SRM VALLIAMMAI ENGINEERING COLLEGE

(AN AUTONOMOUS INSTITUTION, AFFILIATED TO ANNA UNIVERSITY)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

III SEMESTER

1912307 – EMBEDDED SOFTWARE DEVELOPMENT

Regulation - 2019

Academic Year 2021 - 22(ODD)

Prepared by

Dr. A. SAMYDURAI, ASSOCIATE PROFESSOR

SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

SUBJECT: Embedded Software Development **SEM / YEAR:** III Semester / M.E – CSE II Year

UNIT I - EMBEDDED PROCESSORS

Embedded Computers - Characteristics of Embedded Computing Applications - Challenges in Embedded Computing System Design - Embedded System Design Process- Formalism for System Design - Structural Description - Behavioural Description - ARM Processor - Intel ATOM Processor

ATOM P	rocessor.				
PART - A					
Q.No	Questions	BT	Competence		
1.	Define embedded computers.	BTL-1	Remember		
2.	Differentiate CPU and platform in embedded computer.	BTL-2	Understand		
3.	Access What is an embedded computer system?	BTL-5	Evaluate		
4.	Identify the layers embedded computer system.	BTL-1	Remember		
5.	Show the characteristics of embedded computing.	BTL-3	Apply		
6.	What is the nature of embedded computing machines makes their design more difficult?	BTL-5	Evaluate		
7.	Summarize about the costs of various sorts are also very important.	BTL-3	Apply		
8.	Why use microprocessors?	BTL -1	Remember		
9.	Infer the embedded computing systems have to provide sophisticated functionality.	BTL-4	Analyze		
10.	Generalize to make things more difficult, embedded computing operations must often be performed to meet deadlines.	BTL-6	Create		
11.	State and express the multirate.	BTL-2	Understand		
12.	Analyse How much hardware do we need?	BTL-4	Analyze		
13.	Generalize and define performance in embedded computing.	BTL-6	Create		
14.	What are the typical non functional requirements?	BTL-1	Remember		
15.	Summarizes the major steps in the embedded system design process.	BTL-1	Remember		

16.	Express the requirements form that can be filled out at the start of the project.	BTL-2	Remember
17.	What are requirements might we have for our GPS moving map?	BTL-4	Analyze
18.	Give the object-oriented design emphasizes two concepts of importance	BTL-2	Understand
19.	How do we design for upgradability?	BTL-2	Understand
20.	Show what are the Object-oriented specification can be seen in two complementary ways?	BTL-3	Apply
	PART – B		
1.	i) How did you describe Embedding Computers?(7)ii) How did you describe some of the microprocessors used in the BMW 850i? (6)	BTL-1	Remember
2.	Summarize in detail about BMW 850i brake and stability control system. (13)	BTL-2	Understand
3.	Describe in detail about i) Challenges in Embedded Computing System Design.(6) ii) Characteristics of Embedded Computing Applications.(7)	BTL-1	Remember
4.	Can you apply the facts to describe the embedded system design process. (13)	BTL-3	Apply
5.	Compare between typical non-functional requirements and sample requirements form. (13)	BTL-5	Evaluate
6.	Explain the Requirements analysis of a GPS moving map. (13)	BTL-4	Analyze
7.	Discuss about specification and architecture design the embedded system design process. (13)	BTL-2	Understand
8.	Analyse the characteristic of embedded computing applications. (13)	BTL-4	Analyze
9.	Compose and explain in detail about designing hardware and software components. (13)	BTL-6	Create
10.	Examine the formalisms for system design. (13)	BTL-1	Remember
11.	Explain the structural description and behavioral description. (13)	BTL-4	Analyze
12.	Discuss about the ARM processor with the help of an illustration. (13)	BTL-2	Understand
13.	Describe the Intel ATOM processor. (13)	BTL-1	Remember
14.	Show the signal, call, and time-out events in UML and a state machine specification in UML. (13)	BTL-3	Apply

1.	How would you measure the execution speed of a program running on a microprocessor? You may not always have a system clock available to measure time. To experiment, write a piece of code that performs some function that takes a small but measurable amount of time, such as a matrix algebra function. Compile and load the code onto a microprocessor, and then try to observe the behaviour of the code on the microprocessor's pins. (15)	BTL-4	Analyze
2.	Develop a requirements description for an interesting device. The device maybe a household appliance, a	BTL-5	Evaluate
	computer peripheral, or whatever you wish. (15)		
3.	Write a specification for an interesting device in UML. Try to use a variety of UML diagrams, including class diagrams, object diagrams, sequence diagrams, and so on (15)	BTL-6	Create
4.	Draw a state diagram for a behavior that sends the command bits on the track. The machine should generate the address, generate the correct message type, include the parameters, and generate the ECC. (15)	BTL-6	Create
	the parameters, and generate the Lee. (13)		

UNIT II - EMBEDDED COMPUTING PLATFORM

CPU Bus Configuration - Memory Devices and Interfacing - Input / Output Devices and Interfacing - System Design - Development - Alarm Clock - Analysis and Optimization of Performance - Power and Program Size.

PART - A

Q.No	Questions	BT	Competence
1.	Define data registers.	BTL-1	Remember
2.	What are the Devices typically have several registers?	BTL-1	Remember
3.	Define compute the average memory access time.	BTL-1	Remember
4.	Discover the major steps in the process.	BTL-3	Apply
5.	Define page fault.	BTL-1	Remember
6.	Rank and list the ARM7 performs the following steps when responding to an interrupt.	BTL-5	Evaluate
7.	Draw the four-cycle handshake.	BTL-1	Remember
8.	Show the DMA requires the CPU to provide two additional bus signals.	BTL-3	Apply
9.	Generalize the a typical DMA controller includes the following three registers.	BTL-6	Create
10.	Differentiate SRAM and DRAM.	BTL-2	Understand
11.	Examine the DDR.	BTL-3	Apply

12.	Summarize the SIMMs and DIMMs.	BTL-2	Understand
13.	Summarize the gives a total transfer time in clock cycles.	BTL-2	Understand
14.	Access the Draw a timing diagram for a write operation with no wait states.	BTL-5	Evaluate
15.	Point out front panel of the alarm clock.	BTL-4	Analyze
16.	Give the times and data volumes in a burst bus transfer.	BTL-2	Understand
17.	Compose the steps to get the data from memory to the CPU.	BTL-6	Create
18.	Analyse the definition of state and timing modes.	BTL-4	Analyze
19.	Tell the classification of the system control module contains the following peripheral devices.	BTL-1	Remember
20.	Point out and define test-bench program and test bench.	BTL-4	Analyze
	PART - B		
1.	Discuss about i) Bus Protocols. (6) ii) System Bus Configurations. (7)	BTL-2	Understand
2.	Summarize the following uninformed i) Memory Device Organization. (6) ii) Random-Access Memories. (7)	BTL-5	Evaluate
3.	i) Explain in detail about CPU bus configuration. (6) ii) Explain assertions and queries in memory devices. (7)	BTL-4	Analyze
4.	Relate memory interfacing and device interfacing discuss in detail about the same. (13)	BTL-3	Apply
5.	(i) Compose what is touch screen? Explain input /output devices with example.(6)(ii) Compose the memory device and interface.(7)	BTL-6	Create
6.	(i) Explain the LED connected to a digital output with an example. (7)(ii) Write a Cross section of a resistive touch screen. (6)	BTL-1	Remember
7.	(i) Write a short note with neat sketch in Touch screens with example.(7)(ii) Explain an n-digit display in detail. (6)	BTL-4	Analyze
8.	What is the cross-compiler? Explain in detail with example on development environments.(13)	BTL-1	Remember
9.	Describe the approach of debugging techniques with example. (13)	BTL-2	Understand
10.	(i) Explain the components of debugging challenges with example.(7) (ii) Briefly explain the development environments .(6)	BTL-1	Remember
11.	Explain Briefly design example with alarm clock. (13)	BTL-4	Analyze

12.	Draw a timing diagram that shows a complete DMA operation, including handing off the bus to the DMA controller, performing the DMA transfer, and returning bus control back to the CPU. (13)	BTL-2	Understand
13.	Explain power and program size with examples. (13)	BTL-1	Remember
14.	Show and explain Optimization of performance. (13)	BTL-3	Apply

	PART-C		
1.	Compose draw a UML sequence diagram for a bus mastership request, grant, and return.(15)	BTL-6	Create
2.	(i) Develop the Class diagram for the alarm clock.(8) (ii) State with neat sketch Pre-processing button inputs.(7)	BTL-6	Create
3.	Explain the memory interfacing. Draw UML state diagrams for a bus master ship transaction in which one sideshows the CPU as the default bus master and the other shows the device that can request bus master ship.	BTL-4	Analyze
4.	Summarize about the following with examples (i) Design example with alarm clock (8) (ii) Development environments (7)	BTL-5	Evaluate

UNIT-III EMBEDDED NETWORK ENIVIRONMENT

Distributed Embedded Architecture - Hardware And Software Architectures - Networks for Embedded Systems - I2C - CAN Bus - SHARC Link Supports - Ethernet - Myrinet - Internet - Network-based Design - Communication Analysis - System Performance Analysis - Hardware Platform Design - Allocation and Scheduling - Design Example - Elevator Controller.

PART - A

Q.No	Questions	BT Level	Competence
1.	Define PEs.	BTL-1	Remember
2.	What is meaning of embedded system?	BTL-1	Remember
3.	Show what is hardware platform?	BTL-3	Apply
4.	Why is an embedded system important?	BTL-5	Evaluate
5.	Represent the advantage of this fact when analyzing network		
	performance?	BTL-3	Apply
6.	Define network abstractions.	BTL-1	Remember
7.	Which software is used for embedded system?	BTL-4	Analyze
8.	Which language is used in embedded system?	BTL-2	Understand
9.	How do you diagnose a CAN bus system?	BTL-1	Remember
10.	Is CAN bus digital or analog?	BTL-5	Evaluate
11.	Define the feature of SHARC.	BTL-3	Understand

12.	What is the fieldbus?	BTL-4	Analyze
13.	What are the Internet provides a standard way for an embedded		
	system?	BTL-6	Create
14.	State the single-hop network.	BTL-2	Understand
15.	What is critical analysis in communication?	BTL-2	Understand
16.	How do you evaluate the performance of embedded		
	computing?	BTL-6	Apply
17.	State Is real-time scheduler in embedded system?	BTL-4	Analyze
18.	Write the elevator system.	BTL-2	Create
19.	List the scheduling in embedded systems?	BTL-1	Remember
20.	Show the purpose of hardware platform.	BTL-1	Remember
	PART - B		
1.	Explain the detail with neat sketch distributed embedded system .(13)	BTL-1	Remember
2.	What are the steps for network abstractions? Explain each step. (13)	BTL-3	Apply
3.	Explain the hardware and software architectures with an example. (13)	BTL-4	Analyze
4.	Explain the signal processing system built from print-to-point links in detail with example. What is the need format of a typical message on a bus? (13)	BTL-2	Understand
5.	Discuss in detail with sketch crossbar network and multistage network.(13)	BTL-4	Analyze
6.	Describe the steps involved in the Message Passing Programming with example in Data-push network architectures. (13)	BTL-5	Evaluate
7.	Summarize the networks for embedded systems (13)	BTL-2	Understand
8.	Explain format of an I ² C address transmission. (13)	BTL-1	Remember
9.	Write a short note on the I ² C Bus and Electrical interface to the I ² C bus. (13)	BTL-6	Create
10.	Explain briefly I ² C interface in a microcontroller and Transmitting a byte on the I ² C bus. (13)	BTL-1	Remember
11.	i) Let's assume that our I ² C bus runs at the rate of 100KB/s and that we need to send one 8-bitbyte. Based on the message format, we can compute the number of bits in the complete packet ii) Generalize about multihop communication (13)	BTL-4	Analyze
12.	i). Discuss the general-purpose of Ethernet is very widely used as a local area network.(6) ii).Explain the typical bus transactions on the I ² C bus.(7)	BTL-2	Understand
13.	 i) How did you describe theory of operation and requirements in elevator controller (6)? ii) How would you identify an example for Physical interface classes for the elevator system? (7) 	BTL-1	Remember
14.	 i) Illustrate the basic class diagram for the elevator system with detail notes.(8) ii) Write short note on the networks in the elevator. (5) 	BTL-3	Apply

	PART-C		
1.	What is the longest time that a processing element may have to wait between two successive data transmissions on a roundrobin arbitrated bus? Assume that each data transmission requires one time unit.(15)	BTL-4	Analyze
2.	How can an automotive network ensure that safety-critical components are not starved of bus access—that they are guaranteed to be able to transmit within a certain amount of time? (15)	BTL-5	Evaluate
3.	Give an example of a simple protocol that would allow sensor nodes in a sensor network to determine the other nodes with which they can communicate.(15)	BTL-6	Create
4.	Summarize about the design example elevator controller with neat sketch.(15)	BTL-6	Create

UNIT IV - REAL-TIME CHARACTERISTICS

Clock Driven Approach - Weighted Round Robin Approach - Priority Driven Approach - Dynamic versus Static Systems - Effective Release Times and Deadlines - Optimality of the Earliest Deadline First (EDF) Algorithm - Challenges in Validating Timing Constraints in Priority Driven Systems - Off-Line versus On-Line Scheduling.

P	Δ	\mathbf{R}^{γ}	Γ_	Δ

O.N. DELL C.					
Q.No	Questions	BT Level	Competence		
1.	Define clock-driven approach.	BTL-1	Remember		
2.	Articulate the difference between clock-driven scheduler	BTL-3	Apply		
	and cyclic scheduler explain in detail.				
3.	Illustrate the Time driven scheduling in real time.	BTL-1	Analyze		
4.	Write the priority driven scheduling.	BTL-6	Create		
5.	Summarize the round robin in embedded system.	BTL-2	Understand		
6.	Pivot the round robin scheduling explain with example.	BTL-6	Create		
7.	Identify the use of weighted round-robin approach.	BTL-1	Remember		
8.	Describe the weighted round-robin approach.	BTL-1	Remember		
9.	Define priority-driven approach	BTL-1	Remember		
10.	Conclude the algorithm for priority based scheduling.	BTL-4	Remember		
11.	Solve the dynamic versus static systems.	BTL-3	Apply		
12.	Summarize the embedded system has a deadline for each task.	BTL-2	Understand		
13.	Classify the type of embedded system can miss deadlines to complete the task.	BTL-2	Understand		
14.	Defend the process misses a deadline in embedded systems	BTL-5	Evaluate		
15.	Define effective release time	BTL-1	Remember		
16.	How effective release times and deadlines are useful in real-time scheduling?	BTL-5	Evaluate		
17.	Interpret the period and release time in RTS.	BTL-2	Understand		
18.	Illustrate the effective release time and effective deadline.	BTL-4	Analyze		
19.	Judge the EDF as a dynamic priority scheduling algorithm for real-time tasks.	BTL-4	Analyze		
20.	Solve the EDF scheduling adopts dynamic scheduling policy.	BTL-3	Apply		
	PART - B				
1.	What are characteristics of real-time systems? Difference between FCFS and SJF CPU scheduling algorithms.(13)	BTL-1	Remember		
2.	Write briefly on clock driven approach and weighted round robin approach.(13)	BTL-2	Understand		

3.	Write a short note on priority driven approach and clock driven approach with examples. (13)	BTL-4	Analyze
4.	Define real time embedded system. Write a short note on dynamic versus static system.(13)	BTL-1	Remember
5.	Explain weighted round robin approach in detail. Difference between dynamic versus static system (13)	BTL-1	Remember
6.	Explain effective release times and deadlines in detail with real time example. (13)	BTL-5	Evaluate
7.	Narrate optimality of the earliest deadline first algorithm in detail. Heavy traffic analysis for EDF ueues with reneging (13)	BTL-2	Understand
8.	Briefly explain on EDF (i). Deadline interchange (4) (ii). Heavy traffic analysis for EDF queues with reneging (3) (iii). Comparison with Fixed-priority schedulers(3) (iv). Kernels implementing EDF scheduling (3)	BTL-6	Create
9.	What is online scheduling and offline scheduling? With diagrammatic representation, explain in off line versus online scheduling detail.(13)	BTL-3	Apply
10.	Compare and contrast about the dynamic versus static system and effective release times and deadlines.(13)	BTL-4	Analyze
11.	Examine the challenges in validating timing constraints in priority driven systems. (13)	BTL-4	Analyze
12.	Describe the optimality of the EDF algorithm and clock driven approach.(13)	BTL-2	Understand
13.	Explain about online scheduling in real time system. List the type of scheduling is used in real life operating systems Why?(13)	BTL-1	Remember
14.	How do you execute the planning in solving problems in challenges in validating timing constraints in priority driven systems and anomalous behavior of priority –driven systems with neat sketch? (13)	BTL-3	Apply

	PART-C		
1	Create and design the architecture of challenges in validating timing constraints in priority driven systems and anomalous behavior of priority –driven systems with neat sketch. (15)	BTL-6	Create

2.	Explain about the off line versus online scheduling . (15)	BTL-5	Evaluate
3.	Develop the optimality of the earliest deadline first algorithm . (15)	BTL-6	Create
4.	Analyse about the weighted round robin approach, priority driven approach and explain it. (15)	BTL-4	Analyze

UNIT V - SYSTEM DESIGN TECHNIQUES

Design Methodologies - Requirement Analysis – Specification - System Analysis and ArchitectureDesign - Quality Assurance - Design Examples - Telephone PBX - Ink jet printer - Personal Digital Assistants - Set-Top Boxes

PART - A

Q.No	Questions	BT Level	Competence
1.	List the design process has several important goals.	BTL-1	Remember
2.	Define design flow.	BTL-1	Remember
3.	Illustrate the design methodologies.	BTL-4	Analyze
4.	Summarize the waterfall model.	BTL-2	Understand
5.	Draw the successive refinement development model.	BTL-2	Understand
6.	Solve the simple hardware/software design methodology.	BTL-3	Apply
7.	Judge the use of Concurrent engineering	BTL-5	Evaluate
8.	Articulate the elements of Concurrent product realization in Concurrent engineering	BTL-3	Apply
9.	Discover a good set of requirements should meet one tests verifiability in requirements analysis?	BTL-3	Understand
10.	Illustrate in requirements analysis for test in Traceability.	BTL-4	Analyze
11.	Design an OR state in state charts in control-oriented specification languages.	BTL-6	Apply
12.	Defend the AND/OR table are labelled with the basic variables in the expression.	BTL-5	Evaluate
13.	Describe the three major items that the methodology tries to identify	BTL-1	Remember
14.	Classify the steps when using it to analyze a system.	BTL-2	Create
15.	Summarize the quality assurance	BTL-2	Understand
16.	Conclude the five levels of maturity.	BTL-4	Analyze
17.	Design the cost of fixing bugs grows over the course of the design process.	BTL-6	Create
18.	Illustrate the design of cyber-physical systems	BTL-1	Remember
19.	Describe the design review is a critical component of any QA process.	BTL-1	Remember

20.	Identify the problems listed in design reviews.	BTL-1	Remember
	PART - B		
1.	Explain the design methodologies in three of these goals are summarized detail with example.(13)	BTL-1	Remember
2.	 i) Describe The waterfall model of software development in the Design Flows (6) ii) Explain the spiral model of software design in Design Flows(7) 	BTL-1	Remember
3.	 i) Illustrate the successive refinement development model in design flows (7) ii) Conclude the concept of simple hardware/software design methodology in design flows.(6) 	BTL-4	Analyze
4.	Explain in detail notes with neat sketch the a hierarchical design flow for an embedded system (13)	BTL-1	Remember
5.	Solve the Concurrent engineering applied to telephone systems (13)	BTL-3	Apply
6.	i) Categories the types of requirements (3) ii) Conclude the A good set of requirements should meet several tests in requirement analysis.(10)	BTL-4	Analyze
7.	Write notes on control-oriented specification languages.(13)	BTL-5	Evaluate
8.	Summarize the steps when using it to analyze a system in system analysis and architecture design.(13)	BTL-2	Understand
9.	Explain the concept of Layout of a CRC card in detail.(13)	BTL-2	Understand
10.	 i) Write the CRC card analysis of the elevator system of basic set of classes. (8) ii) Pivot the several usage scenarios define the basic operation of the elevator system.(5) 	BTL-6	Create
11.	Conclude about quality management based on ISO 9000 in quality assurance technique in details. (13)	BTL-4	Analyze
12.	 i) Classify the five levels of maturity the CMM provides a model for judging an organization. (7) ii) Summary the verifying the specification in quality assurance.(6) 	BTL-2	Understand
13.	Write detailed notes on the following i) Ink jet printer. (5) ii) Personal digital assistants. (4) iii) Set top boxes.(4)	BTL-1	Remember
14.	Solve the design reviews with neat sketch in quality assurance.(13)	BTL-3	Apply
	PART - C	<u> </u>	1
1.	i) Briefly describe the differences between the waterfall and spiral development models. (8)	BTL-6	Create

	ii) What skills might be useful in a cross-functional team that is responsible for designing a set-top box? (7)		
2.	 i) Estimate the cost of finding and fixing a single software bug. (5) ii) Defend in details the Concurrent engineering applied to telephone systems. (10) 	BTL-5	Evaluate
3.	i) What are the main phases of a design review? (5) ii) Write the details with neat sketch in the Therac-25 medical imaging system.(10)	BTL-6	Create
4.	Analyse about the quality assurance in design reviews and quality assurance techniques.(15)	BTL-4	Analyze

