SRM VALLIAMMAI ENGINEERING COLLEGE (An autonomous Institution) SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF

ELECTRONICS AND INSTRUMENTATION ENGINEERING

QUESTION BANK

III SEMESTER(M.E.C&I)

1912105 MACHINE LEARNING

Regulation – 2019

Academic Year 2020-2021(ODD SEM)

Prepared by

Mr. R. Issan Raj, Assistant Professor (Sr.G) – EIE

Unit -I

SYLLABUS

INTRODUCTION

Machine learning: What and why? - Examples of Machine Learning Applications - Types Of Machine Learning Supervised Learning - Machine Learning Process- The Curse of Dimensionality, Overfitting - Training, Testing, and Validation Sets-The Confusion Matrix & Basic Statistics-Bias-Variance Tradeoff.

PART – A				
Q.No	Questions	Competence	BT Level	
1	What is machine learning?	Remember	BTL1	
2	Point out few examples of machine learning applications.	Analyze	BTL 4	
3	Distinguish between supervised and unsupervised learning.	Understand	BTL 2	
4	List the types of machine learning.	Remember	BTL 1	
5	Discuss about the supervised learning.	Understand	BTL 2	
6	Discover one useful perspective on machine language.	Apply	BTL3	
7	Point out the issues in machine learning.	Analyze	BTL 4	
8	Assess the role of the curse of dimensionality in machine learning.	Evaluate	BTL 5	
9	Define the regression problem in statistics.	Remember	BTL 1	
10	Assess about training of the machine learning process.	Evaluate	BTL 5	
11	Define activation function.	Remember	BTL 1	
12	Develop Euclidean distance input and neuron of neural network.	Create	BTL 6	
13	Define confusion matrix.	Remember	BTL 1	
14	Label the Receiver operator curve.	Remember	BTL1	
15	Illustrate about turning data into probabilities.	Apply	BTL 3	
16	Express the Matthew's correlation coefficient.	Understand	BTL 2	
17	Illustrate about Covariance matrix.	Apply	BTL 3	
18	Design the Mahalanobis distance in terms of mean of the process.	Create	BTL 6	
19	Analyze the Gaussian probability distribution model for higher dimension	Analyze	BTL 4	
20	Interpret about the bias variance tradeoff.	Understand	BTL 2	
_0				

PART-B (13 MARKS)				
1	(i) What is machine learning? Discuss about learning and machine	Analyze	BTL 4	
	learning. (5)			
	(ii) Discuss the various types of machine learning. (8)			
2	(i) Summarize in detail about supervised learning. (6)	Understand	BTL 2	
	(ii) Discuss about the Classification problem in machine learning	Ţ		
	techniques. (7)			
3	(i) Summarize the Issues in Machine Learning. (5)	Evaluate	BTL 5	
	(ii) Explain about learning a class from examples in supervised learning.			
	(8)			
4	Summarize about the model selection procedure to fine tune model	Remember	BTL 1	
	complexity. (13)			
5	Apply the Naïve Bayes classifier to the problem of dilemma or	Apply	BTL 3	
	watching TV or having assignment with in a deadline. (13)			
6	Illustrate about the following used in testing machine learning	Apply	BTL 3	
	algorithms.			
	(i) Accuracy Metrics (7)			
	(ii) The receiver operator (ROC) curve (6)			
7	Formulate over fitting, Training, Testing and validation sets in machine	Create	BTL 6	
	learning algorithm. (13)			
8	(i) Describe about the basic statistic properties used in Machine learning	Remember	BTL 1	
	algorithmic perspective. (8)			
	(ii) Explain about Gaussian distribution with its probability density	7		
	function. (5)			
9	(i) Summarize about the first and second regression function used in	Understand	BTL 2	
	supervised problems. (6)			
	(ii) Discuss about the three decision needed to make to build a good	l		
	approximation in Supervised machine learning algorithm. (7)			
10	Explain about any four examples of Machine learning applications.	Remember	BTL 1	
	(13)			
11	(i) Describe about the curse of dimensionality in machine learning	Remember	BTL 1	
	techniques. (6)			

	(ii) Explain about the confusion matrix and its use in testing of machine	,	
	learning algorithm. (7)		
12	Summarize in detail about the machine learning process. (13)	Understand	BTL 2
13	(i) Analyze about the regression problem in statistics for supervised	Analyze	BTL 4
	learning. (7)		
	(ii) Analyze about the classification problem for supervised learning.		
	(6)		
14	Explain about the bias variance trade off with necessary equation. (13)	Analyze	BTL 4
	PART - C (15 MARKS)		
1	Design the Naïve Bayes classifier model for the assignment dead line	Create	BTL 6
	problem. (15)		
2	(i) Evaluate the regression and classification of supervised learning.	Evaluate	BTL 5
	(8)		
	(ii) Evaluate the machine learning process and the curse of		
	dimensionality. (7)		
3	Evaluate Accuracy metrics in machine learning and turning data into	Evaluate	BTL 5
	probabilities. (15)		
4	Design the covariance matrix and the expectation of the sum of squares	Create	BTL 6
	of error using the bias variance trade off. (15)		

Unit -II SYLLABUS NEURONS,NEURAL NETWORKS,AND LINEAR DISCRIMINANTS

Hebb's Rule - Neural Networks - The Perceptron - Linear Separability & Linear Regression. The Multi-layer Perceptron: Biases, Algorithm - Local minima and Stochastic gradient Descent Examples Of Using The MLP : Regression Problem & Classification Example - Deriving Back-Propagation.

	PART - A				
Q.No	QUESTIONS	Competence	BT Level		
1	Analyze about McCulloh and Pitts neuron.	Analyzing	BTL4		
2	Define Hebb rule.	Remembering	BTL1		
3	List out different output activation functions.	Remembering	BTL1		
4	What is meant by perceptron?	Understanding	BTL2		

5	Define linear separability.	Remembering	BTL1
6	Interpret about linear regression in two and three dimension.	Understanding	BTL2
7	Label the multilayer perceptron with neat diagram.	Remembering	BTL1
8	Name the two parts of MLP.	Understanding	BTL2
9	Explain hybrid learning.	Understanding	BTL2
10	Write the error function used for the perceptron.	Remembering	BTL1
11	Illustrate about sequential and batch training	Applying	BTL 3
12	Demonstrate briefly the various steps of deriving Back Propagation.	Applying	BTL 3
13	Illustrate about local minima	Applying	BTL 3
14	Summarize briefly about the principles of gradient descent.	Evaluating	BTL 5
15	Define Biases.	Remembering	BTL 1
16	Differentiate optimal separating hyperplane and soft margin hyperplane.	Analyzing	BTL 4
17	Analyze about auto association Network.	Analyzing	BTL 4
18	Summarize Back propagation of error	Evaluating	BTL5
19	Design the mathematical expression for back propagation of error	Creating	BTL6
20	Develop the cross entropy error function from entropy	Creating	BTL6
	PART-B (13 MARKS)		
1	(i) Describe about Hebb's rule with an example. (5)		
	(ii) Examine about McCulloch and Pitts Neuron Model with neat	Remembering	BTL 1
	diagram and also give its limitation. (8)		
2	Describe about the Perceptron network with neat diagram and equation.		
	(13)	Remembering	BILI
3	(i) Recall the following terms used in Perceptron learning algorithm		
	a) The learning rate (3)		
	b) The bias Input (3)	Remembering	BTL 1
	(ii) Examine the Perceptron learning algorithm with its steps and also		
	explain with an example. (7)		
4	Describe about the linear regression with necessary equations and also	Remembering	BTI 1
	explain any one example. (13)	avenienioering	
5	(i) Summarize about linear separability necessary equation and diagram. (7)	Understanding	BTL 2

	(ii) Discuss about decision boundary solving the XOR problem in linear	•	
	separability with truth table and diagram. (6)		
6	(i) Illustrate about multilayer perceptron network with neat diagram.		
	(7)	Understanding	BTI 2
	(ii) Discuss about the back propagation of error with necessary equation		DIL 2
	and diagram. (6)		
7	Interpret about the multilayer perceptron algorithm with necessary	Understanding	BTI 2
	assumption. (13)	Onderstanding	DIL 2
8	(i) Apply Perceptron algorithm to write its implementation in any	τ	
	programming language. (7)	Applying	BTL 3
	(ii) Demonstrate about the Perceptron convergence theorem. (6)		
9	(i) Apply multilayer perceptron network for solving XOR problem. (6)		
	(ii) Demonstrate about going forwards and backwards in multilayer	Applying	BTL 3
	perceptron network. (7)		
10	(i) Point out the different output activation function used in multilayer	•	
	perceptron with necessary equations. (7)	Analyzing	BTI 1
	(ii) Explain about the amount of training data and number of hidden	7 maryzing	DILT
	layers used in practical multilayer perceptron. (6)		
11	Explain about auto association network with necessary diagram. (13)	Analyzing	BTL 4
12	(i) Explain about Sequential and batch training and local minima in		
	multi layer perceptron with necessary diagram. (6)	Analyzing	BTL 4
	(ii) Point out the features needed to remind while using MLP. (7)		
13	Summarize about the deriving back propagation in MLP with necessary	Fyelueting	BTI 5
	diagram. (13)	Evaluating	DILJ
14	Design the back propagation error for the linear, sigmoidal and Soft-	Creating	BTI 6
	max output activation function. (13)	Creating	DILO
	PART - C (15 MARKS)		
1	Evaluate perceptron learning algorithm and also implement it for logical	Evaluating	RTI 5
	OR operation. (15)	L' varuatility	
2	Develop the multilayer perceptron algorithm with neat sketch and	Creating	RTI 6
	necessary equations. (15)	Crouning	DILU
3	(i) Evaluate Mcculloch and Pitts neurons network with necessary	Evaluating	BTL5

	equations.	(7)		
	(ii) Evaluate the various output activation functions used in multil	ayer		
	perceptron.	(8)		
4	Design the back propagation network with necessary equation assumption.	and (15)	Creating	BTL 6

	Unit -III			
SYLLABUS DIMENSIONALITY REDUCTION AND EVOLUTIONARY MODELS . Linear Discriminant Analysis (LDA) - PRINCIPAL COMPONENTS ANALYSIS (PCA), Factor Analysis - Independent Components Analysis -PROBABILISTIC MODEL - Gaussian Mixture Models : EM Algorithm - Nearest Neighbour Methods - Support Vector Machines.				
	PART - A			
Q.No	Questions	Competence	BT Level	
1	Define dimensionality reduction.	Remembering	BTL1	
2	When will you apply LDA for dimensionality reduction?	Remembering	BTL1	
3	Identify the relation of PCA with multi layer perceptron.	Remembering	BTL1	
4	Illustrate briefly about principle component analysis.	Applying	BTL3	
5	What is meant by dimensionality reduction?	Understanding	BTL2	
6	Define the kernel PCA algorithm.	Remembering	BTL1	
7	Demonstrate briefly about multi dimensional scaling algorithm.	Applying	BTL3	
8	Write the equation of reconstruction error in locally linear embedding.	Remembering	BTL1	
9	Discuss briefly about principle component algorithm.	Understanding	BTL2	
10	Illustrate about the Gaussian mixture models.	Applying	BTL3	
11	Analyze about the efficient distance computation of the KD tree.	Analyzing	BTL4	
12	Point out the significance of nearest neighbor smoothing.	Analyzing	BTL4	
13	Summarize briefly about Expectation and maximization algorithm.	Evaluating	BTL5	
14	What is meant by kernel?	Remembering	BTL1	
15	Discuss about choosing of kernels	Understanding	BTL2	
16	Assess the significance of support vector machine.	Evaluating	BTL5	

17	Design the k-nearest neighbours algorithm bias variance decomposition equation.	Creating	BTL6
18	Develop the SVM regression expression for the test point.	Creating	BTL6
19	Discuss briefly about multiclass classification.	Understanding	BTL2
20	Point out the significance of SVM regression.	Analyzing	BTL4
	PART-B (13 MARKS)		
1	Describe about linear discriminant analysis (LDA) with necessary	Remembering	BTL1
	equation and possible projection lines. (13)		
2	Describe about principal component analysis (PCA) with necessary	Remembering	BTL1
	equation and possible projection lines. (13)	6	
3	(i) Analyze the relation of principal component analysis with multilayer		
	Perceptron. (4)	Analyzing	BTI 4
	(ii) Explain about Factor analysis of dimensionality reduction with	,	
	necessary equation. (9)		
4	(i) Interpret about the principal component analysis algorithm. (5)		
	(ii) Summarize about kernel PCA and its algorithm with necessary	Understanding	BTL2
	equations. (8)		
5	Illustrate about independent component analysis with necessary	Applying	BTL3
	equations. (13)		
6	(i) Describe about local linear embedding of dimensionality reduction	1	
	with its algorithm and equation. (10)	Remembering	BTL1
	(ii) Define Iso map algorithm. (3)		
7	(i) Illustrate about multidimensional scaling and also give its algorithm.		
	(7)	Applying	BTL3
	(ii) Demonstrate about Gaussian mixture models with an example. (6)		
8	Describe about the Expectation-Maximization algorithm and also give	Remembering	BTL1
	the general EM algorithm. (13)		
9	(i) Explain about the Gaussian mixture model EM algorithm. (7)		
	(ii) Analyze about the nearest neighbor method in probabilistic learning.	Analyzing	BTL4
	(6)		
10	(i) Summarize about nearest neighbor smoothing in probabilistic	Understanding	BTL2
	learning. (5)	ondorstanding	

	(ii) Discuss about efficient distance computation in probabil	listic		
	learning.	(8)		
11	(i) Summarize about optimal separation and constrained optimiza	ation		
	problem.	(6)	Understanding	BTL2
	(ii) Discuss about Kernels and choosing of kernels in SVM.	(7)		
12	(i) Summarize about multiclass classification of SVM.	(7)	Evaluating	BTL5
	(ii) Explain about SVM regression with necessary equation.	(6)		
13	Explain about the support vector machine with its algorithm	and	Analyzing	BTL4
	example.	(13)		
14	Design the KD tree for the problem of finding nearest neighbor	data	Creating	BTL6
	structure and also develop it in programming language.	(13)	6	-
	PART - C (15 MARKS)			
1	Develop the linear discriminant analysis and principle compo	nent	Curreting	
	analysis with necessary equation.	(15)	Creating	BILO
2	Evaluate independent components analysis and locally linear embed	ding		
	with necessary equation.	(15)	Evaluating	BIL 2
3	Evaluate kernel and choosing of kernels with necessary equations.		F 1	
		(15)	Evaluating	BIL 2
4	Design the support vector machine for training data and develop	p its	Creating	DTI 6
	implementation.	(15)	Creating	BILO

	Unit -IV				
	SYLLABUS				
	LEARNING				
Ev	olutionary Learning - The Genetic Algorithms (GA)- Reinforcement Le	earning -Decisi	on Trees -		
CL	ASSIFICATION AND REGRESSION TREES (CART) - Ensemb	le Learning	:Boosting,		
Ba	gging, Random Forests - Unsupervised Learning : K-Means – Algorithm	- Vector Quan	tisation.		
PART - A					
Q.No	Questions	Competence	BT Level		
1	Point out the significance of evolutionary learning.	Analyze	BTL4		
2	Define the genetic algorithm.	Remember	BTL1		

3	Interpret about mutation with example.	Understand	BTL2
4	List the different ways for parent selection on genetic algorithm.	Remember	BTL1
5	Discuss about Cross over with an example.	Understand	BTL2
6	Illustrate about regression in trees.	Apply	BTL3
7	Differentiate between Sarsa and Q-learning.	Analyze	BTL4
8	Summarize about basic random forest training algorithm.	Evaluate	BTL5
9	List the genetic operators for generating off spring.	Remember	BTL1
10	Summarize about Markov property.	Evaluate	BTL5
11	List the limitations of genetic algorithm.	Remember	BTL1
12	Develop the programming code for computing entropy.	Create	BTL6
13	Label the reinforcement learning cycle with neat diagram.	Remember	BTL1
14	Define values in reinforcement learning.	Remember	BTL1
15	Demonstrate briefly about Entropy.	Apply	BTL3
16	Summarize about the regression and classification trees.	Understand	BTL2
17	Illustrate about boosting algorithm of ensemble learning.	Apply	BTL3
18	Develop the loss function for Adaboost algorithm.	Create	BTL6
19	Differentiate random forest training algorithm with boosting algorithm.	Analyze	BTL4
20	Discuss about the k-means neural networks.	Understand	BTL2
	PART-B (13 MARKS)		
1	(i) Analyze about the parent selection in evolutionary learning. (7)		
	(ii) Explain about Evaluating fitness and string representation in genetic	Analyze	BTL4
	algorithm. (6)		
2	Describe about basic genetic algorithm in detail and also give its steps.	Understand	BTL2
	(13)		
3	(i) Summarize about Genetic operator with examples. (6)		
	(ii) Explain about the three basics tasks need to be performed to apply	Evaluate	BTL5
	genetic algorithm. (7)		
4	(i) List the limitations of genetic algorithm. (4)		
	(ii) Describe about the genetic programming with necessary diagram.	Remember	BTL1
	(9)		
5	(i) Illustrate about combining sampling with evolutionary programming.	Apply	BTI 3
	(5)	· •YY1J	

	(ii) Demonstrate about the getting lost problem of reinforcement		
	learning. (8)		
6	(i) Analyze the general reinforcement learning cycle and also give its		
	diagram. (5)		
	(ii) Design a Markov decision process to decide on the state of your	Analyze	BTL4
	mind tomorrow given your mind of today with necessary diagram.		
	(8)		
7	Describe about Q-learning and Sarsa algorithm used in reinforcement	Remember	RTI 1
	learning. (13)	Kennember	
8	(i) Differentiate between Sarsa algorithms with Q-learning algorithm.(5)		
	(ii) Summarize about Classification and regression trees with necessary	Understand	BTL2
	equations. (8)		
9	Describe about learning with trees and also give the uses of ID3	6	ב דד 1
	algorithm. (13)	Remember	
10	Summarize about boosting type ensemble method and Ada boost	Lindorstand	
	algorithm. (13)	Understand	DIL2
11	Explain about Bagging and random forest method of combining	Analyze	
	classifiers. (13)	Anaryze	DIL4
12	(i) Demonstrate about the different ways to combine classifiers with neat	-	
	diagram. (9)	Apply	рті 2
	(ii) Illustrate about The mixture of Experts algorithm with necessary	Арргу	
	steps. (4)		
13	(i) Describe about the K-means Neural network with neat diagram and	l	
	equation. (9)		סידו 1
	(ii) Examine the need of using vector quantization in unsupervised		
	learning. (4)	Remember	
14	(i) Develop the online k-means algorithm and also design the		
	programming code. (8)		BTL 6
	(ii) Design the programming code to compute the bootstrap sample. (5)	Create	
	PART - C (15 MARKS)	l 	I
1	Design the markov decision processes and Q-learning algorithm with		BTL 6
	necessary diagram and equations. (15)	Create	
2	Design k-means neural network and develop the online k-means	Create	BTL 6

	algorithm.	(15)	
3	Evaluate the basic genetic operator and genetic programming necessary diagram.	with (15) Evaluate	BTL 5
4	Evaluate the classification and regression trees with an example.	(15)Evaluate	BTL 5

	Unit -V		
	SYLLABUS GRAPHICAL MODELS		
Ba	avesian Networks - Markov Random Fields - Hidden Markov Models	(HMMS) - Marko	v Chain
М	onte Carlo (MCMC) Methods - Deep Belief Networks (DBN)	()	
PART - A			
Q.No	Questions	Competence	BT Level
1	Point the algorithm that produces pseudo-random numbers.	Analyze	BTL4
2	Define MCMC.	Remember	BTL1
3	Distinguish random numbers and Gaussian Random numbers.	Understand	BTL2
4	Define Sampling.	Remember	BTL1
5	Interpret Markov Chains briefly.	Understand	BTL2
6	Illustrate the proposal distribution method.	Apply	BTL3
7	Point out the various MCMC methods.	Analyze	BTL4
8	Summarize briefly about graphical models.	Evaluate	BTL5
9	Write briefly about sampling and resampling algorithm.	Remember	BTL1
10	Assess the need of Gibbs sampler.	Evaluate	BTL5
11	How Gibbs sampler forms the basis for software package.	Remember	BTL1
12	Express Bayesian Belief network.	Create	BTL6
13	Define Directed and Undirected graphs.	Remember	BTL1
14	Identify polytrees in a graph.	Remember	BTL1
15	Illustrate about approximate inference.	Apply	BTL3
16	Discuss briefly about Making Bayesian networks.	Understand	BTL2
17	Discover the properties of HMM	Apply	BTL3
18	Develop top –down and bottom-up inference.	Create	BTL6

19	Analyze HMM Baum-Welch(forward –Backward)algorithm	Analyze	BTL4
20	Give any two Tracking methods.	Understand	BTL2
	PART-B (13 MARKS)		
1	(i) Explain about sampling from probability distribution. (5)		
	(ii) Explain about the sampling methods in generation of random	Analyze	BTL4
	numbers. (8)		
2	(i) Discuss about Gaussian Random numbers with necessary equations.		
	(7)	Understand	BTL2
	(ii) Describe about Box-Muller scheme implementation with its	Chiderstand	D1L2
	algorithm. (6)		
3	(i) Summarize about the Rejection Sampling Algorithm with its		
	mathematical representation. (8)	Evaluate	BTL5
	(ii) Deduce the histogram of a mixture of two Gaussians by using		
	rejection sampling. (5)		
4	(i) Describe Sampling –importance resampling algorithm. (6)		
	(ii) Describe Gibbs Sampling with necessary mathematical	Remember	BTL1
	representation. (7)		
5	(i) Demonstrate in detail about MCMC. (8)		
	(ii) Illustrate about the Simulated Annealing by a distribution and also	Apply	BTL3
	give its sample sketch. (5)		
6	(i) Develop the two graphical models and show the various relationships		
	between the nodes. (7)	Create	BTL6
	(ii) Develop the Gibbs sampler for Gaussian mixture. (6)		
7	(i) Describe variable elimination algorithm with its algorithm and neat		
	diagram. (6)	Remember	BTL1
	(ii) Describe about the Approximate Inference done in Bayesian		
	Network. (7)		
8	Describe in detail the Bayesian Network with an example. (13)	Understand	BTL2
9	Describe about the Bayesian network for an exam panic problem with		BTL1
	necessary diagram. (13)	Remember	
10	Describe in detail Markov Random fields and Markov Random Field	Remember	BTL1
	Image Denoising Algorithm. (13)		

11	(i)Explain about detail forward algorithm with necessary equations.(8)(ii)Infer about HMM forward algorithm with its steps.(5)	Analyze	BTL4
12	Explain about a HMM Baum-Welch forward –Backward algorithm with neat diagram and its algorithm.(13)	Analyze	BTL4
13	Summarize about Tracking methods and interpret how Kalman Filter isacting as a recursive estimator.(13)	Understand	BTL2
14	Demonstrate in detail about Kalman Filter Algorithm and the particle filter. (13)	Apply	BTL3
	PART - C (15 MARKS)		
1	Design and develop the Deep belief Network algorithm. (15)	Create	BTL 6
1	Design and develop the Deep beliefNetwork algorithm.(15)(i)CreateMarkov chains for objective function.(8)(ii)DevelopMetropolis-Hastings algorithm thatrejects or accepts asample.(7)	Create Create	BTL 6 BTL 6
1 2 3	Design and develop the Deep beliefNetwork algorithm.(15)(i)CreateMarkov chains for objective function.(8)(ii)DevelopMetropolis-Hastings algorithm thatrejects or accepts asample.(7)Evaluate the Bayesian network for an exam panic problem.(15)	Create Create Evaluate	BTL 6 BTL 6 BTL 5