(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF

ELECTRONICS & INSTRUMENTATION ENGINEERING QUESTION BANK

III SEMESTER M.E (Control and Instrumentation) 1913310 RENEWABLE ENERGY SYSTEMS

Regulation – 2019

Academic Year 2020 – 2021 (ODD)

Prepared by

K.R.Ganesh, Assistant Professor (Sr.G) / EIE

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING <u>QUESTION BANK</u>

SUBJECT: 1913310 Renewable Energy Systems

SEM / YEAR: III / II M.E (C&I)

Academic Year: 2020 – 2021 (ODD)

UNIT I - SOLAR ENERGY

Solar energy – The Sun – Production and transfer of solar energy - Solar radiation at the earth's surface – Sun-Earth angles – Availability and limitations of solar energy – Measuring techniques and estimation of solar radiation – Solar thermal collectors General description and characteristics – Flat plate collectors solar thermal applications - heating, cooling, desalination, drying, cooking, etc – solar thermal electric power plant - principle of photovoltaic conversion of solar energy, types of solar cells - Photovoltaic applications: battery charger, domestic lighting, street lighting, water pumping etc - solar PV power plant – Net metering concept.

	PART-A			
Q.No	Questions	BT Level	Competence	COs
1	List out the Components of radiation	BTL-1	Remembering	CO1
2	Evaluate the Techniques to measure various components of solar radiation	BTL-5	Evaluating	CO1
3	Infer the definition of daily insolation H	BTL-4	Analysing	CO1
4	Summarize the factors causing seasonal variation in daily insolation	BTL-1	Remembering	CO1
5	For the collector surface define :Slope , Surface azimuth angle	BTL-2	Understanding	CO1
6	Evaluate the Effects of the Earth's atmosphere on solar energy	BTL-5	Evaluating	CO1
7	list the commonest instruments used for measuring solar radiation	BTL-3	Applying	CO1
8	Analyse the need of Estimation of solar radiation.	BTL-1	Remembering	CO1
9	State the principle of Estimation of solar radiation using satellites.	BTL-6	Creating	CO1
10	Define collector efficiency.	BTL-1	Remembering	CO2
11	Evaluate how Efficiency of flat plate collector at high temperatures, can be improved?	BTL-1	Remembering	CO2
12	Differentiate active and passive solar energy systems	BTL-4	Analysing	CO2
13	List out the features of different arrangements of solar water heaters.	BTL-2	Understanding	CO2

14	Draw the physical diagram and circuit analogue of black	BTL-5	Evaluating	CO3
14	bag solar water heater.	DIL-3	Evaluating	CO3
15	Analyse the features of improved solar heaters.	BTL-4	Analysing	CO3
16	What is meant by absorption refrigerator?	BTL-2	Understanding	CO3
17	How solar energy is applied to get energy efficient	BTL-3	Applying	CO3
	buildings?			
18	Comment on the application of solar energy in water	BTL-1	Remembering	CO3
	desalination			
19	Draw the basic structure of PN junction solar cell and	BTL-6	Creating	CO3
	give the materials used for the construction.			
20	List out various losses that account for reduction of	BTL-2	Understanding	CO3
	efficiency in solar cells.			
	PART-B			
1	Explain the contrast between renewable and finite energy	BTL-1	Remembering	CO ₁
	supplies. (13)			
2	(i) Explain the spectral distribution of solar radiation	BTL-6	Creating	CO1
	(7)			
	(ii) Discuss on components of solar radiation. (6)			
2		DEL A	TT 1 . 1'	GO1
3	Discuss about the geometry of collector and the solar	BTL-2	Understanding	CO1
4	beam and derive for angle of incidence. (13)	BTL-2	I Indoneton din a	CO1
4	Describe the need and measurement principles of solar radiation. (13)	DIL-2	Understanding	COI
5	Analyse the effects of earth's atmosphere on solar	BTL-4	Analysing	CO1
3	radiation. (13)	DIL-4	Anarysing	COI
6	Discuss and derive for the equation for output power of	BTL-1	Remembering	CO1
O	collector. (13)	DILI	Remembering	COI
7	Evaluate the principles of various improved solar water	BTL-5	Evaluating	CO1
	heaters. (13)			
8	Analyse the functions of Active and passive systems of	BTL-4	Analysing	CO1
	solar water heaters. (13)		, ,	
9	Discuss the role of air heaters and brief about energy	BTL-1	Remembering	CO1
	efficient buildings (13)			
10	(i) Write short notes on space cooling (7)	BTL-1	Remembering	CO1
10	(ii) Describe about water desalination using solar energy.	D1L-1	Remembering	COI
	(f) Describe about water desamilation using solar energy.			
11	Discuss the construction and working of solar cells. (13)	BTL-3	Applying	CO1
12	Discuss the losses that affect efficiency in solar cell and	BTL-1	Remembering	CO1
	suggest methods to improve it. (13)			
13	Describe the following applications of solar PV cell	BTL-3	Applying	CO1
13	(i) Water pumping (7)	טונים	1 ipprymig	201
	(ii) Lighting (6)			
	(ii) Digitting (0)			

14	Elaborate the use of solar energy in	BTL-2	Understanding	CO1
	(i) Drying (7)			
	(ii) Cooking (6)			
	PART-C			
1	Evaluate the functions and features of pyranometer in the	BTL-5	Evaluating	CO1
	field of solar radiation measurement. (15)			
2	Calculate the temperature rise of the water in a 100 litre	BTL-6	Creating	CO2
	capacity thermosyphon solar water heating system			
	during a typical day of operation. Estimate also the			
	electricity saved because of the use of a solar water			
	heater and the corresponding reduction in the monthly			
	electricity bill. Assumptions can be made suitably. (15)			
3	Compose the observations and conclusions related to the	BTL-6	Creating	CO1
	need for alternatives in energy production. (15)			
4	Evaluate the performance of various collectors and	BTL-5	Evaluating	CO1
	storage systems of solar energy. (15)			

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

QUESTION BANK

SUBJECT: 1913310 Renewable Energy Systems

SEM / YEAR: III / II M.E (C&I)

Academic Year: 2020 – 2021 (ODD)

UNIT II - Wind Energy

Nature of the wind – power in the wind – factors influencing wind – wind data and energy estimation - wind speed monitoring - wind resource assessment - Betz limit - site selection - Types of wind power conversion systems –wind energy conversion devices - classification, characteristics, applications – offshore wind energy - Hybrid systems - safety and environmental aspects – wind energy potential and installation in India - Repowering concept- Wind power plantdesign

	PART-A			
Q.No	Questions	BT Level	Competence	COs
1	Comment on the nature of wind in different terrains of earth.	BTL-1	Remembering	CO1
2	Evaluate the factors that determine the output from a wind energy converter.	BTL-5	Evaluating	CO1

3	Discover the terms involved in the equation of available	BTL-4	Analysing	CO1
	wind power.			
4	Define the two types of forces acting on the blades.	BTL-1	Remembering	CO1
5	Summarize the factors which affect the nature of the wind.	BTL-2	Understanding	CO1
6	Assess some considerations for site selection of wind energy systems.	BTL-5	Evaluating	CO1
7	Identify the classifications of wind energy conversion systems.	BTL-3	Applying	CO1
8	Give the general Classification of wind turbine generators and compare.	BTL-1	Remembering	CO1
9	Compile the functions of control systems in wind turbine generators.	BTL-6	Creating	CO1
10	List out basic components of a wind electric system.	BTL-1	Remembering	CO2
11	What are the different types of schemes used for electric generation?	BTL-1	Remembering	CO2
12	Analyse the performances of wind machines in terms of power coefficient.	BTL-4	Analysing	CO2
13	Interpret the characteristics and advantages of savonious rotor	BTL-2	Understanding	CO2
14	Evaluate the significance of TSR.	BTL-5	Evaluating	CO3
15	Point out the meaning of hybrid system in wind energy systems.	BTL-4	Analysing	CO3
16	Define isovents, isodynes also comment on wind data related to India.	BTL-2	Understanding	CO3
17	Justify the need of energy storage in wind energy systems and give some methods.	BTL-3	Applying	CO3
18	What is meant by offshore wind energy?	BTL-1	Remembering	CO3
19	Formulate the principle of repowering.	BTL-6	Creating	CO3
20	Name some applications of wind energy apart from power generation.	BTL-2	Understanding	CO3
	PART-B			
1	(i) Explain about the nature of wind. (7)(ii) Write short notes on the power in the wind. (6)	BTL-1	Remembering	CO1
2	Derive the expression for the power developed due to the wind.	BTL-6	Creating	CO1
3	(i) Discuss the advantages and disadvantages of wind energy conversion systems. (7) (ii) Interpret the performance of wind machines. (6)		Understanding	CO1
4	Discuss about wind data and energy estimation. (13)	BTL-2	Understanding	CO1
5	Explain the working of vertical axis machines and give its merits and demerits. (13)	BTL-4	Analysing	CO1

6	Examine the working of horizontal axis type aerogenerators. (13)	BTL-1	Remembering	CO1
7	With neat sketch evaluate the working of a wind energy system(WECS) with main components. (13)	BTL-5	Evaluating	CO1
8	Analyse how are WEC systems are classified? and discuss in brief. (13)	BTL-4	Analysing	CO1
9	Describe the main considerations in selecting a site for wind generators. (13)	BTL-1	Remembering	CO1
10	 i) Write short notes on safety systems of wind turbines. (7) ii) Discuss the effects of wind turbines on environment. (6) 	BTL-1	Remembering	CO1
11	Illustrate different control schemes of wind generators.	BTL-3	Applying	CO1
12	Discuss in brief about the following. (i) savonius rotor (7) (ii) Darrius rotor (6)	BTL-1	Remembering	CO1
13	Illustrate the different schemes for wind electric generation. (13)	BTL-3	Applying	CO1
14	Describe different applications of wind energy, giving neat sketches. (13)	BTL-2	Understanding	CO1
	PART-C	T	T =	
1	Evaluate the condition when maximum power can be obtained for horizontal axis wind turbine. (15)	BTL-5	Evaluating	CO1
2	Wind at 1 standard atmospheric pressure and 15°C has velocity of 15 m/s calculate: (i) The total power density in the wind stream, (ii) The maximum obtainable power density, (iii) A reasonably obtainable power density, (iv) The total power, and (v) The torque and axial thrust. (5 X 3)	BTL-6	Creating	CO2
3	Compile the applications of wind energy and wind energy storage systems. (15)	BTL-6	Creating	CO1
4	Evaluate the advantages of vertical axis machines over horizontal type? Recommend a rotor for relatively low velocity wind. (15)	BTL-5	Evaluating	CO1

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

SUBJECT: 1913310 Renewable Energy Systems

SEM / YEAR: III / II M.E (C&I)

Academic Year: 2020 – 2021 (ODD)

UNIT III-BIO ENERGY

Energy from biomass – Sources of biomass – Different species – Conversion of biomass into fuels – Energy through fermentation – Pyrolysis, gasification and combustion – Aerobic and anaerobic bioconversion – Properties of biomass – Biogas plants – Types of plants – Design and operation – Properties and characteristics of biogas- alcohol production from biomass – bio diesel production – Urban waste to energy conversion - Biomass energy programme in India.

	PART-A			
Q.No	Questions	BT Level	Competence	COs
1	Define biomass and identify the biomass resources	BTL-1	Remembering	CO1
	category.			
2	Compare the heat contents of various fuels.	BTL-5	Evaluating	CO1
3	Point out the benefits of energy plantation	BTL-4	Analysing	CO1
4	Name some of the species contribute for bio energy	BTL-1	Remembering	CO1
5	Identify various forms of bio conversion	BTL-2	Understanding	CO1
6	Assess the functions of fermentation	BTL-5	Evaluating	CO1
7	Discover what is meant by anaerobic digestion?	BTL-3	Applying	CO1
8	Define pyrolysis.	BTL-1	Remembering	CO1
9	Compile the differences between dry and wet processes	BTL-6	Creating	CO1
10	Examine the process of gasification	BTL-1	Remembering	CO2
11	Write the chemical equations which relates	BTL-1	Remembering	CO2
	photosynthesis.			
12	Analyze the conditions which are necessary for	BTL-4	Analysing	CO2
	photosynthesis.			
13	Summarize the factors which affect biodigestion.	BTL-2	Understanding	CO2
14	Assess what is meant by community biogas plant?	BTL-5	Evaluating	CO3
15	Classify types of biogas plants	BTL-4	Analysing	CO3
16	Give a list of materials used for biogas generation.	BTL-2	Understanding	CO3

17	Show how ethanol can be used as fuel?	BTL-3	Applying	CO3
18	List out some methods to produce ethanol	BTL-1	Remembering	CO3
19	Formulate the factors to be considered for site selection for biogas plant.	BTL-6	Creating	CO3
20	What is meant by biodiesel and mention about its production?	BTL-2	Understanding	CO3
	PART-B			
1	Describe in detail about bio mass conversion technologies. (13)	BTL-1	Remembering	CO1
2	(i) Write a short note on fermentation (7) (ii) Compile the processes involved in gasification.(6)	BTL-6	Creating	CO1
3	Describe the process photosynthesis and brief on necessary conditions for it. (13)	BTL-2	Understanding	CO1
4	Describe the constructional detail and working of KVIC digester. (13)	BTL-2	Understanding	CO1
5	Discriminate in detail about dry and wet processes of biomass conversion. (13)	BTL-4	Analysing	CO1
6	How are biogas plants Classified? Explain them briefly. (13)	BTL-1	Remembering	CO1
7	Evaluate the procedure of digester design. (13)	BTL-5	Evaluating	CO1
8	Analyse the techniques suggested for maintaining the biogas production. (13)	BTL-4	Analysing	CO1
9	(i) Describe how pyrolysis is helpful in bioenergy. (7) (ii) Sketch a small scale pyrolysis unit and brief its working. (6)	BTL-1	Remembering	CO1
10	Describe the process of ethanol from sugarcane. (13)	BTL-1	Remembering	CO1
11	Illustrate the concept of energy plantation and prepare a list of plants proposed for energy plantation. (13)	BTL-3	Applying	CO1
12	Examine the variety of applications of gasifier. (13)	BTL-1	Remembering	CO1
13	Discover various problems related to bio gas plants and prepare a report on starting a bio gas plant. (13)	BTL-3	Applying	CO1
14	Discuss about the following (i) Urban waste to energy conversion (ii) Biomass energy programme in India (6)	BTL-2	Understanding	CO1
	PART-C		,	
1	Assess the performance of different types of biogas plants. (15)	BTL-5	Evaluating	CO1
2	The following data are given for a family biogas digester suitable for the output of five cows: the retention time is	BTL-6	Creating	CO2

	20 days, temperature 30°C, dry matter consumed per			
	day=2 Kg, biogas yield is 0.24 m ³ per Kg. the efficiency			
	of burner is 60%, methane proportion is 0.8, Heat of			
	combustion of methane = 28 MJ/ m ³ . Calculate (i) the			
	volume of biogas digester, and (ii) the power available			
	from the digester. (15)			
3	Modify the spark ignition(SI) engine to operate on	BTL-6	Creating	CO2
	biogas, Illustrate it with necessary sketches. (15)			
4	Sketch the chart for describing all the possible energy	BTL-5	Evaluating	CO1
	conversion routes and products from biomass and			
	summarize. (15)			

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

SUBJECT: 1913310 Renewable Energy Systems

SEM / YEAR: III / II M.E (C&I)

Academic Year: 2020 – 2021 (ODD)

UNIT IV - OTHER TYPES OF ENERGY

Ocean energy resources - principle of ocean thermal energy conversion (OTEC) - ocean thermal power plants - ocean wave energy conversion - tidal energy conversion - small hydro - geothermal energy - geothermal power plants - hydrogen production and storage - Fuel cell - principle of working - various types - construction and applications- Introduction to integrated energy systems

	PART-A			
Q.No	Questions	BT Level	Competence	COs
1	List out ocean sources of energy.	BTL-1	Remembering	CO1
2	Summarize the principle of OTEC.	BTL-5	Evaluating	CO1
3	Classify the main types of OTEC power plants.	BTL-4	Analysing	CO1
4	State what is meant by on shore OTEC and give	BTL-1	Remembering	CO1
	requirements.			
5	Interpret the function of heat exchangers in OTEC.	BTL-2	Understanding	CO1

6	Compare open cycle and closed cycle system in OTEC.	BTL-5	Evaluating	CO1
7	Choose materials used for heat exchangers.	BTL-3	Applying	CO1
8	Examine the factors in site selection for OTEC.	BTL-3	Remembering	CO1
9	Compile the effects of biofouling.	BTL-6	Creating	CO1
10	Quote the features of Hybrid cycle.	BTL-1	Remembering	CO2
11	State the principle behind generation of energy from	BTL-1	Remembering	CO2
	tides.	DIL I	Remembering	002
12	Analyse some points about tidal phenomenon.	BTL-4	Analysing	CO2
13	Identify the components required for tidal power plants.	BTL-2	Understanding	CO2
14	Evaluate the limitations of tidal power generation.	BTL-5	Evaluating	CO3
15	Define and classify fuel cells.	BTL-4	Analysing	CO3
16	List the five categories of geothermal resources.	BTL-2	Understanding	CO3
17	Discover the differences between vapour dominated system and liquid dominated system.	BTL-3	Applying	CO3
18	State some of the prime-movers used for geothermal Energy conversions.	BTL-1	Remembering	CO3
19	Formulate the principle of hydrogen as energy source.	BTL-6	Creating	CO3
20	Summarize the advantages and disadvantages of fuel	BTL-2	Understanding	CO3
	cells.			
	PART-B			
1	Describe any two types of OTEC power plants with neat	BTL-1	Remembering	CO1
	sketches. (13)		~ .	G 0.1
2	Rewrite the working principle of closed cycle OTEC	BTL-6	Creating	CO1
	system, and compile its advantages over open cycle			
3	system. (13)	BTL-2	I Indonetendine	CO1
3	Explain with sketches the various methods of tidal power generation and give limitations of each. (13)	DIL-2	Understanding	COI
4	(i) Explain the application of heat exchangers in	BTL-2	Understanding	CO2
	OTEC. (7)			
	(ii) Estimate the energy and power in a simple			
	single basin tidal system. (6)			
5	Compare the working and features of single basin and	BTL-4	Analysing	CO1
	double basin arrangements of tidal energy conversion.			
	(13)			
6	(i) Write a short note on wave energy conversion	BTL-1	Remembering	CO1
	machines. (7)			
	(ii) Give the advantages and limitations of wave			
	energy conversion. (6)	P	T	602
7	Evaluate the different types of turbines are in use for	BTL-5	Evaluating	CO2
	small scale hydroelectric plants. (13)			

	D '1 1' 1 (C 1' '1 1 ' (1	DEL 4	A 1 ·	001
8	Describe a binary cycle system for liquid dominated	BTL-4	Analysing	CO1
	system and analyse the features over other systems. (13)			
9	(i) Give brief note on prospects of geothermal	BTL-1	Remembering	CO1
	energy in context to India. (7)			
	(ii) Brief about the applications of geothermal			
	energy. (6)			
10	Explain in detail about hydrogen production and	BTL-1	Remembering	CO1
	elaborate how it is used as energy source. (13)			
11	Illustrate various methods of hydrogen storage. (13)	BTL-3	Applying	CO1
12	Examine the features of different types of fuel cells. (13)	BTL-1	Remembering	CO1
13	Illustrate the design and working principle of fuel cell.	BTL-3	Applying	CO1
	(13)			
14	(i) Write short notes on applications of fuel cell. (7)	BTL-2	Understanding	CO1
	(ii) Discuss in brief about electrodes for fuel cell. (6)			
	PART-C			
1	Summarize the role of main components of tidal power	BTL-5	Evaluating	CO1
	plants. (15)			
2	A tidal power plant of simple single basin type, has a	BTL-6	Creating	CO2
	basin area of 30 x 10 ⁶ m ² . The tide has a range of 12 m.			
	The turbine, however, stops operating when the head on			
	it falls below 3 m. Calculate the energy generated in one			
	filling(or emptying) process, in kilowatt hours if the			
	turbine generator efficiency is 0.73. (15)			
3	Write the significances of various components of	BTL-6	Creating	CO1
	hydroelectric power generation schemes. (15)			
4	Evaluate the working of different wave energy	BTL-5	Evaluating	CO2
	conversion machines. (15)			

UNIT V – DIRECT CONVERSION OF THERMAL TOELECTRICALENERGY

Conventional energy conversion cycles - Reversible and irreversible cycles - Thermodynamics analysis of Carnot - Stirling - Ericsson - Otto - Diesel - Dual - Lenoir - Atkinson - Brayton - Rankine.ThermoelectricConverters—Thermionicconverters—MHD—Ferroelectricconverter-Nernst effect generator

PART-A							
Q.No	Questions	BT Level	Competence	COs			
1	Define closed system, open system, isolated system and	BTL-1	Remembering	CO3			
	adiabatic system.						
2	Compare homogeneous and heterogeneous system and	BTL-5	Evaluating	CO3			
	give examples.						
3	Point out the conditions for thermodynamic equilibrium.	BTL-4	Analysing	CO3			
4	Define enthalpy and entropy.	BTL-1	Remembering	CO3			

5	Interpret the meaning of heat engine and reversed heat	BTL-2	Understanding	CO3
6	engine. Relate Stirling cycle and Carnot cycle.	BTL-5	Evaluating	CO3
7	Sketch and interpret the temperature –entropy diagram for steam.	BTL-3	Applying	CO3
8	Give the qualitative performance comparison of various thermodynamic cycles.	BTL-1	Remembering	CO3
9	Compile the meaning of open cycle system and closed cycle system of MHD generation.	BTL-6	Creating	CO3
10	State the advantages and limitations of MHD generation.	BTL-1	Remembering	CO3
11	Analyse how conductivity is rendered to the working fluid of MHD generator.	BTL-4	Analysing	CO3
12	What is the basic principle behind thermoelectric power generator? And state that.	BTL-1	Remembering	CO3
13	Analyse the factors which defines the maximum power generated in thermoelectric power generation.	BTL-4	Analysing	CO3
14	Estimate the usefulness of some of the materials used for thermoelectric conversion.	BTL-2	Understanding	CO3
16	Evaluate the merits of thermionic generators.	BTL-5	Evaluating	CO3
17	On what parameters do the output voltage and current depend in thermionic convertors?	BTL-2	Understanding	CO3
18	Discover the potential applications of thermionic convertors.	BTL-3	Applying	CO3
19	Define ferroelectric convertor and list some ferroelectric materials.	BTL-1	Remembering	CO3
20	Formulate the principle of Nernst effect generator.	BTL-6	Creating	CO3
	PART-B			
1	(i) Write short notes on different types of system in thermodynamics. (7) (ii) Describe joule's law. (6)	BTL-1	Remembering	CO3
2	 (i) Formulate the first law and second law of thermodynamics and discuss the limitations of first law. (ii) Discuss about the performance of heat engine and reversed heat engine. (6) 	BTL-6	Creating	CO3
3	Explain Carnot cycle by giving its neat sketch of engine cycle. (13)	BTL-2	Understanding	CO3
4	Describe with relevant sketch the Rankine cycle, Also discuss about its efficiency improvement. (13)	BTL-2	Understanding	CO3
5	Analyze Brayton cycle of mechanical power generation by giving all the processes involved. (13)	BTL-4	Analysing	CO3
6	Evaluate the working of Stirling cycle and comment on the similarity with Carnot cycle. (13)	BTL-5	Evaluating	CO3

7	Analyze the principle of Magneto Hydro Dynamic(MHD) power generation. Derive expressions for maximum power generation per unit volume of generator. (13)	BTL-4	Analysing	CO3
8	With the help of schematic diagram, explain the operation of closed cycle MHD generating system. (13)	BTL-1	Remembering	CO3
9	Explain thermo electric power conversion principles. Derive expressions for maximum output power. (13)	BTL-1	Remembering	CO3
10	Discuss about the working of thermo electric power generator and brief about different elements used for that. (13)	BTL-1	Remembering	CO3
11	(i) Illustrate the principle of thermionic power conversion. (7) (ii) Discover the application possibilities of thermionic converters. (6)	BTL-3	Applying	CO3
12	Discuss in detail about materials for thermoelectric generation and its selection criteria. (13)	BTL-1	Remembering	CO3
13	Illustrate the working of ferroelectric convertor and analyse various ferroelectric materials. (13)	BTL-3	Applying	CO3
14	Describe the working of Nernst effect generator with necessary sketches and equation. (13)	BTL-2	Understanding	CO3
	PART-C			
1	Compare open cycle system and closed cycle system of MHD generation systems. (15)	BTL-5	Evaluating	CO3
2	(i) Calculate the open circuit voltage and maximum power output for nan MHD generator having the following data: (10 marks) Plate area =0.25m² Distance between the electrodes =0.50 m Flux density = 1.8 Wb/ m² Average gas velocity =1200m/s Gaseous conductivity =10 mho/m (ii) Compile the merits and demerits of MHD systems. (5 marks)	BTL-6	Creating	CO3
3	Prepare a case study on working of any four cycles of mechanical power generation and compare the performances. (15)	BTL-6	Creating	CO3
4	Evaluate the performance of thermoelectric and thermionic convertors and compare different materials used in that. (15)	BTL-5	Evaluating	CO3