SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur - 603 203

DEPARTMENT OF

ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

II SEMESTER

1916210 - SOFT COMPUTING TECHNIQUES

Regulation – 2019

Academic Year 2019 – 20

Prepared by

Dr. G.Udhayakumar, Asso. Prof./EEE

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur - 603 203.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

SUBJECT : 1916210 - SOFT COMPUTING TECHNIQUES

SEM / YEAR: II/I M.E(PSE)

UNIT I - INTRODUCTION AND EVOLUTIONARY PROGRAMMING

Introduction to intelligent systems- Soft computing techniques- Conventional Computing versus Swarm Computing - Classification of meta-heuristic techniques - Properties of Swarm intelligent Systems - Application domain - Discrete and continuous problems - Single objective and multiobjective problems. Evolutionary programming – Genetic algorithms & Genetic programming -Particle Swarm Optimization- Ant colony Optimization

	PART – A					
Q.No	Questions		BT Level	Competence	Course Outcome	
1.	What is soft computing?		BTL 1	Remember	CO1	
2.	Compare soft computing vs. hard computing.		BTL 2	Understand	CO1	
3.	Classify the various types of soft computing techniques		BTL 3	Apply	CO1	
4.	Define single-objective optimization.		BTL 1	Remember	CO1	
5.	Define multi-objective optimization.		BTL 1	Remember	CO1	
6.	Define Intelligent System		BTL 1	Remember	CO1	
7.	Define Evolutionary Computation		BTL 1	Remember	CO1	
8.	What are the basic variations of Evolutionary Algorithm		BTL 3	Apply	CO1	
9.	Generalize the characteristics of intelligent systems		BTL 2	Understand	CO1	
10.	State the principles for an ideal multi-objective optimization		BTL 2	Understand	CO1	
11.	In what way if-then rules are used for multiobjective optimization?		BTL 2	Understand	CO1	
12.	State few advantages and disadvantages of Genetic Algorithm.		BTL 2	Understand	CO1	
13.	Mention the role of fitness function in Genetic Algorithm.		BTL 2	Understand	CO1	
14.	How is Genetic Algorithm differ from traditional algorithm?		BTL 4	Analyse	CO1	
15.	Write the applications of PSO?		BTL 2	Understand	CO1	
16.	Mention the advantages of Particle Swarm optimization		BTL 2	Understand	CO1	
17.	Compare and Contrast—Genetic Algorithm and Particle Swarm Optimization		BTL 4	Analyse	CO1	
18.	What are the characteristics of Ant Colony Optimization		BTL 2	Understand	CO1	
19.	State the various applications of ACO		BTL 2	Understand	CO1	
20.	Justify Swarm intelligence is superior to conventional computing algorithm.		BTL 4	Analyse	CO1	
	PART – B					
1.	Explain the classical methods for handling multi-objective	(13)	BTL 3	Apply	CO1	

	optimization problems.				
2	Explain the procedure involved in using Evolutionary	(13)	DTI 1	Demokra	CO1
Ζ.	programming for multi-objective problems.		BILI	Remember	
2	(i) Explain the classification of Metaheuristic Techniques	(6)	BTL 2	Understand	CO1
5.	(ii) Explain the Preparatory Steps of genetic programming.	(7)			
4	With a new flowchart, explain the Executional steps of	(13)	BTL 1	Remember	CO1
4.	genetic programming.				
	Draw the functional block diagram of swarm intelligence	(13)	BTL2	Understand	CO1
5	system, explain the role of sub blocks. Also represent the				
5.	properties and application domain of swarm intelligence				
	system.				
6	Implement a vehicle routing problem using the concept of	(13)	BTL 6	Create	CO1
0.	particle swarm optimization.				
7.	Enumerate the procedure involved in using Genetic	(13)	BTL 2	Understand	CO1
	Algorithm for optimizing controller parameters	(1.2)	DET 4		G 04
8.	With a neat flowchart, explain the algorithm of Genetic	(13)	BIL I	Remember	COI
	Algorithm.	(10)		Consta	CO1
9.	Implement Optimization of Traveling Salesman Problem	(13)	BIL 6	Create	COI
	using Genetic algorithm approach.	(5)	DTI 3	Lindowston d	CO1
10.	(i) What are the properties of Swarm intelligent Systems	(5)	BIL 2	Understand	COI
	(ii) Discuss the principles of multi-objective optimization	(8)	DTI 1	Domomhon	<u>CO1</u>
11.	with a near flowchart, explain the algorithm of particle	(13)	DILI	Kemember	COI
	With a past flowshart, avalain the algorithm of Ant Colony	(12)	BTI 1	Romombor	C01
12.	Optimization	(15)	DILI	Kemember	COI
	(i) Discuss the behavior of real ants and compare it with	(7)	BTL 2	Understand	CO1
	(1) Discuss the behavior of real and said compare it with	()	DILZ	Chucistanu	001
13.	(ii) Differentiate the features of soft computing and hard				
	computing.	(6)			
	Compare and Contrast—Genetic Algorithm, Particle Swarm	(13)	BTL 4	Analyse	CO1
14.	Optimization and Ant Colony Optimization	()		· ·	
	PART – C	l		II	
1	Implement a vehicle routing problem using the concept of	(15)		~	CO1
1.	particle swarm optimization.	× /	BTL 6	Create	
2	Ant colony optimization algorithm is best suited for protein-	(15)	BTL 5	Analyse	CO1
2.	folding problems—Justify	~ /			
2	Assume a typical control problem of yours and create the	(15)	DTL	Granda	CO1
5.	various steps involved in finding a solution using GA		BILO	Create	
	$f(x) = \overline{x - \frac{x^2}{x^2}}$	(15)	BTL 3	Apply	CO1
	Let a function ¹⁶ be defined on the interval				
4.	[0,31]. Apply Genetic Algorithm for determining the				
	maximum of the given function (Assume suitable missing				
	data)				
UNIT II - <u>FULLY LUGIC SYSTEM</u> Introduction to orign sets and fuzzy sets basic fuzzy set anomation and approximate reasoning					
Introduction to trisp sets and fuzzy sets- basic fuzzy set operation and approximate reasoning. Introduction to fuzzy logic modeling and control. Fuzzification informating and defuzzification					
Fuzzy knowledge and rule bases. Fuzzy modeling and control schemes for nonlinear systems					
Self-0	rganizing fuzzy logic control. Fuzzy logic control for nonline	ar tim	e delav s	vstem. Case	
study	– Familiarization of FLC Tool Box.		- actuy 5		
	PART – A				

Q.No	Questions		BT Level	Competence	Course Outcome
1.	In What context fuzzy systems are used?		BTL 1	Remember	CO2
2.	Mention the limitations of Fuzzy system?		BTL 2	Understand	CO2
3.	Compare fuzzy set and crisp set?		BTL 2	Understand	CO2
4.	Mention some applications of Fuzzy logic.		BTL 3	Apply	CO2
5	What is cardinality of a Fuzzy set? Whether a power set can		BTL 1	Remember	CO2
5.	be formed for a fuzzy set?				
6	What is an empty Fuzzy set and What do you mean by		BTL 1	Remember	CO2
6.	height of a Fuzzy set?				
7.	Explain Centre of gravity method of defuzzification.		BTL 1	Remember	CO2
8.	Explain Fuzzy compliment and Fuzzy relation?		BTL 1	Remember	CO2
9.	Classify the different Fuzzy relation operation?		BTL 1	Remember	CO2
10.	Draw the block diagram of a Fuzzy logic system.		BTL 1	Remember	CO2
11.	Define Fuzzy inference System?		BTL 1	Remember	CO2
12.	Define a Fuzzy Cartesian product.		BTL 1	Remember	CO2
10	How is fuzzy relation converted into a crisp relation using		BTL 1		CO2
13.	lamda-cut process?			Remember	
14	Explain the difference between conventional control and		BTL 2		CO2
14.	fuzzy control system.			Understand	
15.	Classify the methods of defuzzification?		BTL 1	Remember	CO2
16.	What is the difference between fuzzy logic and binary logic?		BTL 2	Understand	CO2
17.	Write the classifications of Fuzzy Logic control?		BTL 1	Remember	CO2
18.	Illustrate any one defuzzification method with an example?		BTL 3	Apply	CO2
19.	What is approximate reasoning?		BTL 1	Remember	CO2
20.	Summarize Fuzzy rule and Fuzzy lingistic variable?		BTL 4	Analyse	CO2
	PART – B				
	(i)Explain with neat block diagram the various components	(8)			CO2
1.	of a fuzzy logic system	(5)	BTL 1 DTL 1	Remember	
	(ii)Describe shortly on Centroid method		DILI		
	Describe the self-organizing Fuzzy Logic Control scheme	(13)			CO2
2.	with a suitable example. Mention its advantages over fuzzy		BTL 3	Apply	
	logic controller.				
2	Write short notes on implementation of Fuzzy Logic Control	(13)	DTI (Create	CO2
5.	for nonlinear time delay system.		DILO	Create	
4	(i) Discuss the methods of aggregation of fuzzy rules.	(7)	р тт 1		CO2
4.	(ii) Write short notes on fuzzy propositions.	(6)	DILI	Remember	
	(i) Differentiate between mamdani FIS and sugeno FIS.	(5)			CO2
	(ii) The membership functions for the linguistic variables	(8)			
	"tall" and "short" are given below.		DTLA		
			BIL 2	Understand	
	$T_{all} = \left\{ \frac{0.2}{1.2} + \frac{0.3}{1.2} + \frac{0.7}{1.2} + \frac{0.9}{1.2} + \frac{1}{1.2} \right\}$				
5	¹ ¹ ¹ 5 7 9 11 12 ⁵				
5.				.	
	Short = $\left\{ \frac{0.3}{0.3} \pm \frac{0}{0.5} \pm \frac{1}{0.5} \pm \frac{0.5}{0.5} \pm \frac{0}{0.5} \right\}$		BTL 5	Evaluate	
	5 10 1 20 1 30 1 60 1 90 1 120 J				
	Describe the membership functions for the following				
	linguistic phrases. Very tall, fairly tall, not very short				
6	Explain the features and benefits of the following Fuzzy		BTL 4	A nalv ea	CO2
0.	propositions	(7)	D1L 4	Analyse	

	(i) Unconditional and qualified propositions	(6)			
	(ii) Conditional and Unqualified propositions	(10)			COA
7.	Explain the different types of membership function used in fuzzification process?	(13)	BTL 3	Apply	CO2
8.	Illustrate with suitable examples explain canonical rule formulation of fuzzy rule base	(13)	BTL 3	Apply	CO2
9.	The results of three implication processes arc as shown in fig. Find the aggregated output and the defuzzified output using the (1) Center of gravity (2) Center of sums and (3) Weighted average methods	(13)	BTL 5	Evalaute	CO2
10.	Compare the following two fuzzy relations R_1 and R_2 Using max-min and max average compositions: $\overline{R_1}$ y_1 y_2 y_3 y_4 $\overline{x_1}$ 0.3 0 0.7 0.3 $\overline{x_2}$ 0 1 0.2 0 $\overline{R_2}$ $\overline{Z_1}$ $\overline{Z_2}$ $\overline{Z_3}$ y_1 0.1 0.2 0.4 y_2 0.8 0.3 1 y_3 0.7 0.9 0.6 y_4 1 0.2 0.1	(13)	BTL 5	Evalaute	CO2
11.	Develop a typical case study in which Fuzzy logic is used as a model and controller	(13)	BTL 6	Create	CO2
12.	The discretized membership functions for a transistor and a resistor are given below: $uT=\{ 0/0 + 0.2/1 + 0.7/2 + 0.8/3 + 0.9/4 + 1/5 \}$ $uR=\{ 0/0 + 0.1/1 + 0.3/2 + 0.2/3 + 0.4/4 + 0.5/5 \}$ Find the following (a) Algebraic sum (b) Algebraic product (c) Bounded sum (d) Bounded difference	(13)	BTL 5	Evalaute	CO2
13.	 (i) Explain self organizing FLC. Mention its advantages over fuzzy logic controller (ii) Sketch the block diagram of Fuzzy Logic Controller for a nonlinear process. 	(7) (6)	BTL 2 BTL 2	Understand	CO2
14.	(i) Find the algebraic product of two fuzzy sets 'A' and 'B'	(7)	BTL 3	Apply	CO2

	 where A={(3, 0.8)(5, 0.6)(6, 0.9)} and B={(3, 0.7)(4, 0.8)(5, 0.3)} (ii) Find the algebraic sum of two fuzzy sets A={(3, 0.5) (5, 1)(7, 0.6)} and 'B' and B={(3, 1)(5, 0.6)} 	(6)			
-	PART – C				1
1.	Given a conditional and qualified Fuzzy proposition 'P' of the form. P: If x is A, then y is B is S where 'S' is fuzzy truth qualifier and a fact is in the form' x is A" .We want to make an inference in the form "y is B " Design a method based on the truth- value restrictions for getting the inference	(15)	BTL 6	Create	CO2
2.	Design the general scheme for a Fuzzy controller. How different modules are interconnected? Deploying the above how will you solve the problem of stabilizing the inverted pendulum	(15)	BTL 6	Create	CO2
3.	Consider four travel packages offered by Celtic, Club Mahindra, Metro and Himalaya travels. We want to choose one. Their costs are INR 100,000, INR 200,000, INR 150,000 and INR 175,000. Their travel time in hours are 150, 200, 100 and 125 respectively. They are viewed as interesting with degress 0.4, 0.3, 0.6 and 0.5. Define your own fuzzy set of acceptable travel times. Then determine the fuzzy sets of interesting travel packages whose cost and travel times are acceptable and use this set to choose one of your packages.	(15)	BTL 5	Evaluate	CO2
4.	Design a fuzzy logic controller for a non-linear system of your choice with a case study	(15)	BTL 6	Create	CO2

UNIT III - ARTIFICIAL NEURAL NETWORKS

Neuron- Nerve structure and synapse- Artificial Neuron and its model- activation functions-Neural network architecture- single layer and multilayer feed forward networks- Mc Culloch Pitts neuron model- perceptron model- Adaline and Madaline- multilayer perception model- back propogation learning methods. Counter propagation network- architecture- functioning & characteristics of counter Propagation network- Hopfield/ Recurrent network configuration-Adaptive Resonance Theory. Case study – Familiarization of NN Tool Box.

	rani – A							
Q.No	Questions	BT Level	Competence	Course Outcome				
1.	Distinguish between artificial neuron & biological neuron.	BTL 2	Understand	CO3				
2.	Explain the factors affecting back propagation training?	BTL 4	Analyse	CO3				
3.	Name some activation functions used in ANN?	BTL 1	Remember	CO3				
4.	Explain a single layer net and multilayer net?	BTL 1	Remember	CO3				
5.	What is a back propagation NN?	BTL 1	Remember	CO3				
6.	Draw the basic model of Adaline network and Madaline Network	BTL 1	Remember	CO3				
7.	Sketch the model of artificial neuron.	BTL 3	Apply	CO3				
8.	Evaluate the learning rate and its function	BTL 1	Remember	CO3				
9.	For derivative -based learning procedure why a sigmoidal function is used instead of a step	BTL 3	Apply	CO3				

	function?				
10.	Define an artificial neural network.		BTL 1	Remember	CO3
11.	Draw a network for solving Exclusive OR problem.		BTL 1	Remember	CO3
12.	State the function of synapse.		BTL 1	Remember	CO3
13.	Justify why Artificial Neural Network is called adaptive		BTL 6	Create	CO3
14	What is meant by winner take all?		BTL 1	Remember	CO3
14.	What is the purpose of Honfield Network? Give an example?		BTL 2	Understand	<u>CO3</u>
15.	Why Hopfield network is called as recurrent neural network?		BTL 4	Analyse	<u>CO3</u>
10.	Conclude the limitations of competitive learning?		BTL 4	Analyse	<u>CO3</u>
17.	Give the characteristics of counter propagation network		BTL 2	Understand	<u> </u>
10.	Explain stability plasticity dilamma?		BTL 2 RTL 1	Domombon	<u> </u>
19.	What are the properties of adaptive recommon theory?		BTL 1 BTL 2	Kemember Umdanatan d	$\frac{003}{003}$
20.	what are the properties of adaptive resonance theory?		DIL 2	Understand	0.05
1	PARI – B	(12)	DTI 1	Domomhor	CO3
1.	Write short notes on Adaline and Madaline networks	(13)	DILI DTL 1	Remember	
2.	architecture of multilayer feed forward network.	(13)	BIL I	Kemember	03
3.	Draw and describe the structure of a biological neuron.	(13)	BTL 1	Remember	CO3
4.	Using McCulloh-Pitts neuron model, design a neural network for 2-input OR functions.	(13)	BTL6	Create	CO3
5.	Explain the working of back propagation neural network with neat architecture and flowchart.	(13)	BTL 4	Analyse	CO3
6.	Using Adaline network to train ANDNOT function with bipolar inputs and targets. Perform 2 epochs of training.	(13)	BTL6	Create	CO3
7.	Determine the weights of a single layer perceptron for implementing the AND function. Consider the inputs and targets to be bipolar and $\alpha=1$	(13)	BTL 5	Evaluate	CO3
8.	Explain the single perceptron with its learning algorithm and its seperability and convergence property	(13)	BTL 1	Remember	CO3
9.	Develop and describe with a neat diagram the counter propagation network learning algorithm.	(13)	BTL 6	Create	CO3
10.	Consider the following full counter propagation network (CPN) shown in below fig. (a) using input pair $x(1,1)y=(0,1)$; perform first phase of training (One step only).Find the activation of the cluster layer units and update the weights using learning rates of 0.3.	(13)	BTL 5	Evaluate	CO3
11.	Explain basic structure, working and analysis of adaptive resonance theory(ART-1)	(13)	BTL 4	Analyse	CO3
12.	Draw the architecture of full counter propagation network and represent the active units in the first and second phase of counter propagation training. Explain how training a counter	(13)	BTL 3	Apply	CO3

	propagation network occurs in two phases.				
	Draw the architecture of Hopfield net design Hopfield net	(13)	BTL 6	Create	CO3
	for 4 hit hipolar pattern The training pattern are I sample	(10)			
12	101 + 011 oppoint pattern rice training pattern are 1 sampleS1[1,1,1,1] H comple S2[1,1,1,1] H comple S2[1,1,1]				
15.	51[1,1,-1,-1] If sample $52[-1,1,-1,1]$ If sample $55[-1,-1,-1,-1,-1]$				
	1,1]				
		(1.0)	DELO		GOA
14	Describe with a neat diagram the architecture of recurrent	(13)	BTL 3	Apply	CO3
17,	network to perform XOR task with two inputs.				
	PART – C				
1	Can a two input Adaline compute the XOR function? Analyse the	(15)	BTL 4	Analyse	CO3
1.	XOR function using Madaline?				
	Find new weight when the net illustrated in given figure is	(15)	BTL 5	Evaluate	CO3
	presented the input pattern (0, 1) and target output is 1. Use a	(10)			
	learning rate $\alpha = 0.25$ and the binary sigmoid activation				
	function $u = 0.25$ and the officiary signified activation				
	$\begin{pmatrix} 1 \\ \end{pmatrix}$ $\begin{pmatrix} 1 \\ \end{pmatrix}$				
2	$1 \qquad 0.7 \qquad 10.3$				
Ζ.	$(x_1, z_1) = 0.5$				
	X (y) (1)				
	(x_2) (z_2) 0.1 SRM				
	06				
	0.0				
	Consider the following full counter propagation network	(15)	BTL 5	Evaluate	CO3
	(CPN) shown in below fig. (a) using input pair $x(1,1)$ &				
	y=(0,1); perform phase I & II of training update the weights				
	using learning rates of 0.3. (One step only)				
3.					
	0.4 0.6				
	0.3 0.3				
	$(x_2 0.5 (z_2) (x_1 - x_2))$				
	Consider an ART 1 network with four F1 units and three F2	(15)	BTL 5	Evaluate	CO3
	units. Assume the initial weights as follows:	()			
	Bottom un weights (hij) :				
	$\int \int 0.67 \ 0.03 \ \int 0.03 \ \int 0.03 \ \int 0.004 \ 0.044 \ 0.051 \ 0.044$				
4.	$\{1, 0, 0, 1, 0, 0, 0, 3\}, \{0, 0, 0, 0, 3\}, \{0, 0, 0, 4\}, \{0, 0, 44, 0, 3\}\}$ all $(1, 1, 0, 0, 0, 3)$				
	$\begin{array}{c} 1 \text{ op adwin weights (uj):} \\ 1 (1, 0, 0, 1) (0, 1, 0, 1) (1, 1, 1, 0) \end{array}$				
	$\{\{1, 0, 0, 1\}, \{0, 1, 0, 1\}, \{1, 1, 1, 0\}\}.$				
	Determine the new weight matrices after the vector (0,				
	1, 0, 1) is presented, if the vigilance parameter is given as				

0.25 and 0.7

UNIT IV - <u>HYBRID CONTROL SCHEMES</u> Fuzzification and rule base using ANN – Neuro fuzzy systems-ANFIS – Fuzzy Neuron -Optimization of membership function and rule base using Genetic Algorithm. Familiarization of **ANFIS Tool Box.**

PART – A							
Q.No	Questions		BT Level	Competence	Course Outcome		
1.	List few applications of hybrid fuzzy GA systems.		BTL 2	Understand	CO4		
2.	List few applications of Neuro fuzzy systems.		BTL 2	Understand	CO4		
3.	What are the parameters selected when implementing Fuzzy Logic Control using MATLAB		BTL 3	Apply	CO4		
4.	What are the transfer functions available in MATLAB neural network toolbox.		BTL 3	Apply	CO4		
5.	Classify the shapes of the membership function available in fuzzy logic tool box		BTL 4	Analyse	CO4		
6.	Name any three commercial software used for soft computing techniques.		BTL 4	Analyse	CO4		
7.	Give the defuzzification methods available in MATLAB tool box And What are the inference methods available in MATLAB tool box?		BTL 4	Analyse	CO4		
8.	What is the purpose of toolboxes in matlab? GINERER.		BTL 2	Understand	CO4		
9.	Write a few NN readily available in Mat lab tool box.		BTL 2	Understand	CO4		
10.	Compare Fuzzy Processing and Neural Processing		BTL 4	Analyse	CO4		
11.	What are the classifications of Neuro Fuzzy Hybrid Systems		BTL 1	Remember	CO4		
12.	State the limitations of neural networks and fuzzy systems when operated individually		BTL 2	Understand	CO4		
13.	List the various types of hybrid systems.		BTL 2	Understand	CO4		
14.	Mention the properties of neuro-fuzzy hybrid systems		BTL 2	Understand	CO4		
15.	Mention the characteristics of neuro-fuzzy hybrid systems		BTL 4	Analyse	CO4		
16.	What are advantages of Genetic Fuzzy Hybrids system		BTL 2	Understand	CO4		
17.	What are the objectives of optimization in fuzzy rule based system		BTL 4	Analyse	CO4		
18.	Name the approaches used for Genetic Learning of Rule Bases		BTL 2	Understand	CO4		
19.	List the Advantages of Neuro-Genetic Hybrids		BTL 2	Understand	CO4		
20.	Distinguish between tuning and learning problems of fuzzy system		BTL 4	Analyse	CO4		
	PART – B						
1.	What is called ANFIS? Draw the architecture of ANFIS network and represent the role of different layers.	(13)	BTL 1	Remember	CO4		
2.	With suitable block diagram, explain the principle involved in a liquid level controller using neurofuzzy technique	(13)	BTL 4	Analyse	CO4		
2	Discuss with relevant diagrams and mathematical expressions how a nonlinear system can be identified and	(13)	DTI 3	Undoustond	CO4		
э.	controlled using MATLAB Neural Network Tool box. Choose appropriate example		BIL 2	Understand			
4.	Using MATLAB FIS tool box discuss how will you identify and control the linear and nonlinear dynamic system	(13)	BTL 3	Apply	CO4		
5.	Using MATLAB ANFIS tool box discuss how will you identify and control the linear and nonlinear dynamic system	(13)	BTL 3	Apply	CO4		

	Using MATLAB Neural Network tool box discuss how will	(13)			CO4
6	you identify and control the linear and nonlinear dynamic	< - /	BTL 3	Apply	
0.	system				
	Show how neuro fuzzy logic control can be used for washing	(13)			CO4
7.	machine applications	(13)	BTL 6	Create	001
	Design a generic algorithm to optimize the weights of a	(12)			CO4
0	Design a generic algorithm to optimize the weights of a	(15)		Consta	04
8.	neural network model while training an OK gate with 2		BILO	Create	
	bipolar inputs and 1 bipolar targets.	(10)			604
	Write a MATLAB program train NAND gate with binary	(13)			004
9.	inputs and targets(two input-one Output) using adaptive		BTL 3	Apply	
	neuro-fuzzy hybrid technique.				
10	How are generic algorithms utilized for optimizing the	(13)	BTL 5	Evaluate	CO4
10.	weights in neural network architecture?				
11	Explain in detail the concepts of fuzzy generic hybrid	(13)	RTI 1	Remember	CO4
11.	systems		DILI	Kemember	
12	Give details on the various applications of neuro fuzzy	(13)	DTI 2	Understand	CO4
12.	hybrid systems.		DIL 2	Understand	
13.	Explain the classifications of neuro-fuzzy hybrid systems?	(13)	BTL 1	Remember	CO4
1.4	With suitable block diagram, explain the principle involved	(13)		C (CO4
14.	in a liquid level controller using neurofuzzy technique.		BIL 0	Create	
	PART – C			•	
	Create a neuro and fuzzy controller for its application in	(15)		~	CO4
1.	inverted pendulum system.	× ,	BTL 6	Create	
	Show how fuzzy logic control and genetic algorithm based	(15)			CO4
2	structural optimization can be used for plant control	(10)	BTL 6	Create	
	applications		2120		
	Assume a typical control problem of yours and explain the	(15)			CO4
3	various steps involved in finding a solution using Fuzzy and	(10)	BTL 6	Create	
5.	GA		DILO	oreate	
4	Create a GA-Fuzzy Systems for Control of Flexible Robots	(15)	BTI 6	Create	CO4
	LINIT V - INTRODUCTION TO MACHINE LEARNI	NG AN	DIE U		2
I inos	r Regression I ogistic Regression Naive Raves Classifier kl	NN alg	orithm	Support Vect	<u>.</u> or
Mach	in Acgression, Logistic Acgression, Naive Dayes Classifier, A	Doon I	oorning	-Pocurront	01
Nour	al Notworks and Convolutional Noural Notworks and Dainfa	Deep L	t Loorn	-Recuirent ing: Morkov	
Doois	ion processes (MDPs) and Ω loorning	of center	It Learn	ing. Markov	
Decis	DADT A				
	IANI - A		BT		Course
Q.No	Questions		Level	Competence	Outcome
1.	Define Logistic regression		BTL 1	Remember	CO5
2	Why Is Logistic Regression Popular?		BTL 2	Understand	CO5
	Which of the following distance measure do we use in case				CO5
3.	of categorical variables in k-NN?		BTL 3	Apply	
4	How do we decide the value of "K" in KNN algorithm?		BTI A	Analysa	C05
4. 5	Why is KNN algorithm called Lazy Learner?			Understand	<u> </u>
5.	What are the advantages and disadvantages of KNN	}		Understalld	CO5
6.	what are the auvalitages and disauvalitages of KININ		BTL 2	Understand	005
7	Algoritullii! What are the limitations of Dandam Forest Classifier?		DTI A	The downtown	CO5
/.	what are the limitations of Kandom Forest Classifier?		BTL 2	Understand	C05
8.		1	I KTL I	Kemember	CUS
1			DILI		COF
9.	What are the problems with the following characteristics is		BTL 4	Analyse	CO5
9.	What are the problems with the following characteristics is generally suited in decision tree learning?		BTL 4	Analyse	C05

11.	What are the properties of SVM.		BTL 1	Remember	CO5
12.	Mention the advantages and disadvantages of SVM.		BTL 2	Understand	CO5
13	What is deep learning, and how does it contrast with other		BTL 5	Evaluate	CO5
15.	machine learning algorithms?		DILS	Lvaluate	
14.	Differentiate between Perceptron and SVM		BTL 4	Analyse	CO5
15.	How is a decision tree pruned?		BTL 2	Understand	CO5
16.	What are the applications of SVM.		BTL 2	Understand	CO5
17.	What are the Different Layers on CNN?		BTL 1	Remember	CO5
18.	What are the Challenges of Reinforcement Learning		BTL 2	Understand	CO5
19.	Name the Kernels used in SVM classification process.		BTL 3	Apply	CO5
20.	Justify the use of Reinforcement Learning?		BTL 5	Evaluate	CO5
	PART – B				
1.	Explain the Naïve Bayesian Classifier	(13)	BTL 1	Remember	CO5
2.	Discuss the Linear regression for machine learning	(13)	BTL 2	Understand	CO5
3.	With a neat flowchart, explain the working of k-NN algorithm.	(13)	BTL 1	Remember	CO5
	(i) What are the important objectives of machine learning?	(3)			CO5
4.	(ii) Discuss different examples of machine learnig	(10)	BTL 4	Analyse	
5	Discuss the Logistic regression for machine learning	(13)	BTL 2	Understand	CO5
5.	With neat flowgraph and explain the Pooling of Convolution	(13)		Chatristana	CO5
6.	netork	(15)	BTL 1	Remember	000
7.	Explain in detail the operation of Support Vector machines.	(13)	BTL 1	Remember	CO5
Q	Discuss the learning tasks and Q learning in the context of	(13)	рті <i>1</i>	Analyza	CO5
0.	reinforcement learning		DIL 4	Analyse	
9.	With neat algorithm and explain Random Forest Classifier	(13)	BTL 1	Remember	CO5
10	Differentiate between linear SVM and Kernel SVM	(5)	BTL 2	Understand	CO5
10.	Explain with different kernels used in SVM.	(8)	BTL 1	Remember	
11	Detailed workflow for training and evaluating a deep	(13)	рті <i>5</i>	Evoluoto	CO5
11.	learning model		DIL 3	Lvaluate	
	(i) Compare Reinforcement Learning vs. Supervised	(5)			CO5
10	Learning		BTL 4	Analyse	
12.	(ii) Applications of Reinforcement Learning	(4)	BTL 2	Understand	
	(iii)Challenges of Reinforcement Learning	(4)	DIL 2	Chucistanu	
13.	With a neat flowchart, explain the algorithm of SVM.	(13)	BTL 1	Remember	CO5
1 /	Explain the components of Markov Decision Process and	(13)	DTI -		CO5
14.	how to find optimal policy.		BIL 5	Evaluate	
	PART – C				
	(i) Discuss the use of decision tree for classification problem	(5)			CO5
1.	(ii) Describe the ID3 algorithm for decision tree learning	(10)	BTL 2	Understand	
	with example				
2	Explain the architecture of Convolutional Neural Network	(15)		The desired and	CO5
۷.	with an example		BIL 2	Understand	
	(i) Explain Hypothesis space search in decision tree	(5)			CO5
2	(ii) Explain inductive in decision tree learning	(5)	рті 4	D	
з.	(iii)Write a short note with diagram on Decision trees, which	(5)	DILI	Keinember	
	are non linear, non metric classifiers				
4	For choice of your application, design and train the SVM	(15)	ртт с	Const	CO5
4.	network with different kernels and classify them.		BIL 0	Create	