchild=insert(t->lchild,element);

if(element>t->data)

{

}

else

t->rchild=insert(t->rchild,element);

if(element==t->data)

{

printf("element already present\n");

}

return t;

}

}

struct tree * del(struct tree *t, int element)

{

if(t==NULL)

printf("element not found\n");

else

if(element<t->data)

t->lchild=del(t->lchild,element);

else

if(element>t->data)

t->rchild=del(t->rchild,element);

else

if(t->lchild&&t->rchild)

{

temp=findmin(t->rchild);

t->data=temp->data;

69

}

else

{

t- >rchild=del(t->rchild,t->data);

temp=t;

if(t->lchild==NULL)

t=t->rchild;

return t;

}

else

}

if(t->rchild==NULL)
t=t->lchild;

free(temp);

void inorder(struct tree *t)

{

if(t==NULL)

return;

else

{

}

}

inorder(t->lchild);

printf("\t%d",t->data);

inorder(t->rchild);

void preorder(struct tree *t)

{

if(t==NULL)

return;

else

{

}

}

printf("\t%d",t->data);

preorder(t->lchild);

preorder(t->rchild);

void postorder(struct tree *t)

{

if(t==NULL)

return;

else

{

postorder(t->lchild);

70

postorder(t->rchild);

printf("\t%d",t->data);

}

}

OUTPUT

Main Menu

1. Create

2.Insert

3.Delete

4.Find

5.FindMin

6.FindMax

7.Inorder

8.Preorder

9.Postorder

10.Exit

BINARY SEARCH TREE

****** ****** ****

Enter ur choice :1

Enter the data:10

10

Main Menu

1.Create

2.Insert

3.Delete

4.Find

5.FindMin

6.FindMax

7.Inorder

8.Preorder

9.Postorder

10.Exit

BINARY SEARCH TREE

****** ****** ****

Enter ur choice :2

Enter the data:20

10 20

BINARY SEARCH TREE

71

****** ****** ****

Main Menu

1.Create

2.Insert

3.Delete

4.Find

5.FindMin

6.FindMax

7.Inorder

8.Preorder

9.Postorder

10.Exit

Enter ur choice :2

Enter the data:30

10 20 30

BINARY SEARCH TREE

****** ****** ****

Main Menu

1.Create

2.Insert

3.Delete

4.Find

5.FindMin

6.FindMax

7.Inorder

8.Preorder

9.Postorder

10.Exit

Enter ur choice :2

Enter the data:25

10 20 25 30
BINARY SEARCH TREE

****** ****** ****

Main Menu

1.Create

2.Insert

3.Delete

4.Find

5.FindMin

72

6.FindMax

7.Inorder

8.Preorder

9.Postorder

10.Exit

Enter ur choice :4

Enter the data:25

Element 25 is at 2216

BINARY SEARCH TREE

****** ****** ****

Main Menu

1.Create

2.Insert

3.Delete

4.Find

5.FindMin

6.FindMax

7.Inorder

8.Preorder

9.Postorder

10.Exit

Enter ur choice :5

Max element=10

BINARY SEARCH TREE

****** ****** ****

Main Menu

1.Create

2.Insert

3.Delete

4.Find

5.FindMin

6.FindMax

7.Inorder

8.Preorder

9.Postorder

10.Exit

Enter ur choice :6

Max element=30

BINARY SEARCH TREE

****** ****** ****

Main Menu

73

1. Create

2.Insert

3.Delete

4.Find

5.FindMin

6.FindMax

7.Inorder

8.Preorder

9.Postorder

10.Exit

Enter ur choice :7

10 20 25 30

BINARY SEARCH TREE

****** ****** ****

Main Menu

1.Create

2.Insert

3.Delete

4.Find

5.FindMin

6.FindMax

7.Inorder

8.Preorder

9.Postorder

10.Exit

Enter ur choice :8

10 20 30 25

BINARY SEARCH TREE

****** ****** ****

Main Menu

1.Create

2.Insert

3.Delete

4.Find

5.FindMin

6.FindMax

7.Inorder

8.Preorder

9.Postorder

10.Exit

Enter ur choice :9

25 30 20 10

BINARY SEARCH TREE

****** ****** ****

74

Main Menu

1.Create

2.Insert

3.Delete

4.Find

5.FindMin

6.FindMax

7.Inorder

8.Preorder

9.Postorder

10.Exit

Enter ur choice :3

Enter the data:10

20 25 30

BINARY SEARCH TREE

****** ****** ****

Main Menu

1.Create

2.Insert

3.Delete

4.Find

5.FindMin

6.FindMax

7.Inorder

8.Preorder

9.Postorder

10.Exit

Enter ur choice :10

VIVA (PRE & POST LAB) QUESTIONS

1. Write the various operation performed in the binary searchtree?

2. How many nodes will be there in given nthlevel?

3. Write the necessary condition for inserting element intoBST

4. How will you find the maximum and minimum element inBST?

5. How will you perform deletion in BST with 2children

RESULT

Thus the C program to implement the binary search trees was completed successfully.

75

Ex.No:7 IMPLEMENTATION OF AVL TREES

AIM

To write a C program to implement AVL trees.

PRE LAB DISCUSSION

AVL tree is a self balanced binary search tree. That means, an AVL tree is also a binary

search tree but it is a balanced tree. A binary tree is said to be balanced, if the difference between

the hieghts of left and right subtrees of every node in the tree is either -1, 0 or +1. In other words,

a binary tree is said to be balanced if for every node, height of its children differ by at most one.

In an AVL tree, every node maintains a extra information known as balance factor.

An AVL tree is defined as follows...

An AVL tree is a balanced binary search tree. In an AVL tree, balance factor of every node is

either -1, 0 or +1.

Balance factor of a node is the difference between the heights of left and right subtrees of that

node. The balance factor of a node is calculated either height of left subtree - height of right

subtree (OR) height of right subtree - height of left subtree.

AVL Tree Rotations

In AVL tree, after performing every operation like insertion and deletion we need to check the

balance factor of every node in the tree. If every node satisfies the balance factor condition then

we conclude the operation otherwise we must make it balanced. We use rotation operations to

make the tree balanced whenever the tree is becoming imbalanced due to any operation.

Rotation operations are used to make a tree balanced.

Rotation is the process of moving the nodes to either left or right to make tree balanced.

76

There are four rotations and they are classified into two types.

ALGORITHM

Step 1: Start

Step 2: Insert the new element into the tree using Binary Search Tree insertion logic.

Step 3: After insertion, check the Balance Factor of every node.

 If the Balance Factor of every node is 0 or 1 or -1 then go for nextoperation.

 If the Balance Factor of any node is other than 0 or 1 or -1 then tree is said to be

imbalanced. Then perform the suitable Rotation to make it balanced. And go for

next operation.

Step 4: Compare, the search element with the value of root node in the tree.

If search element is larger, then continue the search process in right subtree.

If we reach to the node with search value, then display "Element is found" and

terminate the function.

Step 5: Stop

77

PROGRAM

#include<stdio.h>

#include<malloc.h>

typedef enum { FALSE ,TRUE } ;

struct node

{

int info;

int balance;

struct node *lchild;
struct node *rchild;

};

struct node *insert (int , struct node *, int *);

struct node* search(struct node *,int);

struct node* search(struct node *ptr,int info)

{

if(ptr!=NULL)

if(info < ptr->info)

ptr=search(ptr->lchild,info);

else if(info > ptr->info)

ptr=search(ptr->rchild,info);

return(ptr);

}/*End of search()*/

struct node *insert (int info, struct node *pptr, int *ht_inc)

{

struct node *aptr;

struct node *bptr;

if(pptr==NULL)

{

pptr = (struct node *) malloc(sizeof(structnode));
pptr->info =info;

pptr->lchild = NULL;

pptr->rchild = NULL;

pptr->balance = 0;

*ht_inc = TRUE;

return (pptr);

}

if(info < pptr->info)

{

pptr->lchild = insert(info, pptr->lchild, ht_inc);
if(*ht_inc==TRUE)

{

switch(pptr->balance)

{

case -1: /* Right heavy */

78

pptr->balance = 0;
*ht_inc = FALSE;

break;

case 0: /* Balanced */
pptr->balance = 1;
break;

case 1: /* Left heavy */
aptr = pptr->lchild;

if(aptr->balance == 1)

{

}

else

{

printf("Left to Left Rotation\n");

pptr->lchild= aptr->rchild;

aptr->rchild = pptr;

pptr->balance = 0;

aptr->balance=0;

pptr = aptr;

printf("Left to rightrotation\n");

bptr =aptr->rchild;

aptr->rchild =bptr->lchild;

bptr->lchild =aptr;

pptr->lchild =bptr->rchild;

bptr->rchild =pptr;

if(bptr->balance == 1)

pptr->balance = -1;

else

pptr->balance = 0;

if(bptr->balance == -1)

aptr->balance = 1;

else

aptr->balance = 0;
bptr->balance=0;
pptr=bptr;

}

*ht_inc = FALSE;

}/*End of switch */

}/*End of if */

}/*End of if*/
if(info > pptr->info)

{

pptr->rchild = insert(info, pptr->rchild, ht_inc);

if(*ht_inc==TRUE)

{

79

switch(pptr->balance)

{

case 1: /* Left heavy */

pptr->balance = 0;

*ht_inc = FALSE;
break;

case 0: /* Balanced */
pptr->balance = -1;

break;

case -1: /* Right heavy */

aptr = pptr->rchild;
if(aptr->balance == -1)

{

}

else

{

printf("Right to Right Rotation\n");

pptr->rchild= aptr->lchild;

aptr->lchild = pptr;

pptr->balance = 0;

aptr->balance=0;

pptr = aptr;

printf("Right to LeftRotation\n");
bptr =aptr->lchild;

aptr->lchild =bptr->rchild;

bptr->rchild =aptr;

pptr->rchild =bptr->lchild;
bptr->lchild =pptr;

if(bptr->balance == -1)

pptr->balance = 1;

else

pptr->balance = 0;

if(bptr->balance == 1)

aptr->balance = -1;

else

aptr->balance = 0;

bptr->balance=0;
pptr = bptr;

}/*End of else*/

*ht_inc = FALSE;

}/*End of switch */

}/*End of if*/

}/*End of if*/

return(pptr);

}/*End of insert()*/

80

void display(struct node *ptr,int level)

{

int i;

if (ptr!=NULL)

{

display(ptr->rchild, level+1);
printf("\n");

for (i = 0; i < level; i++)

printf(" ");

printf("%d", ptr->info);
display(ptr->lchild, level+1);

}/*End of if*/

}/*End of display()*/

void inorder(struct node *ptr)

{

if(ptr!=NULL)

{

inorder(ptr->lchild);

printf("%d ",ptr->info);

inorder(ptr->rchild);

}

}/*End of inorder()*/

main()

{
int ht_inc;

int info ;

int choice;

struct node *root = (struct node *)malloc(sizeof(struct node));

root = NULL;

while(1)

{

printf("1.Insert\n");

printf("2.Display\n");

printf("3.Quit\n");

printf("Enter your choice : ");

scanf("%d",&choice);

switch(choice)

{

case 1:

printf("Enter the value to be inserted : ");
scanf("%d", &info);

if(search(root,info) == NULL)

root = insert(info, root, &ht_inc);

81

case 2:

else

break;

printf("Duplicate value ignored\n");

if(root==NULL)

{

printf("Tree is empty\n");
continue;

}

case 3:

default:

printf("Tree is :\n");

display(root, 1);

printf("\n\n");

printf("Inorder Traversal is: ");
inorder(root);

printf("\n");

break;

exit(1);

printf("Wrong choice\n");

}/*End of switch*/

}/*End of while*/

}/*End of main()*/

OUTPUT

82

VIVA (PRE & POST LAB) QUESTIONS

1. How is an AVL tree better than a binary searchtree?

2. Create an AVL tree using the following sequence of data: 16, 27, 9, 11, 36, 54.

3.Given an empty AVL tree, how would you construct AVL tree when a set of numbers

are given without performing anyrotations?

4. Which rotation is done when the new node is inserted in the right sub-tree of the right

sub-tree of the criticalnode?

5. How to insert a new node into an AVLtree.

RESULT

Thus the C program to implement AVL tree was completed successfully.

83

Ex.No:8 IMPLEMENTATION OF HEAPS USING PRIORITY QUEUES

AIM

To write a C program to implement the heaps using priority queues

PRE LAB DISCUSSION

A Priority Queue is an abstract data type to efficiently support finding an item with the

highest priority across a series of operations. The basic operations are :

1. Insert

2. Find - minimum (or maximum),and

3. Delete-minimum (ormaximum).

A heap is a specialized tree-based data structure that satisfies the heap property: if B is a

child node of A, then key(A) ≥ key(B). This implies that an element with the greatest key is always

in the root node, and so such a heap is sometimes called a max-heap. (Alternatively, if the

comparison is reversed, the smallest element is always in the root node, which results in a min-

heap). Heaps are usually implemented in an array, and don't require pointers betweenelements.

The operations commonly performed with a heap are :

-max or delete-min : removing the root node of a max or min heap, respectively.

-key or decrease-key : updating a key within a max or min heap, respectively.

ALGORITHM

Step 1: Start

Step 2: Declaring the maximum size of the queue

84

Step 3:Lower bound of the array is initialized to 0

Step 4: Inserts an element in the queue

Step 5:Deletes an element from the queue

Step 6: Display the queue

Step 7 :Stop

PROGRAM

#include<stdio.h>

#include<math.h>

#define MAX 100/*Declaring the maximum size of the queue*/
void swap(int*,int*);

main()

{

int choice,num,n,a[MAX],data,s,lb;
void display(int[],int);

void insert(int[],int,int,int);
int del_hi_priori(int[],int,int);

n=0;/*Represents number of nodes in the queue*/

lb=0;/*Lower bound of the array is initialized to 0*/

while(1)

{

printf("\n.....MAINMENU ");

printf("\n1.Insert.n");

printf("\n2.Delete.n");

printf("\n3.Display.n");

printf("\n4.Quit.n");

printf("nEnter your choice : ");

scanf("%d",&choice);

switch(choice)

{
case 1:/*choice to accept an element and insert it in the queue*/

printf("Enter data to be inserted : ");

scanf("%d",&data);

insert(a,n,data,lb);

n++;

break;

case2:

s=del_hi_priori(a,n+1,lb);

if(s!=0)

printf("nThe deleted value is : %d n",s);
if(n>0)

n--;

85

break;
case 3:/*choice to display the elements of the queue*/

printf("n");

display(a,n);

break;

case 4:/*choice to exit from the program*/

return;

default:

printf("Invalid choice.n");

}

printf("nn");

}

}
/*This function inserts an element in the queue*/

void insert(int a[],int heapsize,int data,int lb)

{

int i,p;
int parent(int);

if(heapsize==MAX)

{
printf("Queue Is Full!!n");

return;

}
i=lb+heapsize;

a[i]=data;

while(i>lb&&a[p=parent(i)]<a[i])

{
swap(&a[p],&a[i]);

i=p;

}

}
/*This function deletes an element from the queue*/

int del_hi_priori(int a[],int heapsize,int lb)

{
int data,i,l,r,max_child,t;
int left(int);

int right(int);

if(heapsize==1)

{
printf("Queue Is Empty!!n");

return 0;

}
t=a[lb];

swap(&a[lb],&a[heapsize-1]);

i=lb;

heapsize--;

86

while(1)

{

if((l=left(i))>=heapsize)

break;

if((r=right(i))>=heapsize)

max_child=l;

else

max_child=(a[l]>a[r])?l:r;

if(a[i]>=a[max_child])

break;

swap(&a[i],&a[max_child]);

i=max_child;

}

return t;

}
/*Returns parent index*/

int parent(int i)

{

float p;

p=((float)i/2.0)-1.0;

return ceil(p);

}

/*Returns leftchild index*/
int left(int i)

{

return2*i+1;

}
/*Returns rightchild index*/

int right(inti)

{

return2*i+2;

}

/*This function displays the queue*/
void display(int a[],int n)

{
int i;

if(n==0)

{

printf("Queue Is Empty!!n");
return;

}
for(i=0;i<n;i++)

printf("%d ",a[i]);

printf("n");

}

/*This function is used to swap two elements*/

87

void swap(int*p,int*q)

{

int temp;
temp=*p;

*p=*q;

*q=temp;

}

OUTPUT

.....MAIN MENU.....

1. Insert.

2.Delete.

3.Display.

4.Quit.

Enter your choice : 1

Enter data to be inserted : 52

.....MAIN MENU.....
1.Insert.

2.Delete.

3.Display.

4.Quit.

Enter your choice : 1
Enter data to be inserted : 63

.....MAIN MENU.....
1.Insert.

2.Delete.

3.Display.

4.Quit.

Enter your choice : 1
Enter data to be inserted : 45

.....MAIN MENU.....
1.Insert.

2.Delete.

3.Display.

4.Quit.

Enter your choice : 1

Enter data to be inserted : 2

.....MAIN MENU.....

88

1.Insert.

2.Delete.

3.Display.

4.Quit.

Enter your choice : 1

Enter data to be inserted : 99

.....MAIN MENU.....

1.Insert.

2.Delete.

3.Display.

4.Quit.

Enter your choice : 3
99 63 45 2 52

.....MAIN MENU.....

1.Insert.

2.Delete.

3.Display.

4.Quit.

Enter your choice : 2

The deleted value is : 99

.....MAIN MENU.....

1.Insert.

2.Delete.

3.Display.

4.Quit.

Enter your choice : 3

63 52 45 2

.....MAIN MENU.....

1.Insert.

2.Delete.

3.Display.

4.Quit.

Enter your choice : 2
The deleted value is : 63

.....MAIN MENU.....

1.Insert.

2.Delete.

3.Display.

4.Quit.

Enter your choice : 2

The deleted value is : 52

89

.....MAIN MENU.....

1.Insert.

2.Delete.

3.Display.

4.Quit.

Enter your choice : 3
45 2

.....MAIN MENU.....

1.Insert.

2.Delete.

3.Display.

4.Quit.

Enter your choice : 4

VIVA (PRE & POST LAB) QUESTIONS

1. How to insert a node based on position in a priorityqueue?

2. How to delete a minimum element in priority queue usingheap?

3. In a max-heap, element with the greatest key is always in the whichnode?

4. Heaps are excellent data structures to implement priority queues. Justify thisstatement

5. What do you mean by min-heap andmax-heap.

RESULT

Thus the ‘C’ program to implement priority queue using heaps was executed

successfully.

90

Ex.No:9.1 DEPTH FIRST SEARCH

AIM

To write a C program for implementing the traversal algorithm for Depth first traversal

PRE LAB DISCUSSION

Depth First Traversal (or Search)for a graph is similar to Depth First Traversal of a tree.

The only catch here is, unlike trees, graphs may contain cycles, so we may come to the same node

again. To avoid processing a node more than once, we use a boolean visitedarray.

For example, in the following graph, we start traversal from vertex 2. When we come to vertex 0,

we look for all adjacent vertices of it. 2 is also an adjacent vertex of 0. If we don’t mark visited

vertices, then 2 will be processed again and it will become a non-terminating process. A Depth

First Traversal of the following graph is 2, 0, 1, 3.

ALGORITHM

Step 1: Start from any vertex, say Vi .
Step 2: Vi is visited and then all vertices adjacent to Vi are traversed recursively

using DFS.

Step 3: Since, a graph can have cycles. We must avoid revisiting a node. To do

this, when we visit a vertex V, we mark it visited.

http://en.wikipedia.org/wiki/Depth-first_search
https://www.geeksforgeeks.org/archives/618

91

Step 4: A node that has already been marked as visited should not be selected for

traversal.

Step 5: Marking of visited vertices can be done with the help of a global array
visited[].

Step 6: Array visited[] is initialized to false (0).

PROGRAM

#include<stdio.h>

#include<stdlib.h>

typedef structnode

{

struct node *next;
int vertex;

}node;

node *G[20];
//heads of linked list

int visited[20];

int n;

void read_graph();
//create adjacency list

voidinsert(int,int);

//insert an edge (vi,vj) in te adjacency list

void DFS(int);

void main()

{

int i;

read_graph();

//initialised visited to 0

for(i=0;i<n;i++)

visited[i]=0;

DFS(0);

}

void DFS(int i)

{

node *p;

printf("\n%d",i);

p=G[i];

visited[i]=1;

92

while(p!=NULL)

{

i=p->vertex;

if(!visited[i])
DFS(i);

p=p->next;

}

}

void read_graph()

{

int i,vi,vj,no_of_edges;
printf("Enter number of vertices:");

scanf("%d",&n);

//initialise G[] with a null

for(i=0;i<n;i++)

{
G[i]=NULL;

//read edges and insert them in G[]

printf("Enter number of edges:");
scanf("%d",&no_of_edges);

for(i=0;i<no_of_edges;i++)

{

printf("Enter an edge(u,v):");

scanf("%d%d",&vi,&vj);
insert(vi,vj);

}

}

}

void insert(int vi,int vj)

{

node *p,*q;

//acquire memory for the new node

q=(node*)malloc(sizeof(node));

q->vertex=vj;

q->next=NULL;

//insert the node in the linked list numbervi

93

if(G[vi]==NULL)
G[vi]=q;

else

{
//go to end of the linked list
p=G[vi];

}

}

OUTPUT

while(p->next!=NULL)

p=p->next;

p- >next=q;

VIVA (PRE & POST LAB) QUESTIONS

1. A person wants to visit some places. He starts from a vertex and then wants to visit every

vertex till it finishes from one vertex, backtracks and then explore other vertex fromsame

vertex. What algorithm he shoulduse?

2. When the Depth First Search of a graph isunique?

3. In Depth First Search, how many times a node isvisited?

4. Give the applications ofDFS.

5. Depth First Search is equivalent to which of the traversal in the BinaryTrees?

RESULT

Thus the C program for implementing the traversal algorithm for Depth first traversal

was implemented successfully.

94

Ex.No:9.2 BREADTH FIRST SEARCH

AIM

To write a C program for implementing the traversal algorithm for Breadth first traversal

PRE LAB DISCUSSION

Breadth First Traversal (or Search) for a graph is similar to Breadth First Traversal of a

tree. The only catch here is, unlike trees, graphs may contain cycles, so we may come to the same

node again. To avoid processing a node more than once, we use a boolean visited array. For

simplicity, it is assumed that all vertices are reachable from the starting vertex.

For example, in the following graph, we start traversal from vertex 2. When we come to

vertex 0, we look for all adjacent vertices of it. 2 is also an adjacent vertex of 0. If we don’t mark

visited vertices, then 2 will be processed again and it will become a non-terminating process. A

Breadth First Traversal of the following graph is 2, 0, 3, 1.

PRE LAB QUESTIONS

1. What isBFS

2. What is the application ofBFS?

3. How does BFSwork?

4. Breadth First Search is equivalent to which of the traversal in the BinaryTrees?

5. What is advantages and disadvantages inBFS?

ALGORITHM

Step 1: Start from any vertex, say Vi .

Step 2: Vi is visited and then all vertices adjacent to Vi are traversed recursively
using BFS.

Step 3: avoid revisiting a node. To do this, when we visit a vertex V, we mark it
visited.

Step 4: A node that has already been marked as visited should not be selected for
traversal.

Step 5: Marking of visited vertices can be done with the help of a global array
visited [].

Step 6: Array visited [] is initialized to false (0).

http://en.wikipedia.org/wiki/Breadth-first_search

95

PROGRAM

#include<stdio.h>
#include<stdlib.h>

#define MAX 100

#define initial 1

#define waiting 2

#define visited 3

int n;

intadj[MAX][MAX];
intstate[MAX];

void create_graph();

void BF_Traversal();

void BFS(intv);

int queue[MAX], front = -1,rear = -1;

void insert_queue(int vertex);

int delete_queue();
int isEmpty_queue();

int main()

{

create_graph();

BF_Traversal();

return 0;

}

void BF_Traversal()

{

int v;

for(v=0; v<n; v++)

state[v] = initial;

printf("Enter Start Vertex for BFS: \n");

scanf("%d", &v);

BFS(v);

}

void BFS(int v)

{

int i;

96

insert_queue(v);

state[v] = waiting;

while(!isEmpty_queue())

{

v = delete_queue();

printf("%d ",v);

state[v] =visited;

for(i=0; i<n;i++)

{

if(adj[v][i] == 1 && state[i] == initial)

{

insert_queue(i);
state[i] = waiting;

}

}

}

printf("\n");

}

void insert_queue(int vertex)

{

if(rear == MAX-1)
printf("Queue Overflow\n");

else

{

if(front == -1)
front = 0;

rear = rear+1;

queue[rear] = vertex ;

}

}

int isEmpty_queue()

{

if(front == -1 || front > rear)

return 1;

else

return 0;

}

intdelete_queue()

{

intdelete_item;

97

if(front == -1 || front > rear)

{

printf("Queue Underflow\n");
exit(1);

}

delete_item = queue[front];
front = front+1;

return delete_item;

}

void create_graph()

{

int count,max_edge,origin,destin;

printf("Enter number of vertices : ");

scanf("%d",&n);

max_edge = n*(n-1);

for(count=1; count<=max_edge; count++)

{

printf("Enter edge %d(-1 -1 to quit) : ",count);

scanf("%d %d",&origin,&destin);

if((origin == -1) && (destin == -1))
break;

if(origin>=n || destin>=n || origin<0 || destin<0)

{

printf("Invalid edge!\n");

count--;

}

else

{

adj[origin][destin] = 1;

}

}

}

98

OUTPUT

VIVA (PRE & POST LAB) QUESTIONS

1. Which data structure is used in standard implementation of Breadth First Search?

2. A person wants to visit some places. He starts from a vertex and then wants to visit every
place connected to this vertex and so on. What algorithm he shoulduse?

3. In BFS, how many times a node isvisited?
4. Regarding implementation of Breadth First Search using queues, what is the maximum

distance between two nodes present in thequeue?

5. When the Breadth First Search of a graph isunique?

RESULT

Thus the C program for implementing the traversal algorithm for Breadth first traversal was

implemented successfully

99

Ex.No:10 APPLICATIONS OF GRAPHS

AIM

To write a C program to implement the shortest path using dijkstra’s algorithm.

PRE LAB DISCUSSION

Dijkstra's algorithm has many variants but the most common one is to find the shortest paths

from the source vertex to all other vertices in the graph.

Steps:

 Set all vertices distances = infinity except for the source vertex, set the sourcedistance

= 0.

 Push the source vertex in a min-priority queue in the form (distance , vertex), as the
comparison in the min-priority queue will be according to verticesdistances.

 Pop the vertex with the minimum distance from the priority queue (at first thepopped
vertex =source).

 Update the distances of the connected vertices to the popped vertex in case of "current
vertex distance + edge weight < next vertex distance", then push thevertex

with the new distance to the priority queue.

 If the popped vertex is visited before, just continue without usingit.

 Apply the same algorithm again until the priority queue isempty.

ALGORITHM

Step 1:Select the source node also called the initial node
Step 2: Define an empty set N that will be used to hold nodes to which a shortest

path has been found.

Step 3: Label the initial node with , and insert it intoN.

Step 4: Repeat Steps 5 to 7 until the destination node is in N or there are no more
labelled nodes in N.

Step 5: Consider each node that is not in N and is connected by an edge from
the newly inserted node.

Step 6. (a) If the node that is not in N has no label then SET the label of the node = the
label of the newly inserted node + the length of the edge.

100

(b) Else if the node that is not in N was already labelled, then SET its new

label = minimum

Step 7: Pick a node not in N that has the smallest label assigned to it and add it
to N.

PROGRAM

#include "stdio.h"

#include "conio.h"

#define infinity 999

void dij(int n,int v,int cost[10][10],int dist[])

{

int i,u,count,w,flag[10],min;

for(i=1;i<=n;i++)

flag[i]=0,dist[i]=cost[v][i];

count=2;

while(count<=n)

{
min=99;

for(w=1;w<=n;w++)

if(dist[w]<min && !flag[w])

min=dist[w],u=w;

flag[u]=1;

count++;

for(w=1;w<=n;w++)

if((dist[u]+cost[u][w]<dist[w]) && !flag[w])

dist[w]=dist[u]+cost[u][w];
}

}

void main()

{
int n,v,i,j,cost[10][10],dist[10];

clrscr();

printf("\n Enter the number of nodes:");

scanf("%d",&n);

printf("\n Enter the cost matrix:");

for(i=1;i<=n;i++)

for(j=1;j<=n;j++)

{
scanf("%d",&cost[i][j]);

if(cost[i][j]==0)

cost[i][j]=infinity;

}
printf("\n Enter the source matrix:");

scanf("%d",&v);

101

dij(n,v,cost,dist);
printf("\n Shortest path:\n");

for(i=1;i<=n;i++)

if(i!=v)
printf("%d->%d,cost=%d\n",v,i,dist[i]);

getch();

}
OUTPUT

VIVA (PRE & POST LAB) QUESTIONS

1. How to find the adjacency matrix?

2. Which algorithm solves the single pair shortest pathproblem?

3. How to find shortest distance from source vertex to targetvertex?
4. What is the maximum possible number of edges in a directed graph with no self loops

having 8vertices?

5. Does Dijkstra’s Algorithm work for both negative and positiveweights?

RESULT

Thus the C program to implement shortest path was completed successfully.

102

Ex.No:11.1 LINEARSEARCH

AIM

To write a C program to implement the concept of linear search.

PRE LAB DISCUSSION

Linear search is a very simple search algorithm. In this type of search, a sequential search

is made over all items one by one. Every item is checked and if a match is found then that

particular item is returned, otherwise the search continues till the end of the data collection.

To search the number 33 in the array given below, linear search will go step by step in a
sequential order starting from the first element in the given array.

ALGORITHM

Step 1: Start with the first item in the list.

Step 2: Compare the current item to thetarget

Step 3: If the current value matches the target then we declare victory and stop.

Step 4: If the current value is less than the target then set the current item to be the next

item and repeat from 2.

Step 5: Stop.

103

PROGRAM

#include<stdio.h>

#include<conio.h>

void main()

{

int arr[20];

int i,size,sech;
printf("\n\t-- Linear Search --\n\n");

printf("Enter total no. of elements : ");

scanf("%d",&size);

for(i=0; i<size; i++)

{

printf("Enter %d element : ",i+1);
scanf("%d",&arr[i]);}

printf("Enter the element to be searched:");

scanf("%d",&sech);

for(i=0; i<size; i++)

{

if(sech==arr[i])

{

printf("Element exits in the list at position : %d",i+1);
break;

}

}getch();

}

OUTPUT

-- Linear Search --

Enter total no. of elements : 5

Enter 1 element : 10

Enter 2 element :4

Enter 3 element :2

Enter 4 element : 17

Enter 5 element : 100

Enter the element to be searched: 17

Element exits in the list at position : 4

104

VIVA (PRE & POST LAB) QUESTIONS

1. Given a list of numbers a[] = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21}. Search

for value 19 using linear search technique.

2. During linear search, when the record is present in first position then how many
comparisons aremade

3. Is a linear search faster than a binarysearch?

4. What is the best case for linearsearch?

5. During linear search, when the record is present in last position then how many
comparisons aremade?

RESULT

Thus the C program to implement linear search was executed successfully.

105

Ex.No:11.2 BINARY SEARCH

AIM

To write a C program to implement the concept of binary search.

PRE LAB DISCUSSION

Search a sorted array by repeatedly dividing the search interval in half. Begin with an

interval covering the whole array. If the value of the search key is less than the item in the middle

of the interval, narrow the interval to the lower half. Otherwise narrow it to the upper half.

Repeatedly check until the value is found or the interval isempty.

ALGORITHM

Step 1: Set the list to be the whole list
Step 2: Find the middle value of the list

Step 3: If the middle value is equal to the target then we declare victory and stop.
Step 4: If the middle item is less than the target, then we set the new list to be the upper

half of the old list and we repeat from step 2 using the new list.

Step 5: If the middle value is greater than the target, then we set the new list to be the

bottom half of the list, and we repeat from step 2 with the new list.

Step 6: Stop.

106

PROGRAM

#include<stdio.h>

#include<conio.h>

void main(){

int n,i,search,f=0,low,high,mid,a[20];
clrscr();

printf("Enter the nvalue:");

scanf("%d",&n);

for(i=1;i<=n;i++){

printf("Enter the number in ascending order a[%d]=",i);

scanf("%d",&a[i]);

}
printf("Enter the search element:");
scanf("%d",&search);

low=1;

high=n;

while(low<=high){

mid=(low+high)/2;

if(search<a[mid]){

high=mid-1;

}
elseif(search>a[mid]){

low=mid+1;

}

else{
f=1;

printf("obtained in the position %d:",mid);
getch();

exit();

}

}

if(f==0)

printf("not present");

getch();

}
OUTPUT

Enter the n value:5
Enter the number in ascending order a[1]=10

Enter the number in ascending order a[2]=8

Enter the number in ascending order a[3]=9

Enter the number in ascending order a[4]=24

Enter the number in ascending order a[5]=1

Enter the search element:9

obtained in the position 3:

107

VIVA (PRE & POST LAB) QUESTIONS

1. Given an array arr = {5,6,77,88,99} and key = 88; How many iterations are done until the

element isfound?

2. Which technique of searching an element in an array would you prefer touse?

3. What does the following piece of codedo?

{

f=1;

printf("obtained in the position %d:",mid);

}

4. What is the best case for binarysearch?

RESULT

Thus the C program to implement the binary search was completed successfully.

108

Ex.No:11.3 BUBBLE SORT

AIM

To write a C program to implement the concept of bubble sort.

PRE LAB DISCUSSION

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the

adjacent elements if they are in wrong order.

Example:

First Pass:

(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps

since 5 > 1.

(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 >4

(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 >2

(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order (8 > 5), algorithm

does not swap them.

Second Pass:

(1 4 2 5 8) –> (1 4 2 5 8)

(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs

one whole pass without any swap to know it is sorted.

Third Pass:

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

109

ALGORITHM

Step 1: Start.

Step 2: Repeat Steps 3 and 4 for i=1 to 10
Step 3: Set j=1

Step 4: Repeat while j<=n

(A) if a[i] <a[j]

Then interchange a[i] and a[j]

[End of if]

(B) Set j = j+1

[End of InnerLoop]

[End of Step 1 Outer Loop]

Step 5: Stop.
PROGRAM

#include<stdio.h>

#include<conio.h>

void main(){

int n, i, j, temp , a[100];

printf("Enter the total integers you want to enter (make it less than 100):\n");
scanf("%d",&n);

printf("Enter the %d integer array elements:\n",n);
for(i=0;i<n;i++){

scanf("%d",&a[i]);

}

for(i=0;i<n-1;i++){

for(j=0;j<n-i-1;j++){

if(a[j+1]<a[j]){

temp = a[j];

a[j] = a[j+1];

a[j+1] =temp;

}

}

}

printf("The sorted numbers are:");

110

for(i=0;i<n;i++){

printf("%3d",a[i]);

}

getch();

}

OUTPUT

Enter the total integers you want to enter (make it less than 100):

5

Enter the 5 integer array elements:

99

87

100

54

150

The sorted numbers are: 54 87 99 100 150

VIVA (PRE & POST LAB) QUESTIONS

1. Sort the elements 77, 49, 25, 12, 9, 33, 56, 81 using bubblesort

2. The given array is arr = {1,2,4,3}. Bubble sort is used to sort the array elements. How
many iterations will be done to sort thearray?

3. The given array is arr = {1,2,4,3}. Bubble sort is used to sort the array elements. How

many iterations will be done to sort the array with improvisedversion?

4. What does the following piece of codedo?
if(a[j+1]<a[j])

{
temp = a[j];

a[j] = a[j+1];

a[j+1] =temp;

}

RESULT

Thus the C program for the concept of bubble sort was implemented successfully.

111

Ex.No:11.4 INSERTION SORT

AIM

To write a C program to implement the concept of insertionsort.

PRE LAB DISCUSSION

Insertion sort is an in-place comparison-based sorting algorithm. Here, a sub-list is

maintained which is always sorted. For example, the lower part of an array is maintained to be

sorted. An element which is to be inserted in this sorted sub-list, has to find its appropriate place

and then it has to be inserted there.

Insertion sort is a simple sorting algorithm that works the way we sort playing cards in

our hands.

ALGORITHM

Step 1: Start with an empty left hand [sorted array] and the cards face down on the table

[unsorted array].

Step 2:Then remove one card [key] at a time from the table [unsorted array], and insert it

into the correct position in the left hand [sorted array].

Step 3: To find the correct position for the card, we compare it with each of the cards

already in the hand, from right to left.

Step 4:Stop

112

PROGRAM

#include<stdio.h>

void inst_sort(int[]);

void main()

{

int num[5],count;
printf("\n enter the five elements to sort:\n");

for(count=0;count<5;count++)

scanf("%d",&num[count]);

inst_sort(num); /*function call for insertion sort*/

printf("\n\n elements after sorting:\n"); for(count=0;count<5;count++)

printf("%d\n",num[count]);

}

void inst_sort(int num[])

{ /* function definition for insertion sort*/

int i,j,k;

for(j=1;j<5;j++) { k=num[j];

for(i=j-1;i>=0&&k<num[i];i--)

num[i+1]=num[i];

num[i+1]=k;

}}

OUTPUT

enter the five elements to sort:

5 4 3 2 1

elements after sorting:

1

2

3

4

5

VIVA (PRE & POST LAB) QUESTIONS

1. Which sorting algorithms in its typical implementation gives best performance when applied
on an array which is sorted or almost sorted (maximum 1 or two elements aremisplaced).

2. Which sorting algorithm will take least time when all elements of input array are identical?
3.Mention the uses of insertionsort.

4. Consider an array of elements arr[5]= {5,4,3,2,1} , what are the steps of insertions done while

doing insertion sort in thearray.

RESULT

Thus the C program to implement insertion sort was completed successfully.

113

Ex.No:12.1 HASHING WITH SEPARATE CHAINING

AIM

To write a C program to implement the concept of hashing using separate chaining.

PRE LAB DISCUSSION

In hashing there is a hash function that maps keys to some values. But these hashing

function may lead to collision that is two or more keys are mapped to same value. Chain hashing

avoids collision. The idea is to make each cell of hash table point to a linked list of records that

have same hash functionvalue.

Let’s create a hash function, such that our hash table has ‘N’ number of buckets. To

insert a node into the hash table, we need to find the hash index for the given key. And it could be

calculated using the hashfunction.

ALGORITHM

Step 1:Start
Step 2:Create Table size

Step 3: Create hash function

Step 4: To insert a node into the hash table, we need to find the hash index for the given

key. And it could be calculated using the hash function.

Example: hashIndex = key % noOfBuckets

Insert: Move to the bucket corresponds to the above calculated hash index and insert the new

node at the end of the list.

http://www.geeksforgeeks.org/hashing-data-structure/

114

Step 5: Display hash entry.

Step 6: Stop

PROGRAM

#include <stdio.h>

#include <stdlib.h>

#define TABLE_SIZE 3

struct node

{

int data;

struct node *next;

};

struct node *head[TABLE_SIZE]={NULL},*c,*p;
void insert(int i,int val)

{

struct node * newnode=(struct node *)malloc(sizeof(struct node));

newnode->data=val;

newnode->next = NULL;

if(head[i] == NULL)

head[i] = newnode;

else

{
c=head[i];

while(c->next != NULL)

c=c->next;

c->next=newnode;

}

}

void display(int i)

{

if(head[i] == NULL)

{

printf("No Hash Entry");

return;

}

else

115

{

}

}

main()

{

for(c=head[i];c!=NULL;c=c->next)

printf("%d->",c->data);

int opt,val,i;

while(1)

{
printf("\nPress 1. Insert\t 2. Display \t3. Exit \n");

scanf("%d",&opt);

switch(opt)

{

case 1:
printf("\nenter a value to insert into hash table\n");

scanf("%d",&val);

i=val%TABLE_SIZE;
insert(i,val);

break;

case 2:

for(i=0;i<TABLE_SIZE;i++)

{

}
OUTPUT

}

break;
case 3: exit(0);

}

printf("\nentries at index %d\n",i);

display(i);

116

VIVA (PRE & POST LAB) QUESTIONS

1. If several elements are competing for the same bucket in the hash table, what is itcalled?

2. How to insert a node in hashtable?

3. What is sizeof()function?

4. How to delete a node from hashtable.

RESULT

Thus the C program to implement hashing using separate chaining was completed

successfully.

117

Ex.No:12.2 HASHING WITH OPEN ADDRESSING

AIM

To write a C program to implement the concept of hashing using linear probing in open

addressing.

PRE LAB DISCUSSION

Like separate chaining, open addressing is a method for handling collisions. In Open Addressing,

all elements are stored in the hash table itself. So at any point, size of the table must be greater than or equal

to the total number of keys (Note that we can increase table size by copying old data ifneeded).

Insert(k): Keep probing until an empty slot is found. Once an empty slot is found, insert k.

Search(k): Keep probing until slot’s key doesn’t become equal to k or an empty slot isreached.

Delete(k): Delete operation is interesting. If we simply delete a key, then search may fail. So

slots of deleted keys are marked specially as “deleted”.

Insert can insert an item in a deleted slot, but the search doesn’t stop at a deleted slot.
Open Addressing is done following ways:

a) Linear Probing: In linear probing, we linearly probe for next slot. For example, typical gap

between two probes is 1 as taken in below example also. let

hash(x) be the slot index computed using hash function and S be the tablesize

If slot hash(x) % S is full, then we try (hash(x) + 1) % S

If (hash(x) + 1) % S is also full, then we try (hash(x) + 2) % S

If (hash(x) + 2) % S is also full, then we try (hash(x) + 3) % S

Let us consider a simple hash function as “key mod 7” and sequence of keys as 50, 700, 76, 85,
92, 73, 101.

118

Clustering: The main problem with linear probing is clustering, many consecutive elements

form groups and it starts taking time to find a free slot or to search anelement.

b) Quadratic Probing We look for i2‘th slot in i’th iteration.

let hash(x) be the slot index computed using hashfunction.

If slot hash(x) % S is full, then we try (hash(x) + 1*1) %S

If (hash(x) + 1*1) % S is also full, then we try (hash(x) + 2*2) % S

If (hash(x) + 2*2) % S is also full, then we try (hash(x) + 3*3) % S

c) Double HashingWe use another hash function hash2(x) and look for i*hash2(x) slot in i’th
rotation.

let hash(x) be the slot index computed using hash function.

If slot hash(x) % S is full, then we try (hash(x) + 1*hash2(x)) % S

If (hash(x) + 1*hash2(x)) % S is also full, then we try (hash(x) + 2*hash2(x)) % S

If (hash(x) + 2*hash2(x)) % S is also full, then we try (hash(x) + 3*hash2(x)) % S

https://www.geeksforgeeks.org/double-hashing/

119

ALGORITHM

Step 1: Start

Step 2: Create hash table and hash function

Step 3: Assigning INT_MIN indicates that cell is empty

Step4: INT_MIN and INT_MAX indicates that cell is empty. So if cell is empty loop will

break and goto bottom of the loop to insert element. If table is full we should

break, if not check this, loop will go to infiniteloop.

Step 5: If the hash element is empty, the deletion has immediately failed.

Otherwise, check for a match between the target and data key

o If there is a match, delete the hash element (and set theflag)

o If there is no match, probe the table untileither:

 An match is found between the target key and the data's key; the

data can be deleted, and the deleted flagset.

 A completely empty hash element isfound

Step 6: If the hash element is empty, the search has immediately failed.

Otherwise, check for a match between the search and data key

o If there is a match, return thedata.

o If there is no match, probe the table untileither:

 An match is found between the search and datakey

 A completely empty hash element isfound.

Step 7: Stop

PROGRAM

#include<stdio.h>

#include<limits.h>

void insert(int ary[],int hFn, int size){

int element,pos,n=0;

printf("Enter key element to insert\n");

scanf("%d",&element);

pos = element%hFn;

120

while(ary[pos]!= INT_MIN)

{

// INT_MIN and INT_MAX indicates that cell is empty. So if cell is empty loop will

break and goto bottom of the loop to insert element

if(ary[pos]== INT_MAX)

break;
pos = (pos+1)%hFn;

n++;

if(n==size)

break; // If table is full we should break, if not check this, loop will go toinfinite

loop.

}

if(n==size)

printf("Hash table was full of elements\nNo Place to insert this element\n\n");
else

ary[pos]=element; //Insertingelement

}

void delete(int ary[],int hFn,int size)

{

/* very careful observation required while deleting. To understand code of thisdelete

function see the note at end of the program*/

int element,n=0,pos;

printf("Enter element to delete\n");

scanf("%d",&element);

pos = element%hFn;

while(n++ != size){

if(ary[pos]==INT_MIN){
printf("Element not found in hash table\n");
break;

}

else if(ary[pos]==element)

{
ary[pos]=INT_MAX;

printf("Element deleted\n\n");

break;

}

else

{

pos = (pos+1) % hFn;

}

}

121

if(--n==size)

printf("Element not found in hash table\n");

}

void search(int ary[],int hFn,int size){
int element,pos,n=0;

printf("Enter element you want to search\n");

scanf("%d",&element);

pos = element%hFn;

while(n++ != size){

if(ary[pos]==element){
printf("Element found at index %d\n",pos);
break;

}

else

if(ary[pos]==INT_MAX ||ary[pos]!=INT_MIN)
pos = (pos+1) %hFn;

}

if(--n==size) printf("Element not found in hash table\n");

}

void display(int ary[],int size){
int i;

printf("Index\tValue\n");

for(i=0;i<size;i++)

printf("%d\t%d\n",i,ary[i]);

}

int main(){

int size,hFn,i,choice;

printf("Enter size of hash table\n");

scanf("%d",&size);

int ary[size];

printf("Enter hash function [if mod 10 enter 10]\n");

scanf("%d",&hFn);

for(i=0;i<size;i++)

ary[i]=INT_MIN; //Assigning INT_MIN indicates that cell is empty

122

do{

printf("Enter your choice\n");

printf(" 1-> Insert\n 2-> Delete\n 3-> Display\n 4-> Searching\n 0-> Exit\n");
scanf("%d",&choice);

switch(choice){

case 1:

insert(ary,hFn,size);

break;

case 2:
delete(ary,hFn,size);

break;

case 3:
display(ary,size);

break;

case 4:

search(ary,hFn,size);
break;

default:
printf("Enter correct choice\n");

break;

}

}while(choice);

return 0;

}

OUTPUT

Enter size of hash table

10

Enter hash function [if mod 10 enter 10]

10

Enter your choice

1-> Insert

2-> Delete

3->Display

4->Searching
0->Exit

1
Enter key element to insert

12

Enter your choice

1-> Insert

123

2-> Delete

3->Display

4->Searching
0->Exit

1
Enter key element to insert

22

Enter your choice

1-> Insert

2-> Delete

3->Display

4->Searching

0->Exit

1
Enter key element to insert

32
Enter your choice

1-> Insert

2-> Delete

3- >Display
4- >Searching

0->Exit

3

Index Value

0 -2147483648

1 -2147483648

2 12

3 22

4 32

5 -2147483648

6 -2147483648

7 -2147483648

8 -2147483648
9 -2147483648

Enter your choice
1-> Insert

2-> Delete
3->Display

4->Searching
0->Exit

2
Enter element to delete

12

Element deleted

124

Enter your choice

1-> Insert

2-> Delete
3->Display

4->Searching
0->Exit

4
Enter element you want to search

32

Element found at index 4

Enter your choice

1- >Insert
2- >Delete
3->Display

4->Searching
0->Exit

0

VIVA (PRE & POST LAB) QUESTIONS

1. What is hashfunction?

2. How to insert an element in hash table using linearprobing?

3. How to delete an element from hash table using linearprobing?

4. What isindex?

5. How to search an element in hash table using linearprobing?

RESULT

Thus the C program to implement hashing using linear probing in open addressing was

completed successfully.

125

TOPIC BEYOND SYLLABUS

126

Ex.No:13 IMPLEMENTATION DOUBLY LINKEDLIST

AIM

To write a C program to implement doubly linked list with Insert, Delete and Display

operations.

PRE LAB DISCUSSION

Doubly linked list is a sequence of elements in which every node has link to its previous

node and next node.

 Traversing can be done in both directions and displays the contents in the wholelist.

Link1 field stores the address of the previous node and Link2 field stores the address of the

next node. The Data Item field stores the actual value of that node. If we insert a data into the

linked list, it will be look like asfollows:

In doubly linked list contains three fields. In this, link of two nodes allow traversal of the

list in either direction. There is no need to traverse the list to find the previous node. We can

traverse from head to tail as well as tail to head.

127

ALGORITHM

Step 1: Start

Step 2: Creation: Get the number of elements to create the list. Then create the node having

the Structure: BLINK, DATA , FLINK and store the elements in Data field. Link them

together to form a doubly linked list.

Step 3: Insertion: Get the number to be Inserted, create a new node to store the value.

Search the list and insert the node in its right position.

Step 4: Deletion: Get the number to be deleted. Search the list from the beginning and try

to locate node p with DATA. If found then delete the node.

Step 5: FLINK P’s previous node to P’s Next node. BLINK P’s Next node to P’s Previous

node else display “Data notFound”.

Step 6: Display: Display all the nodes in the list.

Step 7: Stop.

PROGRAM

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

#define NULL 0

typedef struct list

{

int no;

struct list *next;

struct list *pre;

128

}LIST;

LIST *p,*t,*h;

void create(void);

void insert(void);

void delet(void);

void display (void);

int j,pos,k=1,count;

void main()

{

int n,i=1,opt;

clrscr();

p = NULL;

printf("Enter the no of nodes :\n ");

scanf("%d",&n);

count = n;

while(i <= n)

{ create();

i++;

}

printf("\nEnter your option:\n");

printf("1.Insert \t 2.Delete \t 3.Display \t 4.Exit\n");

do

{

scanf("%d",&opt);

switch(opt){

case 1:

insert();

count++;

break;

case 2:

129

delet();

count--;

if (count == 0)

{

printf("\n List is empty\n");

}

break;

case 3:

printf("List elements are:\n");

display();

break;

}

printf("\nEnter your option \n");

}while(opt != 4);

getch();

}

void create ()

{

if(p == NULL)

{

p = (LIST *) malloc (sizeof (LIST));

printf("Enter the element:\n");

scanf("%d",&p->no);

p->next = NULL;

p->pre = NULL;

h = p;

}

else

{

130

t= (LIST *) malloc (sizeof(LIST));

printf("\nEnter the element");

scanf("%d",&t->no);

t->next = NULL;

p->next = t;

t->pre = p;

p = t;

}

}

void insert()

{

t=h;

p = (LIST *) malloc (sizeof(LIST));

printf("Enter the element to be insrted:\n");

scanf("%d",&p->no);

printf("Enter the position to insert:\n");

scanf("%d",&pos);

if(pos == 1)

{

h = p;

h->next = t;

t->pre = h;

h->pre = NULL;

}

else

{

for(j=1;j<(pos-1);j++)

t = t->next;

p->next = t->next;

t->next = p;

p->pre = t;

131

}

}

void delete()

{

printf("Enter the position to delete:\n");

scanf("%d",&pos);

if(pos == 1)

{

h = h->next;

h->pre = NULL;

}

else

{

t=h;

for(j=1;j<(pos-1);j++)

t = t->next;

t->next = t->next->next;

t->next->pre = t;

free(t->next);

}

}

void display()

{

t= h;

while(t->next != NULL)

{

printf("%d\n",t->no);

t = t->next;

}

printf("%d",t->no);

}

132

OUTPUT

Enter the no of nodes: 3

Enter the element3

Enter youroption:

1. Insert 2.Delete 3.Display4.Exit

3

List elements are:

1 2 3

Enter your option 1

Enter the element to be inserted:22

Enter the position to insert:1

Enter your option 3

List elements are:

22 1 2 3

Enter your option 1

Enter the element to be inserted:

11

Enter the position to insert:5

Enter your option 3

List elements are:

22 1 2 3 11

Enter your option

2

Enter the position todelete:

1

Enter your option

3

List elements are:

1 2 3 11

Enter your option 4

133

VIVA (PRE & POST LAB) QUESTIONS

1. How will you traverse double linkedlist?

2. Give the structure of node in a doubly linkedlist.

3. Specify the steps to insert an element in Doubly LinkedList.

4. How to delete an element from a doubly linkedlist.

RESULT

Thus the C program to implement Doubly Linked List was completed successfully.

