SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

M.E. CONTROL AND INSTRUMENTATION ENGINEERING

QUESTION BANK

III SEMESTER

1913302-OPTIMAL CONTROL

Regulation - 2019

Academic Year 2020 – 21

Prepared by

Dr.Andy Srinivasan, Professor / EIE

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING <u>QUESTION BANK</u>

SUBJECT : OPTIMAL CONTROL

SEM / YEAR : III / II

UNIT I - INTRODUCTION TO OPTIMAL CONTROL

Statement of optimal Control problem - problem formulation and forms of optimal control performance measures - various methods of optimization - Linear programming – nonlinear programming.

O.No Ouestion	BT	C
		Competence
	Level	
1. Write the steps involved for solving the problem using H optimal control.	BTL 2	Understand
2. Write the limitation of the transfer function approach .	BTL 5	Evaluate
3. Classify the Components of a Modern Control System.	BTL 3	Apply
4. Define optimal control.	BTL 1	Remember
5. Differentiate linear programming and non linear H programming.	BTL 2	Understand
6. Define minimum principle.	BTL 1	Remember
7. Formulate Performance Index for Fuel-Optimal Control E System.	BTL 4	Analyze
8. Write necessary condition for Lagrange Multipliers and the Hamiltonian.	BTL 6	Create
9. List various methods of optimization.	BTL 1	Remember
10. Formulate Performance Index for Time-Optimal Control E System.	BTL 2	Remember
11. Write sufficient conditions for Lagrange Multipliers and the Hamiltonian.	BTL 6	Create
12. What is the major requirement of making the output of the system small in output regulator problem?	BTL 4	Analyze
13. Draw the block diagram of Classical Control Configuration.	BTL 3	Apply
14. Differentiate static and dynamic optimization.	BTL 4	Analyze
15. Draw the block diagram of modern Control Configuration	BTL 3	Apply
16. What is the main objective of optimal control.	BTL 1	Remember
17. Write state equation.	BTL 5	Evaluate
18. What are the requirements for the formulation of optimal E control.	BTL 1	Remember
19. Define optimization.	BTL 1	Remember
20. What do you mean by performance index?	BTL 2	Understand
PART B	1	
1. Write short notes on the following		
i) Performance Index for Time-Optimal Control (3) E System	BTL 3	Apply
ii) Performance Index for Fuel-Optimal Control (5) E System	BTL 3	Apply

	iii) Performance Index for Minimum-Energy (5)		
2	Evaluin alossical and modern control with single input (13)	DTI 2	Understand
۷.	and single output with block diagram.	DIL 2	Understand
3.	With block diagram explain the components of (13) modern control system	BTL 1	Remember
4	Write short notes on the following		
	i) Performance Index for Terminal Control System (6)	BTL 1	Remember
	i) Performance Index for General Optimal Control (7)	BTL 1	Remember
	System		
5.	Discuss about optimization with neat block diagram. (13)	BTL 4	Analyze
6.	Derive equation for Quadratic Performance Index (13)	BTL 1	Remember
	with Linear Constraint.		
7.	Derive equation for Quadratic Surface with Linear (13)	BTL 3	Apply
	Constraint		
8.	Describe about formal statement of optimal control (13)	BTL 2	Understand
	System with block diagram.		
9.	Discuss about the historical tour of optimal control in (13)	BTL 1	Remember
	brief.		
10.	Write the historical tour for calculas of variation in (13)	BTL 5	Evaluate
	detail.		
11.	Explain the effect of Changes in Constraints in brief. (13)	BTL 4	Analyze
12.	Explain the necessary and sufficient conditions for (13)	BTL 4	Analyze
	Lagrange Multipliers and the Hamiltonian.		
13.	Write the historical tour for optimal control theory in (13)	BTL 2	Understand
	detail.		
14.	Explain optimization without constraints in detail. (13)	BTL 6	Create
	PART C		
1.	Generalize the steps in constrained minimization by (15)	BTL 5	Evaluate
	the method of steepest descent.		
2.	Formulate various performance index for different (15)	BTL 5	Evaluate
2	optimal control systems.		<u> </u>
3.	Discuss about the requirement for the formulation of (15)	BIL 0	Create
4	Device equation for artimometic hy cooler (15)	DTI (Create
4.	manipulation for optimazation by scalar (15)	DILO	Create
Basic c	oncepts variational problem - Extreme functions with	condition	s - variational
approac	h to optimal control systems	condition	s - variational
approae	PART A		
O.No	Question	BT	Competence
X	Question	Level	competence
1.	Distinguish between function and functional.	BTL 4	Analyze
2.	Write the Sufficient Condition to determine the nature of	BTL 6	Create
	optimization.		
3.	What do you mdean by Calculus of variations?	BTL 1	Remember
4.	Examine differential of a function.	BTL 3	Apply
5.	Analyze Optimum of a Function.	BTL 4	Analyze
6.	Analyze Optimum of a Functional.	BTL 4	Analyze
7.	Define Increment of a Function.	BTL 1	Remember

8.	Evaluate Fixed-End Time System.	BTL 5	Evaluate
9.	Express Extrema of Functions with Conditions.	BTL 2	Understand
10.	Define Increment of a Functional.	BTL 1	Remember
11.	Evaluate Fixed-End State System.	BTL 5	Evaluate
12.	Define Fixed-Final Time and Free-Final State System.	BTL 1	Remember
13.	Examine variation of a function.	BTL 3	Apply
14.	List the Variational techniques to Optimal Control Systems.	BTL 1	Remember
15.	Express Extrema of Functionals with Conditions.	BTL 2	Understand
16.	Express Free-Final Time and Dependent Free-Final State	BTL 2	Understand
17	Express Free-Final Time and Independent Free-Final State	BTL 2	Understand
17.	What do you mean by second variation?	BTL 3	Apply
10.	List the Features of Lagrange Multiplier	BTL 1	Remember
20	Write Fuler-Lagrange Fountion	BTL 6	Create
20.	PART B	DILO	Cicuto
1.	Explain function and functional in calculas of (13) variation with example	BTL 2	Understand
2	i) Find the increment of the function (7)	BTL 1	Remember
	$f(t) = (t_1 + t_2)^2$ (1)		
	ii) Find the increment of the functional (6)	BTL 2	Understand
	$J=\int_{t_0}^{t_f}\left[2x^2(t)+1 ight]dt.$		
3	i) Find the increment and the derivative of the (5)	BTL 5	Evaluate
5.	function i (t)	DILU	L'allate
	f(4) = 42 + 94		
	$J(t) = t^2 + 2t. $		A 1
	n) Given the functional (8)	BTL 4	Analyze
	$J(x(t)) = \int_{0}^{t_{f}} [2x^{2}(t) + 3x(t) + 4]dt$		
	$\int_{t_0} \left[2\omega \left(0 \right) + 5\omega \left(0 \right) + 1 \right] dt,$		
	Evaluate the variation of the functional.		
4.	With example explain increment of a function in (13)	BTL 5	Evaluate
	detail.		
5.	Write equations for differential of a function with (13)	BTL 6	Create
	example.		
6.	Explain optimum of function with minimum and (13)	BTL 1	Remember
	maximum of a function f(t).		
7.	Explain Variational Approach to Optimal Control (13)	BTL 4	Analyze
	Systems.		
8.	With example explain increment of a functional in (13)	BTL 3	Apply
	detail.		
9.	Feneralize the steps involved in optimal solution to (13)	BTL 4	Analyze
10	the fixed-end time and fixed-end state system	DOT 1	D
10.	Design step by step procedure for Extrema of (13)	BLL 1	Remember
1 1	Functionals with Conditions.		A
	write equations for variation of a function with (13)	BIL 3	Apply
10	example. (12)	DTI A	I Indepeter 1
12.	Comment on Euler-Lagrange Equation in brief. (13)	BILZ DTI 1	Demonstand
15.	Explain different cases for Euler-Lagrange Equation. (13)	BIL I	Anglass
14.	Find the minimum length between any two points (13)	BIL 4	Anaiyze

	using optimal control.		
	PART C		
1.	Find the optimum of (15)	BTL 5	Evaluate
	$J=\int_0^2\left[\dot{x}^2(t)-2tx(t) ight]dt$		
	that satisfy the boundary (initial and final) conditions $x(0) = 1$ and $x(2) = 5$.		
2.	A manufacturer wants to maximize the volume of the (15)	BTL 5	Evaluate
	material stored in a circular tank subject to the		
	condition that the material used for the tank is limited		
	(constant). Thus, for a constant thickness of the		
	material, the manufacturer wants to minimize the		
	for the tank. Estimate using Direct Method		
3.	Discuss about Terminal Cost Problem in Variational (15)	BTL 4	Analyze
	Approach to Optimal Control Systems.		
4.	Explain Different Types of Systems in Variational (15)	BTL 4	Analyze
	Approach to Optimal Control Systems.		
	UNIT III LINEAR QUADRATIC OPTIMAL CONTR	OL SYSTI	EM
Problem	n formulation - finite time LQR - infinite time LQR - Linear Qu	adratic trad	cking system –
LQR w	ith a specified degree of stability.		0,
	PART A	-	
Q.No	Question	BT	Competence
1		Level	D 1
1.	Define optimal control problem.	BIL I	Remember
2.	solution?	BIL 3	Арріу
3.	What is optimization?	BTL 1	Remember
4.	What is the necessary condition for the optimal value to be a local minimum?	BTL 2	Understand
5.	Define state space model.	BTL 3	Apply
6.	Write the energy equation of the control signal.	BTL 2	Understand
7.	Write the Riccati equation for the optimal state feedback.	BTL 5	Evaluate
8.	Define optimal state feedback.	BTL 1	Remember
9.	State Lyapunov equation.	BTL 1	Remember
10.	What is quadratic convergence?	BTL 4	Analyze
11.	What is linear quadratic problem?	BTL 1	Remember
12.	Define feasible control.	BTL 2	Understand
13.	Write the condition for the system to be completely controllable.	BTL 6	Create
14.	What is unique optimal control ?	BTL 1	Remember
15.	List out the constraints to perform the cost function using	BTL 2	Understand
	Lagrange's multipliers.		
16.	Define nonlinear system with an example.	BTL 4	Analyze

18.	Draw the block diagram of state space model.		BTL 4	Analyze
19.	Define LQR criterion.		BTL 5	Evaluate
20.	What is the necessary condition for the optimal input?		BTL 3	Apply
	PART B		L	
1.	Discuss about the plant and the quadratic performance index with particular reference to physical significance.	(13)	BTL 1	Remember
2.	Explain various matrices in the cost functional and their implications	(13)	BTL 5	Evaluate
3.	With neat neat block diagram explain State and Costate System.	(13)	BTL 2	Understand
4.	Explain Symmetric Property of the Riccati Coefficient Matrix.	(13)	BTL 3	Apply
5.	Explain Finite-Time Linear Quadratic Regulator in brief.	(13)	BTL 6	Create
6.	With block diagram explain Closed-Loop Optimal Control Implementation.	(13)	BTL 3	Apply
7.	Derive equations for LQR System for General Performance Index	(13)	BTL 1	Remember
8.	Formulate Analytical Solution to the Matrix Differential Riccati Equation	(13)	BTL 1	Remember
9.	Derive equation for Infinite-Time LQR System I.	(13)	BTL 2	Understand
10.	Interpret Riccati Coefficient and find the minimum cost.	(13)	BTL 4	Analyze
11.	Discuss various Stability Issues of Time-Invariant Regulator.	(13)	BTL 4	Analyze
12.	Prove the theorm that the optimal value of the performance index (PI) is given by		BTL 2	Understand
	$J^*(\mathbf{x}^*(t), t) = \frac{1}{2} \mathbf{x}^{*\prime}(t) \mathbf{P}(t) \mathbf{x}^*(t).$	(13)		
13.	Derive equation for Infinite-Interval Regulator System.	(13)	BTL 3	Apply
14.	Explain about Linear Quadratic Tracking System for Finite-Time Case.	(13)	BTL 2	Understand
	PART C			
1.	Derive equation for Infinite-Time LQR System II.	(15)	BTL 4	Analyze
2.	Discuss about the implementation of the Closed-Loop Optimal Control for Infinite Final Time.	(15)	BTL 5	Evaluate
3.	Given a second order plant	(15)	BTL 5	Evaluate
	$ \begin{aligned} x_1(t) &= x_2(t), x_1(0) = 2 \\ \dot{x}_2(t) &= -2x_1(t) + x_2(t) + u(t), x_2(0) = -3 \end{aligned} $			
	and the performance index			
	$J = \frac{1}{2} \int_0^\infty \left[2x_1^2(t) + 6x_1(t)x_2(t) + 5x_2^2(t) + 0.25u^2(t) \right] dt$	lt,		
	Obtain the feedback optimal control law			
4.	Discuss various steps involved in Finite-Time Linear Quadratic Regulator	(15)	BTL 6	Evaluate

	UNIT IV DISCRETE TIME OPTIMAL CONTROL	SYSTEM	[
Variatio	onal calculus for DT system - DT optimal control system -	DT linear	state regulator
system	DT linear quadratic tracking system		
	PART A	1	
Q.No	Question	BT Level	Competence
1.	Define the term variation calculus for discrete time system.	BTL 4	Analyze
2.	Write the steps involved in the optimization of a function.	BTL 1	Remember
3.	Demonstrate the term discrete-time version of the Euler-	BTL 6	Create
	Lagrange equation.		
4.	Write the transversality condition.	BTL 3	Apply
5.	Define the fixed end point system.	BTL 1	Remember
6.	Demonstrate the free final point system.	BTL 2	Understand
7.	State the state and costate system.	BTL 5	Evaluate
8.	Explain the open loop optimal control.	BTL 1	Remember
9.	What is meant by performance index?	BTL 1	Remember
10.	Explain Kalman gain.	BTL 3	Apply
11.	Write the Kalman gain matrix.	BTL 5	Evaluate
12.	Define optimal cost function	BTL 1	Remember
13.	Expand DRE.	BTL 2	Understand
14.	State Frequency domain interpretation.	BTL 3	Apply
15.	Generalize the term closed loop optimal controller.	BTL 4	Analyze
16.	How do you derive the ricatti coefficient?	BTL 6	Create
17.	Draw the open-loop characteristics polynomial of the system.	BTL 2	Understand
18.	Define optimal state.	BTL 4	Analyze
19.	State the Hamilton Jacobi Bellman equation.	BTL 2	Understand
20.	Give some examples discrete time system.	BTL 1	Remember
	PART B	1	
1.	Consider the minimization of a functional (13) $J(x(k_0), k_0) = J = \sum_{k=k_0}^{k_f - 1} [x(k)x(k+1) + x^2(k)]$ subject to the boundary conditions x(0) = 2, and $x(10) = 5$.	BTL 6	Create
2.	Explain step by step procedure for Discrete-Time (13)	BTL 6	Create
2	Uptimal Control Systems. (12)		Understord
5.	For a second order system (13)	DIL 2	Understand
	$x_1(t) = x_2(t)$		
	$\dot{x}_2(t) = -2x_1(t) + 3u(t)$		
	with performance index $a\pi/2$		
	$J = 0.5x_1^2(\pi/2) + \int_0^{\pi/2} 0.5u^2(t)dt$		
	and boundary conditions		
	$\mathbf{x}(0) = \begin{bmatrix} 0 & 1 \end{bmatrix}' \text{ and } \mathbf{x}(t_f)$		
	is free, find the optimal control.		

4.	Explain Extremization of a Functional in Variational Calculus for Discrete-Time Systems	(13)	BTL 4	Analyze
5.	 (i) Explain Functional with Terminal Cost. (ii) Derive th equation for Functional with Terminal Cost. (7) 	(6)	BTL 5	Evaluate
6.	Explain Fixed-Final State control with example. Explain Open-Loop Optimal Control with example.(6)	(7)	BTL 1	Remember
7.	Derive equation for Discrete-Time Linear State Regulator System	(13)	BTL 3	Apply
8.	Derive equation for Closed-Loop Optimal Control by Matrix Difference Riccati Equation	(13)	BTL 1	Remember
9.	With block diagram explain Closed-Loop Optimal Controller for Linear Discrete-Time Regulator	(13)	BTL 3	Apply
10.	 (i) Derive equation for Steady-State Regulator System. (ii) Draw the block diagram for Steady-State regukator system.(8) 	(5)	BTL 5	Evaluate
11.	Find the analytical Solution to the Riccati Equation	(13)	BTL 4	Analyze
12.	Derive equation for Discrete-Time Linear Quadratic Tracking System	(13)	BTL 5	Evaluate
13.	With block diagram describe about Implementation of Discrete-Time Optimal Tracker	(13)	BTL 5	Evaluate
14.	With block diagram explain about Closed-Loop Optimal Control for Discrete-Time Steady-State Regulator System	(13)	BTL 4	Analyze
	PART C			
1.	Explain Free-Final State and Open-Loop Optimal Control	(15)	BTL 6	Evaluate
2.	Estimate frequency domain interpretation.	(15)	BTL 5	Evaluate
3.	Evaluate Optimal Cost Function or Linear Discrete- Time Regulator	(15)	BTL 5	Evaluate
4.	Consider the minimization of the performance index (PI)	(15)	BTL 5	Evaluate
	$J(k_0) = rac{1}{2} \sum_{k=k_0}^{k_f-1} u^2(k),$			
	subject to the boundary conditions $x(k_0 = 0) = 1, x(k_f = 10) = 0$			
	for a simple scalar system x(k+1) = x(k) + u(k).			

UNIT V PONTRYAGIN MINIMUM PRINCIPLE

Pontryagin minimum principle - Dynamic programming – Hamilton - Jacobi - Bellman equation - LQR system using HJB equation – Time optimal control – fuel optimal control system optimal

Control system with constraints.

PART A

Q.No	Question	BT	Competence
		Level	
1.	Define Pontryagin Minimum Principle.	BTL 1	Remember
2.	Define multistage process.	BTL 3	Apply
3.	Give some example for constrained system.	BTL 3	Apply
4.	Write the three relation for control, state and costate.	BTL 5	Evaluate
5.	Formulate the formulation of the Hamiltonian.	BTL 1	Remember
6.	Draw the diagram of an optimal control function constrained	BTL 4	Analyze
	by boundary.		
7.	Define the principle of optimality.	BTL 1	Remember
8.	What is meant by dynamic programming?	BTL 2	Understand
9.	Give an example for backward solution for multistage	BTL 5	Evaluate
	decision process.		
10.	Define forward solution.	BTL 2	Understand
11.	Demonstrate the optimal control system with constraint.	BTL 4	Analyze
12.	Write the HJB equation.	BTL 3	Apply
13.	What is the role of HJB equation?	BTL 6	Create
14.	Show the Bellmen equation.	BTL 1	Remember
15.	Write the steps involved for the solution of the TOC system.	BTL 6	Create
16.	Define the term Time-optimal control. is meant the STOC.	BTL 2	Understand
17.	What is meant the STOC.	BTL 1	Remember
18.	What is the condition for Normal Time-optimal control	BTL 2	Understand
	system?		
19.	State Bang-Bang control law.	BTL 4	Analyze
20.	Classify the types of Time-optimal control.	BTL 1	Remember

	PART B			
1.	Minimizing a scalar function	(13)	BTL 4	Analyze
	$H = u^2 - 6u + 7$			
	subject to the constraint relation			
	$ u \leq 2, \longrightarrow -2 \leq u \leq +2.$			
2.	Illustrate Constrained (Admissible) Controls with a	(13)		
	graph			
3.	Write step by step procedure for the Principle of	(13)	BTL 5	Evaluate
	Optimality.			
4.	Find the Hamilton-Jacobi-Bellman equation for the	(13)	BTL 4	Analyze
	system			
	$\dot{x}_1(t) = x_2(t)$			
	$\dot{x}_2(t) = -2x_2(t) - 3x_1^2(t) + u(t)$			
	with the performance index as			
	$J = rac{1}{2} \int_0^{t_f} \left(x_1^2(t) + u^2(t) ight) dt.$			
5.	Discuss about the important stages in obtaining optimal control for the Constrained system	(13)	BTL 6	Create
6.	Derive equation for Pontryagin Minimum Principle.	(13)	BTL 6	Create
7.	Explain Optimal Control Using Dynamic	(13)	BTL 1	Remember
	Programming.			
8.	Discuss about Optimal Control of Discrete-Time	(13)	BTL 3	Apply

	Systems.			
9.	(i) Draw the block diagram optimal contrl of		BTL 4	Analyze
	Continuos-Time systems. (5)			
	(ii) Discuss about Optimal Control of Continuou	l		
10	Time Systems .(8)	(12)		A 1
10.	Derive Hamilton-Jacobi-Bellman Equation.	(13)	BTL 3	Apply
11.	(i) Write the necessity of H_J_B in LQR system. (ii) Obtain LQR System Using H-J-B Equation.(8)	(5)	BIL 4	Analyze
12.	Find the extremal of the functional	(13)	BTL 2	Understand
	$J = \int_{-2}^{0} \left[12tx(t) + \dot{x}^2(t) \right] dt$			
	to satisfy the boundary conditions			
	x(-2) = 3, and $x(0) = 0$.			
13	Find the extremal for the following functional	(13)	BTL 2	Understand
15.	$t^2 \dot{r}^2(t)$	(10)	DILZ	enderstand
	$J = \int_1^{} \frac{x(t)}{2t^3} dt$			
	With			
	x(1) = 1 and $x(2) = 10$.			
14.	Find the optimal control u*(t) of the plant	(13)	BTL 4	Analyze
	$\dot{x}_1(t) = x_2(t);$ $x_1(0) = 3,$ $x_1(2) = 0$			
	$\dot{x}_2(t) = -2x_1(t) + 5u(t);$ $x_2(0) = 5,$ $x_2(2) = 0$			
	which minimizes the performance index			
	$J = rac{1}{2} \int_{-1}^{2} \left[x_1^2(t) + u^2(t) \right] dt.$			
	PART C			
1.	Given a first-order system	(15)	BTL 5	Evaluate
	$\dot{x}(t) = -2x(t) + u(t)$	(10)		L'addate
	and the performance index (PI)			
	$J = rac{1}{2}x^2(t_f) + rac{1}{2}\int_0^{s_f} [x^2(t) + u^2(t)]dt$			
	find the optimal control.	(1 =)		
2.	Find the closed-loop optimal control for the first-order	(15)	BTL 6	Evaluate
	$\dot{x}(t) = -2\pi(t) + x(t)$			
	x(t) = -2x(t) + u(t)			
	with the performance index			
	$J = \int_0^\infty \left[x^2(t) + u^2(t) \right] dt.$			
	Hint: Assume that			
	$J^* = f x^2(t).$			
3.	A mechanical system is described by	(15)	BTL 6	Evaluate
	$\ddot{x}(t) = u(t)$			
	find the optimal control and the states by minimizing			
	$I = \frac{1}{5} \int_{-\infty}^{5} \frac{1}{2} \frac{1}{4} dt$			
	$J = \frac{1}{2} \int_0^{\infty} u(t) dt$			
	such that the boundary conditions are			

	$x(t=0) = 2;$ $x(t=5) = 0;$ $\dot{x}(t=0) = 2;$ $\dot{x}(t=5) = 0.$		
4.	Prove the Pontryagin Minimum Principle based on the (15) works of Athans and Falb, Lee and Markus, Machki and Strauss and some of the recent works Pinch and Hocking.	BTL 6	Evaluate