SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

I SEMESTER

1912101–ADVANCED DATASTRUCTURES & ALGORITHM

Academic Year 2019 – 20 ODD

Prepared by

Dr.Karthikeyan.L,AP(sel.Gr)/CSE

SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur-603203

DEPARTMENT OF COMPUTERSCIENCE & ENGINEERING

OUESTION BANK

SUBJECT : 1912101-ADVANCED DATASTRUCTURES & ALGORITHM

SEM/YEAR: I-M.E/I

UNIT I DESIGN OF EFFICIENT ALGORITHMS

Data structures: lists, queues, and stacks - Set representations - Graphs-Trees - Recursion -Divide-andconquer - Balancing -Dynamic programming -Sorting and Order Statistics - The sorting problem -Radix sorting -Sorting by comparisons – Heap sort-an O(n log n) comparison sort – Quicksort-an O(n log n) expected time sort.

	PART-A		
Q.No	Questions	BT Level	Competence
1	Express the term data structures.	BTL 2	Understand
2	Identify the types of data structures.	BTL 4	Analyze
3	List the advantages of data structures.	BTL 1	Remember
4	Tabulate the difference between stack and queue.	BTL 1	Remember
5	Distinguish graph and tree.	BTL 2	Understand
6	Interpret the various applications of stack.	BTL 2	Understand
7	Differentiate Recursion from normal function.	BTL 4	Analyze
8	Give the various sorting techniques.	BTL 2	Understand
9	What is meant by Recursion?	BTL 1	Remember
10	Apply any of the implementation strategy of stack.	BTL 3	Apply
11	Compose on the term set representation.	BTL 6	Create
12	Measure O (n log n) comparison strategy.	BTL 5	Evaluate
13	Formulat e the equation to calculate running time of a program.	BTL 6	Create
14	State the various set representations.	BTL 1	Remember

15	Show the narration of dynamic programing.		BTL 3	Apply
16	Define graph.		BTL	Remember
17	Name the different types sorting techniques.		BTL 1	Remember
18	Compare heap sort and merge sort.		BTL 4	Analyze
19	Illustrate on comparison sort.		BTL 3	Apply
20	Evaluate an algorithm to perform any of the traversal.		BTL 5	Evaluate
	PART B		1	
1	i).Summarize on different types of data structuresii). Explain the various ADTs.	(7) (6)	BTL 5	Evaluate
2	List the various set representations in data structures.	(13)	BTL 1	Remember
3	i).Define deterministic data structures.ii).Describe ADT elaborate stack using it.	(4) (9)	BTL 1	Remember
4.	i). Identify the various operations in set representation.ii). Examine the applications of stack.	(6) (7)	BTL 1	Remember
5	i).Discuss the Queue ADT.ii). Explain the concept of Recursion	(7)	BTL 2	Understand
6	Differentiate the various operations in stack and Queue	(0)	BTL 4	Analyze
7	Implement Tree traversal using an algorithm.		BTL 3	Apply
8	Recall the different types of trees along with example	(13)	BTL 2	Understand
9	i).Formulate the Graph Traversal Techniques.	(9)	BTL	Create
	ii).Compose any application of graph.	(4)	6	
10	Implement the Divide and Conquer strategy using an algorithm.		BTL 3	Apply
11	Find the various sorting techniques write an elaboration for	(13)	BTL 1	Remember
	Radix sort			
12	Compare and Contrast Heap sort and Quick sort		BTL 4	Analyze
13	Analyze theO(n log n) for any of the sorting techniques.	(13)	BTL 4	Analyze
14	With suitable examples, Summarize on time sort on a quicksort.	(13)	BTL 2	Understand

	PART C		
1	Evaluate Heap sort with your own example.	BTL	Evaluate
		5	
2	Integrate the sorting problems and analyze radix sort.	BTL	Create
		6	
3	Analyze on the applications of stacks and queues.	BTL	Create
		6	
4	Explain the dynamic programing with a suitable	BTL5	Analyze
	implementation.		

UNIT II DATA STRUCTURES FOR SET MANIPULATION PROBLEMS

Fundamental operations on sets - Hashing - Binary search - Binary search trees - Optimal binary search trees - A simple disjoint-set union algorithm. - Tree structures for the UNION-FIND problem - Balanced tree schemes - Dictionaries and priority queues - Merge able heaps – Concatenable queues. - Partitioning

	PART-A					
Q.No	Questions	BT Level	Competence			
1	Apply the hashing technique to implement.	BTL 3	Apply			
2	Analyze the fundamental operations of set.	BTL 4	Analyze			
3	Construct the Binary Tree.	BTL 3	Apply			
4	List the features of Binary search Tree.	BTL 1	Remember			
5	What is optimal binary search?	BTL 1	Remember			
6	Compare and Contrast Binary Tree and Binary search Tree.	BTL 2	Understand			
7	Illustrate a simple disjoint-set union algorithm.	BTL 3	Apply			
8	Perform traversal in Binary tree	BTL 4	Analyze			
9	Contrast heaps and queues with examples.	BTL 2	Understand			
10	Develop set union algorithm.	BTL 6	Create			
11	Name the dictionaries.	BTL 1	Remember			
12	Formulate the steps of merge able heaps.	BTL 6	Create			
13	Evaluate priority Queues.	BTL 5	Evaluate			
14	Define concatenable queues.	BTL 1	Remember			
15	Express the term partitioning.	BTL 2	Understand			

4.6			DTI	
16	State UNION-FIND problem.		BTL 1	Remember
17	Interpret merge able heaps and concatenable queues.		BTL 2	Understand
18	Analyze on priority Queues.		BTL 4	Analyze
19	Label the algorithm for disjoint-set.		BTL 1	Remember
20	Create a binary search tree.		BTL 5	Evaluate
	PART-B		5	
1	i). Discuss fundamental operations of sets.	(6)	BTL	Understand
	ii).Express an example for the operations on set.	(7)	2	
2	Illustrate Hashing technique? Give algorithm and example.	(13)	BTL 3	Apply
3	Describe about basic concepts of Binary Tree	(13)	BTL 1	Remember
4	Develop algorithm to implement Binary Search Tree	(13)	BTL 6	Create
5	i) . State the optimal binary search tree.	(6)	BTL	Remember
	ii).Develop an algorithm for the same.	(7)	1	
6	i). Express the features of Binary Search Tree.	(8)	BTL	Understand
	ii).Differentiate Binary Tree and Binary Search Tree	(7)	2	
7	Point out the steps in disjoint-set union algorithm.	(13)	BTL 4	Analyze
8	i). Examine tree structure for UNION -FIND problem	(8)	BTL	Remember
	ii).Give an example for the same.	(5)	1	
9	Tabulate various balanced Tree schemes.		BTL 1	Remember
10	i).Design an algorithm for balanced tree schemes	(7)	BTL	Understand
	ii).Discuss on priority queues.	(6)	2	
11	i). Explain the algorithm for priority queues.	(6)	BTL	Evaluate
	ii).Explain about Merge able heaps	(7)	5	
12	Analyze on the following.	~ /	BTL	Analyze
	i). Concatenable queues	(6)	4	
	ii).Partitioning.	(7)		
13	Arrange the following G,P,K,L,A,B,M,O,Z,C using.		BTL	Analyze
	i). Binary Tree.	(6)	4	
	ii).Binary Search Tree.	(7)		

14	Construct a tree structure for UNION-FIND problem.	BTL	Apply
	PART C	3	
1	Create a tree that support the features of Binary search Tree (15)	BTL	Create
1	Create a tree that support the features of Binary search free (15)	Б1L 6	Create
	Evaluat e the hashing techniques with example. (15		Evaluate
2.		5	
3	Summarize on any of the sorting techniques. (15) BTL 5	Evaluate
4	Design an example for implementing radix sort (15) BTL 6	Create
	UNIT III-ALGORITHM DESIGN TECHNIQUE	5	
Divide-	and-Conquer Algorithms - The Problem of Multiplying Long Integers	Balancing	Sub problems-
Dynami	c Programming-The Triangulation Problem -Greedy Algorithms-Back	tracking-In	nplementing
	ck Search-Branch-and-Bound Search-Local Search Algorithms – Intro		•
	nms – Introduction to Randomized and approximation algorithms- Intr	oduction to	Parallel
Algorith			
O N.	PART-A	рт	0
Q.No	Questions	BT Level	Competence
1	Express the term dynamic programming	BTL	Understand
1	Express the term dynamic programming	2	Onderstand
2	Define backtracking.	BTL	Understand
		2	
3	Recal l the algorithm for divide and conquer.	BTL	Remember
		1	
4	List the problem of multiplying long integers.	BTL	Remember
=	Distinguish lange interest of the stinger of		The demoter of
5	Distinguish long integers and short integers.	BTL 2	Understand
6	Distinguish dynamic programing from others.	BTL	Understand
		2	
7	Name the techniques for balancing sub problems.	BTL	Remember
		1	
8	Evaluate triangulation problem.	BTL	Evaluate
0		5	
9	State the triangulation problems.	BTL 1	Remember
10	Design the triangulation problem.	BTL	Create
10	besign the thangulation problem.	6	Cicuto
11	Classify the Greedy algorithms.	BTL	Analyze
		4	
12	Illustrate Backtrack search.	BTL	Apply
		3	
13	Assess the methods to implement backtrack search.	BTL	Evaluate
1.6		5	
14	Tabulate the parallel algorithms.	BTL	Remember
		1	1

15	Show the advantages of branch and bound strategy.		BTL 3	Apply
16	Point out the local search algorithms		BTL	Analyze
17	What is randomized algorithm?		4 BTL 1	Remember
18	Illustrate the approximation algorithm.		BTL 3	Apply
19	Classify the types of local search algorithms.		BTL 4	Analyze
20	Generalize the string algorithms.		BTL6	Create
	PART-B			
1	Discuss the Divide and Conquer algorithms.	(13)	BTL 2	Understand
2	State the problems of multiplying long integers.	(13)	BTL 1	Remember
3	i).List the steps for Balancing of sub problems.	(3)	BTL	Remember
	ii). Describe the divide and conquer algorithm.	(10)	1	
4	Design and develop the Triangulation problem with an	(13)	BTL	Create
	algorithm.		6	
5	i). What is Greedy Technique?	(5)	BTL	Remember
	ii).Design and implement an algorithm for Greedy method.	(8)	1	
6	Summarize on Backtracking along with an example.		BTL 2	Understand
7	i).Differentiate backtrack search from the other searching	(7)	BTL	Analyze
	methods.		4	
	ii).Select the example to narrate the backtrack search.	(6)		
8	Recommend the techniques		BTL	Evaluate
	i).Dynamic programming	(7)	5	
	ii).Balancing the sub problems.	(6)		
9	Examine the Branch and Bound technologies with an	(13)	BTL	Apply
	example.		3	
10	i). Analyze the Local search algorithms.	(7)	BTL	Analyze
	ii).Demonstrate string algorithm along with an example.	(6)	4	
11	Express the local search algorithm along with an example.	(13)	BTL 2	Understand
12	i).Explain the String algorithm.	(7)	BTL	Analyze
	ii).Point out the advantages of parallel algorithm.	(6)	4	
13	Tabulate the difference between local search algorithms		BTL	Remember

			1	
14	Show the advantages of Randomized algorithm along with the applications	(13)	BTL 3	Apply
	-			
1	PART C		BTL6	
1	Create an example that supports divide and conquer algorithm.		DILO	Create
2	Explain in detail about backtracking with your example.	(15)	BTL 5	Evaluate
3	Evaluate greedy technique with a suitable example.		BTL5	Evaluate
4	Plan the algorithm for branch and bound strategy.	(15)	BTL 6	Creating
	UNIT IV ALGORITHMS ON TRE	ES		
Trees: Heaps:	lack trees: Properties of Red-Black Trees – Rotations – Insertion Definition of B- trees – Basic operations on B-Trees – Deleting structure – Mergeable-heap operations- Decreasing a key and um degree.	a key fr	om a B-7	
	PART-A			
O No	Questions			
Q.No	Questions		BT Level	Competence
Q.No	Describe Binary search Tree.		BT Level BTL 2	Competence Understand
-			Level BTL	-
1	Describe Binary search Tree.		Level BTL 2 BTL	Understand
1 2	Describe Binary search Tree. Illustrate on insertion and deletion of Red Black Tree.		Level BTL 2 BTL 3 BTL	Understand
1 2 3	Describe Binary search Tree. Illustrate on insertion and deletion of Red Black Tree. List the properties of Red Black Tree.		Level BTL 2 BTL 3 BTL 1 BTL	Understand Apply Remember
1 2 3 4	Describe Binary search Tree. Illustrate on insertion and deletion of Red Black Tree. List the properties of Red Black Tree. Analyze the term rotation. Quote the importance of Red Black Tree. Define B Tree		Level BTL 2 BTL 3 BTL 1 BTL 4 BTL	Understand Apply Remember Analyze
1 2 3 4 5	Describe Binary search Tree. Illustrate on insertion and deletion of Red Black Tree. List the properties of Red Black Tree. Analyze the term rotation. Quote the importance of Red Black Tree.		Level BTL 2 BTL 3 BTL 1 BTL 4 BTL 1	Understand Apply Remember Analyze Remember Remember Understand
1 2 3 4 5 6 7 8	Describe Binary search Tree. Illustrate on insertion and deletion of Red Black Tree. List the properties of Red Black Tree. Analyze the term rotation. Quote the importance of Red Black Tree. Define B Tree Express the insertion operation in B Tree State deletion key in B Tree.		Level BTL 2 BTL 3 BTL 1 BTL 4 BTL 1 BTL 2 BTL 2 BTL 1	Understand Apply Remember Analyze Remember Remember Understand Remember
1 2 3 4 5 6 7 8 9	Describe Binary search Tree. Illustrate on insertion and deletion of Red Black Tree. List the properties of Red Black Tree. Analyze the term rotation. Quote the importance of Red Black Tree. Define B Tree Express the insertion operation in B Tree State deletion key in B Tree. Differentiate Binary search tree and B Tree.		Level BTL 2 BTL 3 BTL 1 BTL 4 BTL 1 BTL 2 BTL 1 BTL 2 BTL 2	Understand Apply Remember Analyze Remember Remember Understand Remember Understand
1 2 3 4 5 6 7 8 9 10	Describe Binary search Tree. Illustrate on insertion and deletion of Red Black Tree. List the properties of Red Black Tree. Analyze the term rotation. Quote the importance of Red Black Tree. Define B Tree Express the insertion operation in B Tree State deletion key in B Tree. Differentiate Binary search tree and B Tree. Show the operations of B Tree.		Level BTL 2 BTL 3 BTL 1 BTL 4 BTL 1 BTL 2 BTL 2 BTL 2 BTL 3	Understand Apply Remember Analyze Remember Remember Understand Remember Understand Apply
1 2 3 4 5 6 7 8 9	Describe Binary search Tree. Illustrate on insertion and deletion of Red Black Tree. List the properties of Red Black Tree. Analyze the term rotation. Quote the importance of Red Black Tree. Define B Tree Express the insertion operation in B Tree State deletion key in B Tree. Differentiate Binary search tree and B Tree.		Level BTL 2 BTL 3 BTL 1 BTL 4 BTL 1 BTL 2 BTL 1 BTL 2 BTL 2 BTL 2 BTL 2	Understand Apply Remember Analyze Remember Remember Understand Remember Understand

13	Integrate the deletion operation of the B Tree.		BTL	Create
			6	
14	Discriminate Binary Search Tree and Red Black tree.		BTL	Evaluate
15	Quote rotation process in trees.		5 BTL	Remember
13	Quote rotation process in trees.		1 1	Remember
16	Express the deletion mechanism of binary search tree.		BTL	Understand
1.			2	
17	Formulate the operation of merge able heaps.		BTL 6	Create
18	Categorize the process of decreasing the key value and		BTL	Analyze
	deleting a node.		4	
19	Differentiate Fibonacci heap and merge able heap.		BTL 4	Analyze
20	Classify on bounding on maximum degree.		BTL	Apply
			3	
	PART-B		· ·	
1	i).Define Binary Search Tree.	(4)	BTL	Remember
	ii).List the features of binary search tree with an example.	(9)	1	
2	i).Give an example for insertion in B Tree.	(4)	BTL	Understand
	ii). Summarize the features of B Tree.	(9)	2	
3	Express in detail about querying Binary search tree	(13)	BTL	Understand
4	Solve the insertion and deletion logic in	(12)	2 DTI	Annly
4		(13)	BTL 3	Apply
	W,R,G,P,F,U,K,C,A,Z for B Tree		U	
5	Demonstrate the basic operations with an example.		BTL	Remember
	i) B tree.	(6)	1	
	ii) Binary search tree.	(7)		
6	i). Point out the basic operations of Binary search tree		BTL	Analyze
	ii).Compare and contrast B Tree and Binary search tree	(7)	4	-
		(8)		
7	Evaluate the features of Red Black Tree with an example.	(8) (13)	BTL	Evaluate
		(10)	5	
8	i).Classify the insertion process of Red Black tree	(9)	BTL	Analyze
	ii).Analyze on rotation of a node.	(4)	4	
9	Formulate the basic operations of B Tree	(13)	BTL	Create
10	Elaborate in detail about the following		6	
- v	i).Deletion operation of B Tree	(8)	BTL	Remember
			1	
	ii).Give your example for the above	(5)		
11	Explain Fibonacci Heap by constructing its structure.	(13)	BTL 4	Analyze

12	List and explain the various operations of merge able heap	(13)	BTL	Remember
	with an example.		1	
13	Illustrate the following in detail		BTL	Apply
	i).Fibonacci Heap structure	(8)	3	
	ii).Merge able Heap operations	(7)		
14	Discuss the following in detail		BTL	Understand
	i). Decreasing the key and deletion.	(7)	2	
	ii).Bonding on maximum degree.	(6)		
	PART C			I
1	Explain in detail about the B Tree	(15)	BTL 6	Create
2	Evaluate an example for heap sort	(15)	BTL 5	Evaluate
3	Create a tree that satisfies the features of red black tree.	(15)	BTL 6	Create
	Analyze the importance of Fiberessi and marge able beens	(15)	BTL	Create
4	Analyze the importance of Fibonacci and merge able heaps.	(-)	6	
graph -	UNIT V-ALGORITHMS ON GRAPH um-cost spanning trees- Depth-first search - Biconnectivity-I - Strong connectivity- Path-finding problems -A transitive clos hm - Path problems and matrix multiplication - Single-source	IS Depth-firs	st search rithm - A	shortest- path
Minim graph - algoritl	UNIT V-ALGORITHMS ON GRAPH um-cost spanning trees- Depth-first search - Biconnectivity-I - Strong connectivity- Path-finding problems -A transitive close	IS Depth-firs	st search rithm - A	shortest- path
Minim graph - algoritl directe	UNIT V-ALGORITHMS ON GRAPH um-cost spanning trees- Depth-first search - Biconnectivity-I - Strong connectivity- Path-finding problems -A transitive clos hm - Path problems and matrix multiplication - Single-source d acyclic graph: putting the concepts together	IS Depth-firs	st search rithm - A	shortest- path
Minim graph - algorith directer Q.No	UNIT V-ALGORITHMS ON GRAPH um-cost spanning trees- Depth-first search - Biconnectivity-I - Strong connectivity- Path-finding problems -A transitive clos hm - Path problems and matrix multiplication - Single-source d acyclic graph: putting the concepts together PART-A	IS Depth-firs	st search rithm - A ems - Do BT	shortest- path ominators in a
Minim graph - algoritl directe Q.No 1	UNIT V-ALGORITHMS ON GRAPH um-cost spanning trees- Depth-first search - Biconnectivity-I - Strong connectivity- Path-finding problems -A transitive closs hm - Path problems and matrix multiplication - Single-source d acyclic graph: putting the concepts together PART-A Questions	IS Depth-firs	st search rithm - A ems - Do BT Level BTL	Scompetence
Minim graph - algorith directe Q.No 1 2	UNIT V-ALGORITHMS ON GRAPH um-cost spanning trees- Depth-first search - Biconnectivity-I - Strong connectivity- Path-finding problems -A transitive closs hm - Path problems and matrix multiplication - Single-source d acyclic graph: putting the concepts together PART-A Questions Distinguish strong connectivity and weak connectivity.	IS Depth-firs	st search rithm - A ems - Do BT Level BTL 2	Competence Understand
Minim graph - algorith directer Q.No 1 2 3	UNIT V-ALGORITHMS ON GRAPH um-cost spanning trees- Depth-first search - Biconnectivity-I - Strong connectivity- Path-finding problems -A transitive closs hm - Path problems and matrix multiplication - Single-source d acyclic graph: putting the concepts together PART-A Questions Distinguish strong connectivity and weak connectivity. Define the term minimum cost spanning tree	IS Depth-firs	st search rithm - A ems - Do BT BTL 2 BTL 1 BTL 2 BTL 2 BTL	Competence Understand Remember
Minim graph - algorith directer Q.No 1 2 3 4	UNIT V-ALGORITHMS ON GRAPH um-cost spanning trees- Depth-first search - Biconnectivity-I - Strong connectivity- Path-finding problems -A transitive close hm - Path problems and matrix multiplication - Single-source d acyclic graph: putting the concepts together PART-A Questions Distinguish strong connectivity and weak connectivity. Define the term minimum cost spanning tree Give an example for minimum cost spanning tree	IS Depth-firs	st search rithm - A ems - Do BT Level BTL 2 BTL 1 BTL 2	Competence Understand Remember Understand
Minim graph - algorith directer Q.No 1 2 3 4 5	UNIT V-ALGORITHMS ON GRAPH um-cost spanning trees- Depth-first search - Biconnectivity-I Strong connectivity- Path-finding problems -A transitive closs hm - Path problems and matrix multiplication - Single-source d acyclic graph: putting the concepts together PART-A Questions Distinguish strong connectivity and weak connectivity. Define the term minimum cost spanning tree Give an example for minimum cost spanning tree Compare depth first and breadth first.	IS Depth-firs	st search rithm - A ems - Do BT Level BTL 2 BTL 1 BTL 2 BTL 4	Competence Understand Remember Understand Analyze
Minim graph - algoritl	UNIT V-ALGORITHMS ON GRAPH um-cost spanning trees- Depth-first search - Biconnectivity-I Strong connectivity- Path-finding problems -A transitive clos hm - Path problems and matrix multiplication - Single-source d acyclic graph: putting the concepts together PART-A Questions Distinguish strong connectivity and weak connectivity. Define the term minimum cost spanning tree Give an example for minimum cost spanning tree Compare depth first and breadth first. What is biconnectivity?	IS Depth-firs	st search rithm - A ems - Do BT Level BTL 2 BTL 1 BTL 2 BTL 4 BTL 1 BTL 1 BTL	Competence Understand Remember Understand Analyze Remember
Minim graph - algorith directer Q.No 1 2 3 4 5 6	UNIT V-ALGORITHMS ON GRAPH um-cost spanning trees- Depth-first search - Biconnectivity-I Strong connectivity- Path-finding problems -A transitive closs hm - Path problems and matrix multiplication - Single-source d acyclic graph: putting the concepts together PART-A Questions Distinguish strong connectivity and weak connectivity. Define the term minimum cost spanning tree Give an example for minimum cost spanning tree Compare depth first and breadth first. What is biconnectivity? Define directed graph.	IS Depth-firs	st search rithm - A ems - Do BT BTL 2 BTL 2 BTL 4 BTL 4 BTL 1 BTL 1 BTL 1 BTL	Competence Understand Remember Understand Analyze Remember Remember

10			DET	
10	Analyze the shortest path algorithm.		BTL 4	Analyze
11	Integrate the list of path problems.		BTL 6	Create
12	State an example for matrix multiplication		BTL 1	Remember
13	Summarize the path algorithm for matrix operation.		BTL 2	Understand
14	Quote the term single source problem.		BTL 1	Remember
15	Point out the path finding algorithms		BTL 4	Analyze
16	Show the difference in directed and undirected graph.		BTL 3	Apply
17	Illustrate the dominators in directed graph.		BTL 3	Apply
18	Assess the difference between cyclic and acyclic graph		BTL 5	Evaluate
19	Differentiate directed and undirected graph		BTL 2	Understand
20	Demonstrate the term biconnectivity.		BTL 3	Apply
	PART-B		1	
1	i).List the features of spanning tree	(8)	BTL	Remember
	ii). Identify the characteristics of minimum cost spanning tree.	(5)	1	
2	Elaborate in detail the minimum cost spanning tree	(13)	BTL 1	Remember
3	i).Give the briefing of biconnectivity.	(7)	BTL	Understand
	ii). Identify the algorithm for depth first search.	(9)	2	
4	Express the steps for depth first search with an example,	(*)	BTL 2	Understand
5	i). Analyze the steps for depth first search			
	ii).What do you understand by biconnectivity		BTL 4	Analyze
6	i). Define strong connectivity.	(5)	BTL	Remember
	ii).Examine depth first search with an example	(8)	1	
7	i).Demonstrate path finding algorithms	(7)	BTL	Apply
	ii).Illustrate transitive closure algorithm	(6)	3	
8	i). Evaluate the advantages of path finding algorithm.	(7)	BTL	Evaluate
	ii).Summarize the concept of strong connectivity.	(6)	5	
9	Design a shortest path algorithm with an example	(13)	BTL 6	Create
10	Classify the term transitive closure algorithm.	(13)	BTL	Analyze

11	Point out the following in detail		BTL	Analyze
	i).Path finding algorithm	(7)	4	
	ii).Shortest path algorithm.	(6)		
12	Describe in detail about the depth first search with own example.	(13)	BTL 1	Remember
13	Discuss on single source problem and path problems in matrix multiplication	(13)	BTL 2	Understand
14	Calculate the performance of dominators in directed acyclic graph	(13)	BTL 3	Apply
	PART C			
1	Create a minimum cost spanning tree.		BTL 6	Create
2	Design and explain path problems in matrix multiplication	(15)	BTL 6	Evaluate
3	Evaluate breath first search.		BTL 5	Evaluate
4	Summarize on the term biconnectivity.	(15)	BTL 5	Evaluate