SRM VALLIAMMAI ENGINEERING COLLEGE (AN AUTONOMOUS INSTITUTION, AFFILIATED TO ANNA UNIVERSITY) SRM Nagar, Kattankulathur – 603 203 # DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING # **QUESTION BANK** # I SEMESTER 1912102 – ADVANCED COMPUTER ARCHITECTURE Regulation – 2019 Academic Year 2020 – 21(ODD) Prepared by Dr.A.Samydurai, Associate Professor/CSE ## VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur – 603203. ## DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING OUESTION BANK **SUBJECT**: 1912102 – ADVANCED COMPUTER ARCHITECTURE SEM / YEAR: I / I #### UNIT I - FUNDAMENTALS OF COMPILER DESIGN AND ILP Fundamentals of Mother Board architecture – CPU socket–Fan and Heat Sink mounting point-Power connector–DRAM- PCI slot–CMOS–Connectors and Integrator–Computer Design –Measuring and Reporting Performance –Instruction Level Parallelism and its Exploitation –Concepts and Challenges –Exposing ILP -Advanced Branch Prediction – Dynamic Scheduling -Exploiting ILP -Instruction Delivery and Speculation -Limitations of ILP. #### PART-A (2 - MARKS) | Q. No | QUESTIONS | BT Level | Competence | |-------|---|------------|------------| | 1. | Write the features of Mother Board Architecture. | Remember | BTL-1 | | 2. | Demonstrate your understanding about CPU socket Fan. | Apply | BTL-3 | | 3. | Examine the reason behind heatsink and fan mounted on CPU. | Apply | BTL-3 | | 4. | Differentiate between Port and Connector. | Understand | BTL-2 | | 5. | List the advantages of using DRAM for main memory. | Remember | BTL-1 | | 6. | Explain the role of Conventional PCI. | Evaluate | BTL-5 | | 7. | Identify the CMOS Applications. | Remember | BTL-1 | | 8. | Analyse the graphic model of Computer Design. | Analyze | BTL-4 | | 9. | Summarize the pros and cons of iterative software development model? | Evaluate | BTL-5 | | 10. | Define the factors that affect the performance of a computer. | Remember | BTL-1 | | 11. | List the two approaches to Instruction Level Parallelism. | Remember | BTL-1 | | 12. | Compare Instruction level parallelism and machine parallelism. | Analyze | BTL-4 | | 13. | Predict about ILP challenges. | Understand | BTL-2 | |-----|---|------------|-------| | 14. | Discuss about static and Dynamic Technique. | Understand | BTL-2 | | 15. | Generalize about basic pipelining scheduling. | Create | BTL-6 | | 16. | Show what is meant by Dynamic scheduling? | Apply | BTL-3 | | 17. | Differentiate Forwarding and Bypassing technique. | Analyze | BTL-4 | | 18. | Create a scenario for giving an example of data dependencies. | Create | BTL-6 | | 19. | Summarize the various types of dependencies. | Understand | BTL-2 | | 20. | Why system engineers must understand the environment of a | Remember | BTL-1 | | 20. | system? Give two reasons. | Kemember | DIL-I | | | PART-B (13- MARKS) | | | | 1. | Define and list all the details of Mother board Architecture.(13) | Remember | BTL-1 | | 2. | (i) Explain alteast one scenario where : | | | | | a) Fan mounted on a CPU stops Working. (3) | Analyze | BTL-4 | | | b) Heat coming from the CPU is controlled by the Fan. (3) | 7 Mary 20 | | | | (ii) What are the physical requirements for the I/O Device. (7) | | | | 3. | (i) What do you mean by DRAM Technology and memory | | | | | performance inside it? (6) | Remember | BTL-1 | | | (ii) Explain in detail about PCI slot with an example. (7) | | | | 4. | (i) Write short notes on: | | | | | a) CMOS (3) | Evaluate | BTL-5 | | | b) Integrators (3) | | | | | (ii) Explain in detail about the Computer Design. (7) | | | | 5. | (i) What is the procedure for measuring and reporting the | | | | | performance of the computer? (6) | Understand | BTL-1 | | | (ii) Describe how the connectors are used with a specific diagram. | | | | | (i) Commons CDAM and DDAM | | | | 6. | (i) Compare SRAM and DRAM. (6) | | | | | (ii) Discuss about the following problem: | | | | | The microprocessors today are designed to have adjustable | Analyze | BTL-4 | | | voltage, so that a 15% reduction in voltage may result in a | | | | | 15% reduction in frequency. What would be the impact on | | | | | dynamic power? (7) | | | | 7. | Explain in Detail with the help of an example about Dynamic | | | |-----|--|------------|-------| | | Scheduling with Renaming. | Analyze | BTL-4 | | 8. | Discuss in detail about Loop Unrolling with the help of an | | | | | example. | Understand | BTL-2 | | | example. | Understand | D1L-2 | | | | | | | 9. | Discuss about how the pipelining scheduling is done with the help of an example. | Understand | BTL-2 | | | help of all example. | | | | 10. | Illustrate in detail about the pipelining obstacles. | Apply | BTL-3 | | | | | | | | Describe the mechanism to handle dependencies. | Understand | BTL-2 | | 11. | | Understand | D1L-2 | | 12. | Generalize the dependencies in pipelined processor. | | | | | | Create | BTL-6 | | 13. | Describe the compiler techniques for exposing ILP. | Remember | BTL-1 | | 13. | | Kemember | DIL-I | | | Explain in detail about the shortcomings in ILP. | Apply | BTL-3 | | 14. | | | | | | PART-C (15- MARK) | | | | 1. | Summarize in details about the various dependences causes in ILP and the limitations of ILP. | Evaluate | BTL-5 | | 2. | Hypothesize how the Hardware based Speculation is used to overcome control Dependence. | Create | BTL-6 | | | Suppose that we are Considering an enhancement to the | | | | | processor of a server system used for Web Serving. The new | | | | 3. | CPU is 10 times faster on computation in the Web serving application than the original processor Assuming that the | Analyze | BTL-4 | | | original CPU is busy with computation 40% of the time and is | | | | | waiting for I/O 60% of the time, Infer the overall speedup | | | | | gained by incorporating the enhancement. Rewrite a common transformation required in graphics | | | | | engines in square root. Implementation of floating-point | | | | | square root vary significantly in performance, especially | | | | | among processors designed for graphics .Suppose FP square root is responsible for 20% of the execution time of a critical | | | | 4. | graphics benchmark one proposal is to enhance FPSQR | | BTL-6 | | | hardware. And speedup this operation by a factor of 10. | | | | | I I DA OLDAR SITARDSTIVA IS INSTITA TRU TO MOVA SIL HU INSTRUCTIONS | | | | | The other alternative is just to try to make all FP instructions in the graphics processor run faster by a factor of 1.6.FP | | | | | in the graphics processor run faster by a factor of 1.6.FP instructions are responsible for total of 50% of the execution time for the applications. The design team believes that | | | they can make all FP instructions run 1.6 times faster with the same effort as required for the fast square root. Compare these two design alternatives. # UNIT II- MEMORY HIERARCHY DESIGN # Introduction –Optimizations of Cache Performance –Memory Technology and Optimizations –Protection: Virtual Memory and Virtual Machines –Design of Memory Hierarchies. # PART-A (2 - MARKS) | Q.No | QUESTIONS | BT Level | Competence | |------|---|------------|------------| | 1. | Give the defination of the memory hierarchy. | Understand | BTL-2 | | 2. | Define volatile memory. | Remember | BTL-1 | | 3. | Classify memory hierarchy. | Apply | BTL-3 | | 4. | Draw and explain the components in memory hierarchy. | Analyze | BTL-4 | | 5. | List the characteristics of Memory hierarchy Design. | Remember | BTL-1 | | 6. | Define Memory Access Time. | Remember | BTL-1 | | 7. | How can address translation be avoided during the indexing of the cache's? | Apply | BTL-3 | | 8. | Develop memory hierarchy using a diagram. | Create | BTL-6 | | 9. | Differentiate magnetic disk and magnetic tape. | Understand | BTL-2 | | 10. | Point out the advantages of memory hierarchy | Analyze | BTL-4 | | 11. | Distinguish hardware based prefetching and compiler based prefetching. | Understand | BTL-2 | | 12. | List the techniques that can be used to reduce miss penalty and miss rate. | Remember | BTL-1 | | 13. | Classify the classical components of computer. | Analyze | BTL-4 | | 14. | Express CPI. | Understand | BTL-2 | | 15. | Explain Principle of Locality. | Evaluate | BTL-5 | | 16. | What is hit time and miss penalty? | Remember | BTL-1 | | 17. | Classify two ways in which virtual machine is handled. | Apply | BTL-3 | | 18. | Define Virtual Memory Machine. | Remember | BTL-1 | | 19. | Explain Page based virtual memory. | Evaluate | BTL-5 | | 20. | Generalize Protection in Virtual Machines. | Create | BTL-6 | | PART-B (13- MARK) | | | | | |--------------------|--|---|------------|-------| | 1. | | (7)
(6) | Understand | BTL-2 | | 2. | Express in detail about the optimizations of cache performance (| (13) | Understand | BTL-2 | | 3. | (i) List and explain Memory Hierarchy .(ii) List the memory technologies used in Computer Architecture | (7)
e(6) | Remember | BTL-1 | | 4. | | (7)(6) | Apply | BTL-3 | | 5. | (i) Explain in detail about Xen Architecture. (ii) Describe SRAM and DRAM technologies used in memory. | (7)(6) | Remember | BTL-1 | | 6. | Analyze about the Technology Trends. (| (13) | Analyze | BTL-4 | | 7. | (iii) List the benefits of using VMs. | (2)(4)(4)(3) | Remember | BTL-1 | | 8. | Assess how Pipelined Cache Access used to Increase Cache Bandwidth. | 13) | Evaluate | BTL-5 | | 9. | (ii) What is Flash Memory? (ii) How will you classify the soft errors? (iii) List the techniques used to reduce miss Penalty. | (4)(5)(4) | Create | BTL-6 | | 10. | List the levels in a typical memory hierarchy. | (13) | Remember | BTL-1 | | 11. | * | (7)(6) | Apply | BTL-3 | | 12. | | (7)(6) | Understand | BTL-2 | | 13. | • | e a
(6)
(7) | Analyze | BTL-4 | | 14. | (i) What is the purpose of Enhancing Dependability in Memory Systems. | (7) | Analyze | BTL-4 | | | (ii) Explain the concept of Merging Write Buffer used to Reduce | | | | | |---------------------------------|--|--|---|--|--| | | Miss Penalty. (6) | | | | | | | PART-C (15 -MARKS) | | | | | | 1. | (i) Summarize the segmented virtual memory protections with suitable example. (7) | Evaluate | BTL-5 | | | | | (ii) Evaluate the 3 C's of Cache Miss. (8) | | | | | | 2. | (i) Compile the various hit time reduction techniques for improving the cache performance. (8) (ii) Formulate the various Compiler Optimizations to Reduce Miss Rate. (7) | Create | BTL-6 | | | | 3. | Assume that L2 has a block size four times that of L1. Analyze how a miss for an address that causes a replacement in L1 and L2 can lead to violation of the inclusion property. | Analyze | BTL-4 | | | | 4. | (i) Write note on Intel core i7 architecture. (8) (ii) Generalize the techniques for reducing cache miss penalty. (7) | Create | BTL-6 | | | | UNIT III- MULTIPROCESSOR ISSUES | | | | | | | | Introduction- Centralized, Symmetric and Distributed Shared M | lemory Arch | itectures – | | | | | Cache Coherence Issues –Performance Issues –Synchronization
Consistency - Interconnection Networks –Buses, Crossbar
Interconnection Networks
PART-A (2 - MARKS) | n –Models of
and Multi-st | Memory
tage | | | | 1. | Cache Coherence Issues –Performance Issues –Synchronization Consistency - Interconnection Networks –Buses, Crossbar Interconnection Networks PART-A (2 - MARKS) Express cache coherence. | –Models of | Memory
tage | | | | 1. 2. | Cache Coherence Issues –Performance Issues –Synchronization
Consistency - Interconnection Networks –Buses, Crossbar
Interconnection Networks
PART-A (2 - MARKS) | n –Models of
and Multi-st | Memory
tage | | | | | Cache Coherence Issues –Performance Issues –Synchronization Consistency - Interconnection Networks –Buses, Crossbar Interconnection Networks PART-A (2 - MARKS) Express cache coherence. | n – Models of
and Multi-st
Understand | Memory tage BTL-2 | | | | 2. | Cache Coherence Issues –Performance Issues –Synchronization Consistency - Interconnection Networks –Buses, Crossbar Interconnection Networks PART-A (2 - MARKS) Express cache coherence. Discuss serialization | understand Understand | Memory tage BTL-2 BTL-2 | | | | 2. | Cache Coherence Issues –Performance Issues –Synchronization Consistency - Interconnection Networks –Buses, Crossbar Interconnection Networks PART-A (2 - MARKS) Express cache coherence. Discuss serialization Define Distributed shared memory | Understand Understand Remember | Memory tage BTL-2 BTL-2 BTL-1 BTL-1 | | | | 2.
3.
4. | Cache Coherence Issues –Performance Issues –Synchronization Consistency - Interconnection Networks –Buses, Crossbar Interconnection Networks PART-A (2 - MARKS) Express cache coherence. Discuss serialization Define Distributed shared memory List cache coherence protocol | Understand Understand Remember Remember | Memory tage BTL-2 BTL-2 BTL-1 BTL-1 | | | | 2.
3.
4.
5. | Cache Coherence Issues –Performance Issues –Synchronization Consistency - Interconnection Networks –Buses, Crossbar Interconnection Networks PART-A (2 - MARKS) Express cache coherence. Discuss serialization Define Distributed shared memory List cache coherence protocol Describe interconnection network | Understand Understand Remember Remember Understand | BTL-2 BTL-1 BTL-1 BTL-2 | | | | 2.
3.
4.
5. | Cache Coherence Issues –Performance Issues –Synchronization Consistency - Interconnection Networks –Buses, Crossbar Interconnection Networks PART-A (2 - MARKS) Express cache coherence. Discuss serialization Define Distributed shared memory List cache coherence protocol Describe interconnection network Differentiate Buses from crossbar networks. | Understand Understand Remember Remember Understand Understand | BTL-2 BTL-1 BTL-1 BTL-2 BTL-2 | | | | 2. 3. 4. 5. 6. | Cache Coherence Issues –Performance Issues –Synchronization Consistency - Interconnection Networks –Buses, Crossbar Interconnection Networks PART-A (2 - MARKS) Express cache coherence. Discuss serialization Define Distributed shared memory List cache coherence protocol Describe interconnection network Differentiate Buses from crossbar networks. What is a Multistage interconnection network? | Understand Understand Remember Remember Understand Understand Understand | BTL-2 BTL-1 BTL-1 BTL-2 BTL-2 BTL-1 | | | | 2. 3. 4. 5. 6. 7. | Cache Coherence Issues –Performance Issues –Synchronization Consistency - Interconnection Networks –Buses, Crossbar Interconnection Networks PART-A (2 - MARKS) Express cache coherence. Discuss serialization Define Distributed shared memory List cache coherence protocol Describe interconnection network Differentiate Buses from crossbar networks. What is a Multistage interconnection network? Summarize snooping coherence protocols | Understand Understand Remember Remember Understand Understand Understand Understand Understand | BTL-2 BTL-1 BTL-1 BTL-2 BTL-1 BTL-2 BTL-2 BTL-2 BTL-2 | | | | 2. 3. 4. 5. 6. 7. 8. | Cache Coherence Issues –Performance Issues –Synchronization Consistency - Interconnection Networks –Buses, Crossbar Interconnection Networks PART-A (2 - MARKS) Express cache coherence. Discuss serialization Define Distributed shared memory List cache coherence protocol Describe interconnection network Differentiate Buses from crossbar networks. What is a Multistage interconnection network? Summarize snooping coherence protocols Examine about invalidate protocol. | Understand Understand Remember Remember Understand Understand Understand Understand Evaluate Remember | BTL-2 BTL-1 BTL-1 BTL-2 BTL-1 BTL-2 BTL-2 BTL-2 BTL-1 BTL-1 | | | | 2. 3. 4. 5. 6. 7. 8. 9. | Cache Coherence Issues –Performance Issues –Synchronization Consistency - Interconnection Networks –Buses, Crossbar Interconnection Networks PART-A (2 - MARKS) Express cache coherence. Discuss serialization Define Distributed shared memory List cache coherence protocol Describe interconnection network Differentiate Buses from crossbar networks. What is a Multistage interconnection network? Summarize snooping coherence protocols Examine about invalidate protocol. Write short note on false sharing. | Understand Understand Remember Remember Understand Understand Understand Understand Understand Control Evaluate Remember Create | BTL-2 BTL-1 BTL-1 BTL-2 BTL-1 BTL-2 BTL-1 BTL-2 BTL-1 BTL-1 | | | | 2. 3. 4. 5. 6. 7. 8. 9. 10. | Cache Coherence Issues –Performance Issues –Synchronization Consistency - Interconnection Networks –Buses, Crossbar Interconnection Networks PART-A (2 - MARKS) Express cache coherence. Discuss serialization Define Distributed shared memory List cache coherence protocol Describe interconnection network Differentiate Buses from crossbar networks. What is a Multistage interconnection network? Summarize snooping coherence protocols Examine about invalidate protocol. Write short note on false sharing. Point out load linked instruction. | Understand Understand Remember Remember Understand Understand Understand Understand Control Understand Understand Control Cont | BTL-2 BTL-1 BTL-1 BTL-2 BTL-2 BTL-1 BTL-2 BTL-1 BTL-5 BTL-1 BTL-5 BTL-1 BTL-6 BTL-4 | | | | 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. | Cache Coherence Issues –Performance Issues –Synchronization Consistency - Interconnection Networks –Buses, Crossbar Interconnection Networks PART-A (2 - MARKS) Express cache coherence. Discuss serialization Define Distributed shared memory List cache coherence protocol Describe interconnection network Differentiate Buses from crossbar networks. What is a Multistage interconnection network? Summarize snooping coherence protocols Examine about invalidate protocol. Write short note on false sharing. Point out load linked instruction. Illustrate spin locks. | Understand Understand Understand Remember Remember Understand Understand Understand Understand Understand Understand Analyze Apply | BTL-2 BTL-1 BTL-1 BTL-2 BTL-2 BTL-1 BTL-2 BTL-1 BTL-5 BTL-1 BTL-6 BTL-4 BTL-3 | | | | 15. | Discover the two important hurdles which make parallel processing | | 200 | |-----|---|------------|-------| | | challenging. | Apply | BTL-3 | | 16. | Explain Coherent view of memory | Analyze | BTL-4 | | 17. | Name the types of messages | Remember | BTL-1 | | 18. | Illustrate the Factors affecting the two components of miss rate in cache performance. | Apply | BTL-3 | | 19. | Analyze data-race-free. | Analyze | BTL-4 | | 20. | Formulate the relaxed models. | Create | BTL-6 | | | PART-B (13- MARKS) | | | | 1. | (i) Discuss about the Distributed Shared Memory. (7) (ii) List the challenges of Parallel Processing in detail. (6) | Remember | BTL-1 | | 2. | Explain Centralized Shared Memory Architectures. (13) | Evaluate | BTL-5 | | 3. | Analyze the role of cache coherence in Multiprocessor . (13) | Analyze | BTL-4 | | 4. | (i) Demonstrate the Cache Coherence Performance issues. (7)(ii) Illustrate in detail Snooping Coherence Protocols. (6) | Apply | BTL-3 | | 5. | (i) Give the Crossbar interconnection Networks. (6) (ii) Discuss the Multi-Stage Interconnection Networks. (7) | Understand | BTL-2 | | 6. | (i) List Coherence and explain that the behavior of reads and writes to the same memory location, the memory system is coherent. (6) (ii) Describe Basic Schemes for Enforcing Coherence. (7) | Remember | BTL-1 | | 7. | (i) Discuss the Cache Coherence Issues. (7)(ii) Discuss the Performance measurements of the Commercial workload. (6) | Remember | BTL-2 | | 8. | Describe Performance measurements of the Multiprogramming and OS workload. (13) | Understand | BTL-2 | | 9. | Examine Implementing Locks Using Coherence. (13) | Apply | BTL-3 | | 10. | (i) Analyze Design Dimensions of Interconnection Networks. (6) (ii) Explain the Multistage Interconnection Networks. (7) | Analyze | BTL-4 | | (1) Describe M | ultistage Interconnection Netv | vorks. (7) |) | DITT. 1 | |---|--|--|----------|---------| | 11. (ii) Explain the | Bus Network. | (6) | Remember | BTL-1 | | (i) Generalize | the key design dimensions for | rinterconnection | | | | networks. | | (7) | | | | 12. (ii) Develop a | strategy that design the cache | block in a directory | Create | BTL-6 | | based system a | nd structure as the transition of | liagram for an | | | | individual cach | e. | (6) | | | | 13. (i) Analyze Sy | nchronization. | (6) | Analyze | BTL-4 | | (ii) Classify M | ulticomputer from Multiproce | essors. (7) | Anaryze | D1L-4 | | (i) What the Ba | asic Hardware Primitives. | (7) | Remember | BTL-1 | | (ii) Discuss the | Coherence Protocols. | (6) | | DIL-1 | | | PART-C(1 | 5 -MARKS) | • | | | (i) Evaluate | the distributed memory arc | hitecture with | | | | 1. different me | ssage passing mechanisms. | (8) | | | | (ii) Assess th | ne basic schemes for Enforce | ing Coherence. (7) | Evaluate | BTL-5 | | 2. (ii) Hypothe | e directory-based cache colesize on how to implement in a multiprocessor using l | nt synchronization | Create | BTL-6 | | multiprocessoremote memory reference excomemory hierastalled on a 3. 3. 3GHz. If the cache) is 0.5, there is no convolve a remark (ii) Explain i | e have an application running, which has a 200 ns time ory. For this application, assept those involving communication, which is slightly optimented request, and the part base CPI (assuming that a Point out how much faster mmunication versus if 0.2% ote communication referent detail about limitation in a processors and snooping p | to handle reference to
ume that all the
nication hit in the loc
mistic. Processors are
processor clock rate
all reference hit in the
ris the multiprocessor
to of the instructions
ce. (8)
Symmetric shared | is
if | | | | | | Anaiyze | BTL-4 | | | processor was used to execut | | n | | | | wing instructions mix and clo | • | | | | 4. | pes Instruction Count Clock c | | Create | BTL-6 | | Instruction t | · - | Clock Cycle Count | | | | Integer arithmetic | 45000 | 1 | | | | Data Transfer | 32000 | 2 | | | | |-----------------------|----------------|-----------------|--------------------------|----|--| | Floating Point | 15000 | 2 | | | | | Control Transfer | 8000 | 2 | | | | | Produce the effective | ve CPI, MIP | S rate and Exec | ution time for this | | | | program. Give just | fication for | each. | (8) | | | | (ii) Assume that L2 | has a block | size four times | that of L1.Show | | | | how a miss for an a | ddress that c | auses a replace | ment in L1 and L2 | | | | can lead to violation | n of the inclu | ision property. | Design such Cache | 2. | | | | | | (7 | 7) | | | | | TIGODE 4 D | | | | ## **UNIT IV- MULTICORE ARCHITECTURES** Homogeneous and Heterogeneous Multi-core Architectures –Intel Multicore Architectures – SUN CMP architecture –IBM Cell Architecture. Introduction to Warehouse –scale computers- Architectures-Physical Infrastructure and Costs – Cloud Computing | | PART-A (2 -MARKS) | | | | | |-----|---|------------|-------|--|--| | 1. | Describe the homogeneous multicore architecture. | Remember | BTL-1 | | | | 2. | Analyze the SUN CMP architecture. | Analyze | BTL-4 | | | | 3. | Differentiate between SMT and CMP. | Understand | BTL-2 | | | | 4. | Identify scale computer. | Remember | BTL-1 | | | | 5. | Show the categorization of Cloud Computing. | Remember | BTL-1 | | | | 6. | Measure Chip Multithreading. | Evaluate | BTL-5 | | | | 7. | What the Limitations of SUN Niagara Processor? | Remember | BTL-1 | | | | 8. | Poinout the diagram of IBM Cell Architecture. | Analyze | BTL-4 | | | | 9. | What do you mean by airside economization? | Remember | BTL-1 | | | | 10. | Summarize the Power Utilization effectiveness. | Understand | BTL-2 | | | | 11. | Examine short note on MapReduce. | Remember | BTL-1 | | | | 12. | Classify the elements of Interconnect Bus. | Apply | BTL-3 | | | | 13. | Identify important design factors for WSC. | Apply | BTL-4 | | | | 14. | Give short note on Google File System. | Understand | BTL-2 | | | | 15. | Generalize the Cooling and Power issues in the Google WSC. | Create | BTL-6 | | | | 16. | Examine warehouse. | Apply | BTL-3 | | | | 17. | Show the features of Multi-Core. | Apply | BTL-3 | | | | 18. | Generalize between Homogeneous and heterogeneous multicore architecture. | Create | BTL-6 | | | | 19. | Give the the potential Drawbacks of Cloud Computing. | Understand | BTL-2 | |-----|---|------------|-------| | 20. | Assess the role of Cloud Computing. | Evaluate | BTL-5 | | | | | | | | PART-B (13- MARKS) | | | | | Describe the following topics: | | | | 1. | (i) Homogenous Multi-core architecture . (6) | Remember | BTL-1 | | | (ii) Hetrogeneous Multi-core architecture. (7) | | | | 2. | (i) Explain the SUN CMP architecture in detail. (7) | | | | | (ii) Analyze Intel Multicore Architecture. (6) | Analyze | BTL-4 | | | (i) Write Cell Architecture (7) | | | | 3. | (ii) Explain the relation between Bus design and communication | | | | | among the Cell. (6) | Remember | BTL-1 | | | (i) What do you mean by Warehouse-scale computers? Tell | | | | 4. | something about it. (7) | | | | | (ii) Give a description a Batch processing framework. (6) | Understand | BTL-2 | | | (i) Describe the Computer Architecture of Warehouse-Scale | | | | 5. | Computers. (7) | | | | J. | (ii) Explain` the Physical Infrastructure and Costs of Warehouse- | | | | | Scale Computers (6) | Remember | BTL-1 | | 6. | (i) Summarize the Efficiency of a WSC. (7) | | | | 0. | (ii) Describe the Capital expenditures (CAPEX). (6) | Understand | BTL-2 | | | (i) How would you apply Amazon Web Services to different | | | | 7. | applications? (7) | | | | ,. | (ii) Explain the factors involved in Reducing Customer Risks and | | | | | Economies of Scale. (6) | Apply | BTL-3 | | | (i) Analyze the Case Study- Google Warehouse-Scale Computer (7) | | | | 8. | (ii) Explain the customized and standardize 1AAA container for | Analyze | BTL-4 | | | Google. (6) | | | | | (i) How will you Support the Servers in a Google WSC over | | | | 9. | others? (7) | Evaluate | BTL-5 | | 7. | (ii) Summarize the Cooling and Power factors of the Google WSC | Lvaruate | DIL | | | (6) | | | | 10. | Write a generalized role of Networking in a Google WSC. (13) | Create | BTL-6 | | | (i) Describe the Monitoring and Repair elements of a Google WSG | C | | |-----|--|------------|-------| | 11. | (7 | Remember | BTL-1 | | | (ii) Explain the Physical Infrastructure and Costs of Warehouse- | | | | | Scale Computers (6 |) | | | | Apprise and analyze the cloud computing which is a model for | | | | 12. | enabling convenient, on-demand network access to a shared pool of | • | BTL-4 | | | configurable computing resources. (13) |) | | | | (i) What is the Physical Infrastructure and Costs of | | | | 13. | Warehouse-Scale Computers? (7) | Understand | BTL-2 | | | (ii) Summarize the Measuring Efficiency of a WSC. (6) | | | | | (i) Explain in detail the Computer Architectural details of | | | | 14. | Warehouse Scale Computers. (7) | Apply | BTL-3 | | | (iii) Explain a Heterogeneous Multi-core architecture (6) | | | | | PART-C (15-MARKS) | | | | | (i) Evaluate the primary components of the instruction set | | | | | architecture of VMIPS and explain the basic vector architecture | | | | 1. | with neat block diagram. (8) | Evaluate | BTL-5 | | | (ii) Order any five double-precision floating -point VMIPS vector | : | | | | instructions and explain its functions. (7) | | | | | Argue the similarities and differences between the following | | | | 2. | (i) Vector architectures and GPUs. (8) | Evaluate | BTL-5 | | | (ii) Multimedia SIMD computers and GPUs. (7) | | | | | (i) Suppose we have 8 memory banks with a bank busy time of | 6 | | | | clocks and a total memory latency of 12 cycles. How long will | it | | | 3. | take to complete a 64-element vector load with a stride of 1? An | nd | | | ٥. | with a stride of 32? Create the same. (8) | Create | BTL-6 | | | (ii) Explain the Layer 3 network used to link arrays together and t | 0 | | | | the Internet (7) | | | | 4. | (i) Compile the Batch processing framework. (8 |) Create | BTL-6 | | | (ii) Explain the important design factors for WSC. (7 | | | | | | | | | | | | | # UNIT V VECTOR, SIMD AND GPU ARCHITECTURES Introduction-Vector Architecture –SIMD Extensions for Multimedia –Graphics Processing Units –GPGPU Computing –Detecting and Enhancing Loop Level Parallelism- Case Studies- porting scientific applications. | | PART-A (2 -MARKS) | | | |-----|--|------------|-------| | 1. | Differentiate between scalar and vector processors | Remember | BTL-1 | | 2. | Analyze the Vector functional units. | Analyze | BTL-1 | | 3. | Assess Thread block. | Evaluate | BTL-5 | | 4. | Contrast scalar registers and Vector registers | Analyze | BTL-4 | | 5. | List the definition of Graphics Processing unit? | Remember | BTL-1 | | 6. | Discuss SIMD. | Understand | BTL-2 | | 7. | Give Loop Level Parallelism. | Understand | BTL-2 | | 8. | Compare on heterogeneous architecture and homogeneous architecture. | Evaluate | BTL-5 | | 9. | Predict the issues in VMIPS. | Understand | BTL-2 | | 10. | Examine short note on Vector Architecture. | Remember | BTL-1 | | 11. | Describe the Vector execution time. | Remember | BTL-1 | | 12. | Give GPGPU Computing. | Understand | BTL-2 | | 13. | Relate on loop carried dependences. | Apply | BTL-3 | | 14. | Generalize the improvements obtained with graphics processing units. | Create | BTL-6 | | 15. | List the Structural hazards in vectored architecture. | Remember | BTL-1 | | 16. | Classify the factors influencing the Vector Execution Time. | Analyze | BTL-4 | | 17. | Infer the reasons for the usage of memory banks in vector processors. | Analyze | BTL-4 | | 18. | Explain the vector-length register and maximum vector length. | Apply | BTL-3 | | 19. | Show the important features of CPU and GPU. | Apply | BTL-3 | | 20. | Generalize the output dependency. | Create | BTL-6 | | | PART-B(13 MARKS) | | | | 1. | (i) Describe Vector Architecture in detail. (7) | | | | | (ii) Identify the need for SIMD Extension for multimedia. (6) | Remember | BTL-1 | | 2. | (i) Analyze the basic Graphics processing Units. (7) | Analyze | BTL-4 | | | | 1 | | | | (ii) Explain the details of GPGPU computing. (6) | | | |-----|--|------------|-------| | 3. | (i) Write about Detecting and Enhancing Loop Level Parallelism. (7) (ii) Prepare about Vector Length Registers and Vector Mask. | Create | BTL-5 | | | Registers (6) | | | | 4. | Develop in detail about Roofline Visual Performance model. (13) | Evaluate | BTL-6 | | 5. | (i) Summarize the elements of Graphics processing Units (6) (ii) Discuss in detail about NVIDIA GPU computational structures. | Understand | BTL-2 | | 6. | Demonstrate the factors in Eliminating dependent computations (13) | Apply | BTL-3 | | 7. | Describe the primary components of the instruction set architecture of VMIPS. | Remember | BTL-1 | | 8. | Explain the basic structure of a vector architecture VMIPS. (13) | Analyze | BTL-4 | | 9. | Discuss the VMIPS functional units that consumes one element per clock cycle. (13) | Understand | BTL-2 | | | Discuss the concept of Multiple Lanes: Beyond One Element per | | | | 10. | Clock Cycle. (13) | Remember | BTL-1 | | | (i) Explain the details of handling Multidimensional Arrays in | | | | 11. | Vector Architectures. (7) | | | | | (ii) Analyse . how to Handle Sparse Matrices in Vector Architectures. (6) | Analyze | BTL-4 | | 12. | Apply the Programming features used for the Multimedia SIMD | | | | | Architectures. (13) | Apply | BTL-3 | | 13. | (i) Predict the Conditional Branching in GPUs.(ii) Give the NVIDIA GPU Memory Structures | Understand | BTL-2 | | 14. | (i) Describe the Innovations in the Fermi GPU Architecture(7) (ii) How to eliminate Dependent Computations? (6) | Remember | BTL-1 | | | | | | | | PART-C(15 MARKS) | | | |----|---|----------|-------| | 1. | Prepare the primary components of the instruction set architecture of VMIPS and explain the basic vector architecture with neat block diagram. | Create | BTL-6 | | 2. | Prepare the similarities and differences between the following (i) Vector architectures and GPUs. (8) (ii) Multimedia SIMD computers and GPUs. (7) | Create | BTL-6 | | 3. | (i) A design choice is to be made in enhancing a processor. One option is to invest in additional hardware that works at twice the speed which will be benefit 60% of the program. The other is to keep the hardware simple, but invest in compiler optimization, which provides varying benefits for different programs. 40% of the programs can be speeded up by a factor 2, while 30% of the programs can be speeded up by a factor 3. Which option would be better? Evaluate a solution to this. (ii) Develop any four multicore architectures which you have studied, analyze the advantages and disadvantages and present a summary of it. | Evaluate | BTL-5 | | 4. | Orde r the issues in Eliminating Dependent Computations and Finding Dependences. | Evaluate | BTL-5 |