SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF CIVIL ENGINEERING

M.E STRUCTURAL ENGINEERING

QUESTION BANK

I SEMESTER

1917102 – DYNAMICS OF STRUCTURES

Academic Year 2021 – 2022

Prepared by

T.SWEDHA

Assistant Professor

SRM VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF CIVIL ENGINEERING

Question Bank

SUBJECT: 1917102 – DYNAMICS OF STRUCTURES

SEM/YEAR: 01/I

UNIT I

PRINCIPLES OF DYNAMICS

Vibration and its importance to structural engineering problems – Elements of vibratory systems and simple harmonic motion – Generalized mass - D'Alembert's principle – Mathematical modelling of dynamic systems - Degree of freedom – Equation of motion for S.D.O.F - Damped and undamped free vibrations – Undamped forced vibration – Critical damping – Response to harmonic excitation – Damped or undamped – Evaluation of damping – resonance – band width method to evaluate damping – Force transmitted to foundation – Vibration isolation - examples related to structural engineering.

	PART-A (2 MARKS)	i.	
Sl.No	Questions	BT- Level	Competence
1.	Define Vibration	BT-1	Remember
2.	What are the methods to derive the equation of motion.	BT-2	Understand
3.	Sketch the mathematical model of a single degree of freedom system.	BT-3	Application
4.	Differentiate free and forced vibration.	BT-4	Analyze
5.	Define the term Dynamic Load factor	BT-1	Remember
6.	List out the types of vibration isolation	BT-6	Create
7.	What do you understand by damping?	BT-2	Understand
8.	What are the different types of damping encountered in a vibrating structural system.	BT-6	Create
9.	Define damping ratio.	BT-1	Remember
10.	Write short notes on critical damping.	BT-1	Remember
11.	Explain about over-damped system.	BT-2	Understand
12.	Identify the types of vibration	BT-3	Application
13.	State D Alembert's principle	BT-1	Remember
14.	Define logarithmic decrement.	BT-1	Remember

Sensitivity: Internal & Restricted

15.	What are the classification of prescribed dynamic loading?	BT-2	Understand
16.	Write down the formula for natural frequency and time period.	BT-3	Application
17.	Criticize about the transmissibility.	BT-4	Analyze
18.	Criticize about the frequency ratio.	BT-4	Analyze
19.	Explain Dynamic Loading	BT-5	Evaluate
20.	Evaluate Degree of Freedom	BT-5	Evaluate
21.	Criticize about Half- power Bandwidth method.	BT-5	Evaluate
22.	Formulate the consequences of vibration.	BT-6	Create
23	Summarize the forms of damping encountered in a vibrating	Bt-2	Understand
23.	structural system?		
24	Develop a formula to calculate the equivalent stiffness of spring	BT-3	Application
2	in series, springs in parallel		
25.	Examine resonance and natural frequency	BT-4	Analyze

1.	a)Develop the effective stiffness of the combined spring system shown in figure and write the equation of motion for		m
	the spring mass system.		O
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BT-6	Create
	b) Derive the solution for undamped single degree of freedom		
	system. (6)		
2.	(i) Develop the equation of motion for viscous damping. (7marks) (ii) Determine the natural frequency of the system shown in fig. (6marks) $f_{max} = \frac{k}{k} + \frac{k}{m} + \frac{2k}{m} + \frac$	BT-1	Remember
3.	Calculate the natural frequency for a structure with mass 1000kg. All columns together offer a lateral resistance of 25000N/m. Find the resulting motion and hence find the displacement, velocity and acceleration at time $t = 2$ secs for	BT-3	Application

	the initial displacement of 0.1m and initial velocity of 1m/sec.		
4.	An SDOF system consists of a mass of 20kg, and a spring of		
	stiffness 2200kN/m and dashpot with a damping coefficient of		
	60Ns/m and is subjected to a force of F = 200 sin5t. Find its	DT 1	
	steady state response and peak amplitude. Find the maximum	B1-1	Remember
	bending moment and shear force in the column if the column		
	is infinitely rigid.		
5.	A damped free vibration test is conducted to determine the		
	dynamic properties of a one story building. The mass of the		
	building is 10000 kg initial displacement of the building is		
	0.702 cm. Maximum displacements on the first cycle is	BT-1	Remember
	0.53cm and period of this displacement cycle is 1./s. Estimate		
	ratio damping coefficient Damped frequency and the		
	amplitude after 6 cycles.		
6.	Derive the equation of motion for SDOF system free vibration	6	
	and find the solution for	C	
	a) Under damped system	BT-4	Analyze
	b) Over damped system	5	
	c) Critically damped system.		
7.	Calculate the natural frequency in side sway for the frame		
	shown in fig. The column length $AB = Im$ and $CD = 0.8m$.		-
	Also calculate the hatural period if there is initial displacement of 25mm and initial velocity of mass obtained at time $t = 5$		
	secs. Take $EI = 30 * 10^6 \text{Nm}^2$		11
	W = 30 * 10E6		
	\mathbf{x} \mathbf{x} \mathbf{c}		
		рт)	Understand
	\rightarrow	D1-2	Understand
8.	A vibrating system consists of a mass of 5kg, spring of	L	
	stiffness 120 N/m and a damper with a damping co-efficient of		
	5 N-s/m. Examine Damping factor, Natural frequency of the	BT-4	Analuza
	system, Logarithmic decrement, The ratio of two successive	D1-4	Anaryze
	amplitude, The number of cycles after which the initial		
	amplitude reduces to 25%		
9.	A single degree of freedom system with mass $m = 10 \text{ kg}$, stiffness $k = 10 \text{ N/m}$ and damping coefficient $c = 10 \text{ Ns/m}$ is	BT-3	Application

	subjected to an initial velocity of $1m/s$ and initial displacement of 0.5m. Determine natural frequency, damped natural frequency, damping ratio and equation of motion. Find the displacement and velocity at time t = 1 second		
10.	A single degree of freedom system having a mass of 2.5kg is set into motion with a viscous damping and allowed to oscillate freely. The frequency of oscillation is found to be 20 Hz, and measure of the amplitude of vibration shows two successive amplitude to be 6mm and 5.5mm. Estimate the viscous damping co-efficient.	BT-5	Evaluate
11.	 A weight W is suspended from the mid span of a simply supported beam of span L, flexural rigidity EI and mass per unit length m. If the wire by which the weight w is suspended suddenly snaps. (a) Describe the subsequent vibration of the beam. Neglect damping. (b) Find its deflection expression at the centre. 	BT-2	Understand
12.	 (i) A vibrating system consisting of a weight of 100 N and spring stiffness of 4000 N/m is viscously damped so that two consecutive amplitudes measured are 150 mm and 8021 mm respectively. Determine the logarithmic decrement and the coefficient of damping. (ii) Describe Half-power Band width Method 	BT-2	Understand
13.	A steel rigid frame, shown in fig., supporting a rotating machine which exerts a horizontal force at the girder level of 50000sin11t N. Assuming 4% critical damping, what is the steady state amplitude of vibration? I for columns = $15 \times 10^{-6} \text{m}^4$, E = $21 \times 10^7 \text{kN/m}^2$ F(t) = 50000 sin11t	BT-2	Understand
14.	A block of weight 900 N (moving between vertical guides) is supported by a spring of stiffness 10^6 N/m. the block is given an initial displacement of 50 mm with a velocity of 300 mm/sec, determine the period of vibration, natural frequency, amplitude of motion, maximum velocity and maximum acceleration of the block. Assuming a damping of 20% and show the logarithmic decrement and the damping coefficient	BT-2	Understand

	of the system.		
	PART-C (15MARKS)		
1.	 A machine foundation weighs 60 KN. The spring constant is 11000KN/m and dash pot constant (C) = 200 KN-s/m. Evaluate i) Whether the system is over damped, under damped or critically damped. ii) Determine Logarithmic decrement iii) Determine Ratio of two successive amplitudes If the initial displacement is 10mm and initial velocity is zero displacement at t = 0.1s 	BT-5	Evaluate
2.	List out some example of SDOF system and explain any one of its behavior	BT-6	Create
3.	A vibrating system consisting of mass 100kg and spring with stiffness of 75000n/m is viscously damped so that the ratio of 2 consecutive amplitudes is 1.0 to 0.85. Determine natural frequency, damping ratio, logarithmic decrement, damping and critical damping.	BT-4	Analyze
4.	Explain the different types of vibration in a structural dynamic problem	BT-2	Understand

UNIT-2

П

TWO DEGREE OF FREEDOM SYSTEMS

Mathematical models of two degree of freedom systems, free and forced vibrations of two degree of freedom systems, normal modes of vibration, applications.

Sl.No	Questions	BT- Level	Competence
1.	What is a shear building?	BT-1	Remember
2.	List out the assumptions made in shear building.	BT-1	Remember
3.	What are all the differences between free and forced vibration	BT-2	Understand
4.	What will be the equation of motion of a damped two DOF system with free vibration	BT-2	Understand
5.	Normal mode of vibration – explain.	BT-2	Understand
6.	Define two degree of freedom system	BT-1	Remember
7.	Write the equation of motion of a forced undamped two DOF system.	BT-3	Application

8.	Draw a mathematical model of a free undamped two DOF	BT-3	Application
9	What is mass matrix?	BT-1	Remember
10.	What is stiffness matrix?	BT-4	Analyze
11.	What is Damping matrix.	BT-5	Evaluate
12.	What is the other name of natural frequency?	BT-1	Remember
13.	What is the fundamental frequency and fundamental mode of vibration.	BT-1	Remember
14.	Write the equation of motion of a damped two DOF system with forced vibration	BT-6	Create
15.	What is a mode shape?	BT-5	Evaluate
16.	Write the characteristic equation of two DOF system.	BT-3	Application
17.	What is frequency ratio?	BT-4	Analyze
18.	Elaborate the term node.	BT-6	Create
19.	Distinguish two DOF system and MDOF system.	BT-4	Analyze
20.	What is meant by first and second mode of vibration?	BT-2	Understand
21.	Evaluate principal mode of vibration.	BT-5	Evaluating
22.	Construct the equation of motion of a free damped two DOF system.	BT-6	Create
23.	How will you identify principal mode of vibration.	BT-3	Application
24.	Examine and explain about normal values	BT-4	Analyze
25.	Summarize about modal vectors.	BT-2	Understand

1.	A two storey building having a floor weight 1200kN, 600kN, for the first and second floor respectively. The height of each floor is 3m and EI = 30×10^{12} Nmm ² . Analyze the natural frequencies and mode shapes.	BT-4	Analyze
2.	Develop a solution for the figure given below calculating the natural frequencies and corresponding mode shapes. x_1 x_2 k m x_2 m	BT-6	Create

3.	Analyze the natural frequency and mode shape of the system		
	shown in fig.		
	1 2k Hy K Hy2	BT-4	Analyze
	2m 3m		
	$\frac{1}{1}$		
4.	Evaluate the natural frequency and mode shape of the two		
	degree of freedom system shown in fig.		
	3k $2k$ $2k$ k	BT-5	Evaluate
	J-mm m -mm 2m -mm		
	1 +>91 +>92		
5.	Estimate the expression for free damped vibration of 2 DOF.	BT-2	Understand
6.	Explain the concept of shear building and derive the		
	expression for steady state response of a forced undamped	BT-2	Understand
	2DOF system.		
7.	Calculate the natural frequencies and mode shape and steady		
	state response of the given system.		
	$f \rightarrow F cosidt \qquad m_1 = m_2 = m$	BT-3	Application
	John Mi Ma		
			m
8.	Formulate the free vibration equations for the two element		6
8.	Formulate the free vibration equations for the two element frame given in fig. the frame is massless with lumped masses		GE
8.	Formulate the free vibration equations for the two element frame given in fig. the frame is massless with lumped masses at the two nodes is constant. Determine the natural		GE
8.	Formulate the free vibration equations for the two element frame given in fig. the frame is massless with lumped masses at the two nodes is constant. Determine the natural frequencies and modes of vibration of the system.		GE
8.	Formulate the free vibration equations for the two element frame given in fig. the frame is massless with lumped masses at the two nodes is constant. Determine the natural frequencies and modes of vibration of the system.		GE
8.	Formulate the free vibration equations for the two element frame given in fig. the frame is massless with lumped masses at the two nodes is constant. Determine the natural frequencies and modes of vibration of the system. $M_{1} = 10000 \text{ kg} \implies 91$	DT 1	G
8.	Formulate the free vibration equations for the two element frame given in fig. the frame is massless with lumped masses at the two nodes is constant. Determine the natural frequencies and modes of vibration of the system. $M_1 = 10000 \text{ kg} \implies 91$ $k = 5 \times 10^6 \text{ N/m}.$	BT-1	Remember
8.	Formulate the free vibration equations for the two element frame given in fig. the frame is massless with lumped masses at the two nodes is constant. Determine the natural frequencies and modes of vibration of the system. $M_1 = 10000 \text{ kg} \implies 91$ $k = 5 \times 10^6 \text{ N/m}$ $M_2 = 5000 \text{ kg}$	BT-1	Remember
8.	Formulate the free vibration equations for the two element frame given in fig. the frame is massless with lumped masses at the two nodes is constant. Determine the natural frequencies and modes of vibration of the system. $\boxed{M_1 = 10000 \text{ kg}} \Rightarrow 91$ $k = 5 \times 10^6 \text{ N/m}$ $M_2 = 5000 \text{ kg} \Rightarrow 92$	BT-1	Remember
8.	Formulate the free vibration equations for the two element frame given in fig. the frame is massless with lumped masses at the two nodes is constant. Determine the natural frequencies and modes of vibration of the system. $\frac{M_1 = 10000 \text{ kg}}{\text{ k}_2 = 5000 \text{ kg}} \Rightarrow \frac{91}{\text{ k}_2}$ $\frac{M_2 = 5000 \text{ kg}}{\text{ k}_2 = 10 \times 10^6 \text{ N/m}}$	BT-1	Remember
8.	Formulate the free vibration equations for the two element frame given in fig. the frame is massless with lumped masses at the two nodes is constant. Determine the natural frequencies and modes of vibration of the system. $\frac{M_1 = 10000 \text{ kg}}{M_2 = 5000 \text{ kg}} \Rightarrow \frac{91}{10000 \text{ kg}} \Rightarrow \frac{91}{100000 \text{ kg}} \Rightarrow \frac{91}{100000 \text{ kg}} \Rightarrow \frac{91}{10000 \text{ kg}} \Rightarrow \frac{91}{10000 \text{ kg}} \Rightarrow \frac{91}{10000 \text{ kg}} \Rightarrow \frac{91}{100000 \text{ kg}} \Rightarrow \frac{91}{10000 \text{ kg}} \Rightarrow \frac{91}{10000 \text{ kg}} \Rightarrow \frac{91}{10000 \text{ kg}} \Rightarrow \frac{91}{100000 \text{ kg}} \Rightarrow \frac{91}{1000000 \text{ kg}} \Rightarrow \frac{91}{100000 \text{ kg}} \Rightarrow \frac{91}{1000000 \text{ kg}} \Rightarrow \frac{91}{10000000000000000000000000000000000$	BT-1	Remember
8.	Formulate the free vibration equations for the two element frame given in fig. the frame is massless with lumped masses at the two nodes is constant. Determine the natural frequencies and modes of vibration of the system. $\frac{M_{4} = 10000 \text{ kg}}{M_{2} = 5000 \text{ kg}} \Rightarrow 91$ $k = 5 \times 10^{6} \text{ N/m}$ $M_{2} = 5000 \text{ kg} \Rightarrow 92$ $k = 10 \times 10^{6} \text{ N/m}$	BT-1	Remember
8.	Formulate the free vibration equations for the two element frame given in fig. the frame is massless with lumped masses at the two nodes is constant. Determine the natural frequencies and modes of vibration of the system. $\boxed{M_1 = 10000 \text{ kg}} \Rightarrow 91$ $k = 5 \times 10^6 \text{ N/m}$ $M_2 = 5000 \text{ kg} \Rightarrow 92$ $k = 10 \times 10^6 \text{ N/m}$ A two storey building has seismic weights of 300 kN and	BT-1	Remember
8. 9.	Formulate the free vibration equations for the two element frame given in fig. the frame is massless with lumped masses at the two nodes is constant. Determine the natural frequencies and modes of vibration of the system. $\boxed{M_1 = 10000 \text{ kg}} \Rightarrow 91$ $k = 5 \times 10^6 \text{ N/m}$ $M_2 = 5000 \text{ kg} \Rightarrow 92$ $k = 10 \times 10^6 \text{ N/m}$ A two storey building has seismic weights of 300 kN and 420 kN at I and II storeys respectively; The corresponding	BT-1	Remember
8. 9.	Formulate the free vibration equations for the two element frame given in fig. the frame is massless with lumped masses at the two nodes is constant. Determine the natural frequencies and modes of vibration of the system. $\boxed{M_1 = 10000 \text{ kg}} \Rightarrow 91$ $k = 5 \times 10^6 \text{ N/m}$ $M_2 = 5000 \text{ kg} \Rightarrow 92$ $k = 10 \times 10^6 \text{ N/m}$ A two storey building has seismic weights of 300 kN and 420 kN at I and II storeys respectively; The corresponding stiffnesses are 25000 kN/m and 30000 kN/m.	BT-1 BT-2	Remember Understand
8. 9.	Formulate the free vibration equations for the two element frame given in fig. the frame is massless with lumped masses at the two nodes is constant. Determine the natural frequencies and modes of vibration of the system. $\boxed{M_1 = 10000 \text{ kg}} \Rightarrow 91$ $K = 5 \times 10^6 \text{ N/m}$ $M_2 = 5000 \text{ kg} \Rightarrow 92$ $K = 10 \times 10^6 \text{ N/m}$ A two storey building has seismic weights of 300 kN and 420 kN at I and II storeys respectively; The corresponding stiffnesses are 25000 kN/m and 30000 kN/m. (i) Determine the model frequencies. (ii) Sketch the mode sharpes	BT-1 BT-2	Remember Understand
8. 9.	Formulate the free vibration equations for the two element frame given in fig. the frame is massless with lumped masses at the two nodes is constant. Determine the natural frequencies and modes of vibration of the system. $\frac{M_{1} = 10000 \text{ kg}}{M_{2} = 5000 \text{ kg}} \Rightarrow 91$ $k = 5 \times 10^{6} \text{ N/m}$ $M_{2} = 5000 \text{ kg}} \Rightarrow 92$ $k = 10 \times 10^{6} \text{ N/m}$ A two storey building has seismic weights of 300 kN and 420 kN at I and II storeys respectively; The corresponding stiffnesses are 25000 kN/m and 30000 kN/m. (i) Determine the model frequencies. (ii) Sketch the mode shapes. Determine the natural frequencies and mode shapes of a	BT-1 BT-2	Remember Understand
8. 9.	Formulate the free vibration equations for the two element frame given in fig. the frame is massless with lumped masses at the two nodes is constant. Determine the natural frequencies and modes of vibration of the system. $\boxed{M_4 = 10000 \text{ kg}} \Rightarrow 91$ $\boxed{K} = 5 \times 10^6 \text{ N/m}$ $\boxed{M_2 = 5000 \text{ kg}} \Rightarrow 92$ $\boxed{K} = 10 \times 10^6 \text{ N/m}$ A two storey building has seismic weights of 300 kN and 420 kN at I and II storeys respectively; The corresponding stiffnesses are 25000 kN/m and 30000 kN/m. (i) Determine the model frequencies. (ii) Sketch the mode shapes. Determine the natural frequencies and mode shapes of a three storey building having a floor weight 2500kN, 2000kN	BT-1 BT-2 BT-1	Remember
8. 9. 10.	Formulate the free vibration equations for the two element frame given in fig. the frame is massless with lumped masses at the two nodes is constant. Determine the natural frequencies and modes of vibration of the system. $\boxed{M_{4} = 10000 \text{ kg}} \Rightarrow 91$ $\boxed{K = 5 \times 10^{6} \text{ N/m}}$ $\boxed{M_{2} = 5000 \text{ kg}} \Rightarrow 92$ $\boxed{K = 10 \times 10^{6} \text{ N/m}}$ A two storey building has seismic weights of 300 kN and 420 kN at I and II storeys respectively; The corresponding stiffnesses are 25000 kN/m and 30000 kN/m. (i) Determine the model frequencies. (ii) Sketch the mode shapes. Determine the natural frequencies and mode shapes of a three storey building having a floor weight 2500kN, 2000kN for the first , second floor respectively. The height of each	BT-1 BT-2 BT-1	Remember Understand Remember

11.	Solve the natural frequency and mode shape for a single bay two storey RCC frame. Mass of each rigid frame is 20,000kg and combined stiffness of first storey columns is $2 * 10^6$ N/m and combined stiffness for second storey column is $2 * 10^6$ N/m	BT-3	Application
12.	Determine the natural frequencies and corresponding mode shape for the system shown below. F $\cos \omega t$ $\frac{k}{m}$ $\frac{x_1 \ k}{m}$ $\frac{x_2}{m}$	BT-2	Understand
13.	Obtain the natural frequencies and mode shapes of the system. $ \begin{array}{c} $	BT-1	Remember
14.	Set up the differential equation of motion and determine the natural frequencies and mode shapes for the given system. $\begin{array}{c} 1 \\ 1 \\ 2m \end{array}$ $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$ $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$ $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	BT-1	Remember

PART-C (15 MARKS)

1.	What are the normal modes for the following system and show		Remember
	that the modes are orthogonal		
	$\begin{bmatrix} 2m & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{bmatrix} + \begin{bmatrix} 3k & -k \\ -k & k \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	BT-1	
2.	A cantilever bar is to be modeled by a uniform massless		Create
	uniform bar to which are attached with two lumped masses	BT-6	
	representing the mass of original system as $K = 2AE/L$ and	DIU	
	m= ρ AL. Determine the natural frequencies and the normal		

UNIT-3

DYNAMIC RESPONSE OF MULTI-DEGREE OF FREEDOM SYSTEMS

Mathematical models of Multi-degree of freedom systems, orthogonality of normal modes, free and forced vibrations of multi degree of freedom systems Mode superposition technique, response spectrum method, Applications.

PART-A (2 MARKS)

Sl.No	Questions	BT- Level	Competence			
1.	Define MDOF system.	BT-1	Remember			
2.	Draw the mathematical model of a 3DOF system.	BT-3	Application			
3.	What is the definition for spectral matrix?	BT-2	Understand			
4.	What is modal analysis	BT-1	Remember			
5.	Write the uncoupled stiffness matrix.	BT-6	Create			
6.	What is eigen values and eigen vectors?	BT-1	Remember			
7.	Write the equation of motion of an undamped MDOF system with Free Vibration.	BT-6	Create			
8.	Define modal matrix	BT-1	Remember			
9.	What is a lumped mass?	BT-2	Understand			

10.	Which property of eigen vectors facilitate the modal analysis	BT-3	Application
11.	State the modal orthogonal conditions with reference to mass and stiffness	BT-1	Remember
12.	What are the different methods to analyze forced vibration of MDOF system?	BT-4	Analyze
13.	Write the formula of modal matrix.	BT-3	Application
14.	Write the equation of motion of a damped MDOF system with Forced Vibration. Justify	BT-5	Evaluate
15.	Criticize the formula of uncoupled mass matrix.	BT-4	Analyze
16.	What is fundamental natural frequency? Justify	BT-5	Evaluate
17.	What is decoupling of equation in MDOF system?	BT-1	Remember
18.	What do you mean by dynamic coupling?	BT-2	Understand
19.	List out the steps to find out the natural frequency of a 3DOF system and compare with the 2DOF system	BT-4	Analyze
20.	What is mode acceleration method?	BT-2	Understand
21.	Identify some applications of multi degree of freedom systems in civil engineering	BT-3	Application
22.	List the approximate methods used to find the mode shapes and frequencies.	BT-4	Analyze
23.	Explain When do you model a system as a Multiple D.O.F. system	BT-2	Understand
24.	Recommend any two methods of finding natural frequency of multiple degree of freedom system.	BT-5	Evaluate
25.	Propose the effective utilization of static condensation method used in dynamic analysis.	BT-6	Create

1.	The Stiffness and mass matrices of a vibrating system is given		
	below. Determine its fundamental frequency and Mode shapes.		
	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1.5 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} 2 \end{bmatrix} = \begin{bmatrix} 600 & -600 & 0 \\ -600 & 1800 & -1200 \\ 0 & -1200 & 3000 \end{bmatrix}$	BT-5	Evaluate

	Stiffness matrix [k] =		
	2 -1 0 -1 2 -1 0 -1 2		
	Determine the frequency and mode shapes		
8.	Estimate the uncoupled stiffness and mass matrix for the		
	following system.		
	$\frac{3k}{2m}$ $\frac{2k}{m}$	BT-2	Understand
9.	A 3 Storey Frame is given in the figure. Determine the response	0	
	and the top level on the basis of consideration of all the modes for $\omega = 1.5\omega_1$ $\begin{array}{c} 2m \\ 2m \\ 2k \\ 3k \\ 3k \\ 4k \\ 4k \\ 4k \\ 4k \\ 4k \\ 4$	BT-2	Understand
10.	Find the natural frequency and mode shapes for the given		
	structure. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BT-2	Understand
11.	(i) Explain how mathematical modeling can be done for a		
	multi-degree freedom system.	BT-1	Remember
	(ii) Briefly explain about orthogonality of normal modes.		
12.	Determine the natural frequencies and mode shape for the shear	BT-2	Understand

PART-C (15 MARKS)

1.	Determine the mode shapes and nodal frequencies of a three	BT-1	Remember
----	--	------	----------

	storey building by modal super position method. The storey		
	masses are M1=360 kg, M2=250kg, M3= 150kg and storey		
	stiffness are K_1 = 3000kN/m, K_2 = 2000kN/m and		
	K ₃ =1000kN/m.		
2.	The following matrices were obtained for a vibrating system		
	using matrix iteration technique. Evaluate and obtain the		
	natural frequencies and the corresponding modal amplitudes.		
	$\begin{bmatrix} 9 & 11 & 7 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	BT-5	Evaluate
	$[\delta] = \begin{vmatrix} 11 & 16 & 11 \end{vmatrix} \qquad [m] = \begin{vmatrix} 0 & 1 & 0 \end{vmatrix}$		
		6	
3.	List down the steps in use of response spectra for designing	BT-2	Understand
	MDF system.		
4.	Construct the step by step procedure involved in the mode	BT-6	Create
	superposition technique for a 3 DOF system.	D1-0	

UNIT-4

DYNAMIC RESPONSE OF CONTINUOUS SYSTEMS

Free and forced vibration of continuous systems, Rayleigh – Ritz method – Formulation using Conservation of Energy – Formulation using VirtualWork, Applications

PART-A (2 MARKS)

Sl.No	Questions	BT-	Competence
1	What is the definition of Timoshenko's Inertia?	BT_1	Remember
1.		DI-I	Kememoer
2.	Write the natural frequency and mode shapes for simply		
	supported at one end	B1-0	Create
3.	Differentiate between flexural and axial vibration of bars.	BT-4	Analyze
4.	Can you have a beam with both ends free in flexural vibration		
		BT-5	Evaluate
	mode / Justify.		
5.	List out the forces acting on beam element.	BT-1	Remember
6	Write short notes on Hamilton's principle application in	DТ 1	Domomhor
0.	white short notes on manificon's principle application in	D1-1	Kemember

	equation of motion.		
7.	Write the general solution for flexural beam.	BT-6	Create
8.	Evaluate the natural frequency and mode shapes for simply	BT-5	Evaluate
	supported at both ends.	DIJ	Lvuluute
9.	Give the explanation on virtual work.	BT-2	Understand
10.	Draw a neat sketch used to derive equation of flexural vibration	BT-3	Application
	of uniform beams.	210	Application
11.	Write down the governing differential equation for flexural	BT-3	Application
	vibration of continuous system.	210	Application
12.	Discuss about the natural frequency and mode shapes for both	BT-2	Understand
	ends free.	212	0
13.	List the natural frequency and mode shapes for both ends fixed.	BT-1	Remember
14.	Analyse the natural frequency and mode shapes for one end	BT-4	Analyze
	fixed and other end free.		
15.	Determine the natural frequency and mode shapes for one end	BT-4	Analyze
	fixed and other end hinged.	G	1
16.	Explain the concept of conservation of energy.	BT-2	Understand
17.	Discuss about the assumptions in Euler- Bernoulli's theory.	BT-2	Understand
18.	Use Rayleigh's method find an expression for fundamental		
	frequency of a continuous beam by taking the shape function	BT-3	Application
	$\Psi(\mathbf{x}) = (\mathbf{x}/\mathbf{L})^2$		
19.	Give the formula derived from Betti's law.	BT-1	Remember
20.	List out Rayleigh's quotient.	BT-1	Remember
21	Identify the equation for transverse vibration of beams	BT-3	Application
22	Recommend how Rayleigh's method be adopted to find the	BT-5	
	fundamental frequency of a cantilever beam.	DIJ	Evaluate
23	Examine how to approximate the two lowest frequencies of the	BT-4	A 1
	continuous system using Rayleigh Ritz method?	ыт	Anaryze
24	Construct the mode shapes in axial vibration of Clamped - Free		a l
		DI-0	(manta
	bar.	Б1-0	Create

external vibration?		
---------------------	--	--

PART-B (13 MARI	KS)
-----------------	-----

1.	Derive the equation of motion for flexural beam subjected to forced vibration.	BT-6	Create
2.	Determine the first two frequencies of a Cantilever beam by Rayleigh-Ritz method by assuming $\phi = \begin{bmatrix} 1.0 & 1.0 \\ 0.45 & -0.55 \\ 0.25 & -0.10 \end{bmatrix}.$	BT-5	Evaluate
3.	Find out the solution for equation of motion and find out the natural frequency and mode shapes with one end fixed and other end simply supported.	BT-2	Understand
4.	Derive an expression for the transverse vibration of a uniform beam. Hence find the natural frequencies and mode shapes of a simply supported beam	BT-3	Application
5.	Determine from first principles, the first three natural frequencies and mode shapes of a simply supported beam subjected to free flexural vibrations	BT-3	Application
6.	Derive the equation of motion by Rayleigh – Ritz Method.	BT-4	Analyze
7.	Derive an expression for the transverse vibration of a uniform beam. Hence find the natural frequency and mode shapes of a fixed beam.	BT-1	Remember
8.	Express in detail the equation of motion by Virtual work method.	BT-4	Analyze
9.	Find approx solution for the first two natural frequencies and modes of latera; vibration of the uniform cantilever beam shown in fig. by Rayleigh- Ritz method using the shape function $\psi_1(x) = 1 - \cos \frac{\pi x}{2L}$ and $\psi_2(x) = 1 - \cos \frac{3\pi x}{2L}$.	BT-1	Remember
10.	Formulate the equation of motion by conservation of energy method.	BT-2	Understand
11.	(i) Explain about the free and forced vibration of continuous systems.	BT-2	Understand

	(ii) List out the applications of virtual work method?		
12.	Determine the fundamental frequency of the cantilever beam by Raleigh's method.	BT-1	Remember
13.	Determine the first two frequencies of a Cantilever beam by Rayleigh-Ritz method by assuming $(\phi) = \begin{pmatrix} 1.0 & 1.0 \\ 0.55 & -0.65 \\ 0.35 & -1.2 \end{pmatrix}$.	BT-1	Remember
14.	Determine the first two natural frequencies of uniform cantilever beam by Rayleigh – Ritz method. Assume $\varphi(x) = C_1 x^2 + C_2 x^3$	BT-2	Understand
	PART-C (15 MARKS)		<u> </u>
1.	Derive the expression for fundamental frequency of a cantilever beam by virtual work method.	BT-1	Remember
2.	Explain how the conservation of energy method is used to analyse beams for dynamics.	BT-3	Application
3.	Determine the fundamental frequency for a uniform simply supported beam by assuming the static deflection curve as $\mathbf{Y} = (\rho Ag / 24 EI) (L^3 x - 2Lx^3 + x^4).$	BT-4	Analyze
4.	Determine the natural frequencies of vibration of a uniform beam fixed at x=0 and simply supported at x=1.	BT-2	Understand
	UNIT-5		
	DIRECT INT <mark>EGRATION METHODS FOR DYNAM</mark> IC F	RESPON	SE
Damping in MDOF systems, Nonlinear MDOF systems, Step-by-step numerical integration			
	PART-A (2 MARKS)		
<i></i>		BT_	Compotonco
SI.No	Questions	Level	Competence
1.	Define stiffness coefficient	BT-1	Remember
2.	How is dynamic equilibrium established?	BT-2	Understand
3.	When Wilson thetamethod become unconditionally stable? Justify	BT-5	Evaluate
4.	Give the explanation on damping co-efficient.	BT-2	Understand
5.	Write the incremental velocity equation from Wilson – θ method.	BT-6	Create
6.	What are the direct integration methods?	BT-1	Remember
7.	Develop the assumptions made in constant acceleration method.	BT-3	Application
8.	Write the basic assumptions in Wilson θ method.	BT-6	Create

9.	Distinguish between constant acceleration method and linear acceleration method.	BT-4	Analyze
10.	What is the concept behind linear acceleration method?	BT-2	Understand
11.	What are the assumptions made in linear acceleration method?	BT-1	Remember
12.	Explain in detail about the constant acceleration method.	BT-2	Understand
13.	What is elasto-plastic behavior?	BT-1	Remember
14.	Discover and explain the principle involved in direct integration methods.	BT-4	Analyze
15.	Illustrate the effect of damping in MDOF system.	BT-3	Application
16.	Write shortly about Newmark β method.	BT-3	Application
17.	What is the concept of Wilson θ method?	BT-1	Remember
18.	What is the Value of constants in elastoplastic behavior method?	BT-1	Remember
19.	List the different methods to perform step by step integration.	BT-4	Analyze
20.	Distinguish between Linear and Nonlinear MDOF systems.	BT-5	Evaluate
21.	Identify the major parameters that influences in non-linear analysis.	BT-3	Application
22.	Recommend any two methods of analysis of non - linear MDOF systems.	BT-5	Evaluate
23.	Explain system damping matrix in case of nonlinear system.	BT-4	Analyze
24.	Name some of the numerical procedures for finding the transient response of structure.	BT-2	Understand
25.	Construct the variation of force with time, when the load is applied suddenly.	BT-6	Create

1.	Describe about Non-Linear single degree of freedom model.	BT-1	Remember
2.	Constant acceleration method – Explain in detail.	BT-2	Understand
3.	Write down the step by step procedure of numerical integration techniques.	BT-3	Application
4.	Derive the expression for computing the response of a multi degree of freedom system using Wilson's- θ method.	BT-1	Remember
5.	Explain about New-mark Beta method.	BT-2	Understand
6.	Write the algorithm for step by step solution of linear system using Wilson – θ method.	BT-6	Create
7.	Describe the concept of incremental equation of motion for non- linear MDOF system.	BT-1	Remember

8.	Calculate the displacement response for two storey shear bulding subjected to suddenly applied force of 10kip at the level of second floor. Neglect damping and assume elastic behavior. $l_2=120$ inch; $l_1=180$ inch; $m_1 = 0.136$ kipsec ² /inch; $m_2 = 0.066$ 136 kipsec ² /inch.	BT-3	Application
	li ki NEEP		
9.	Write the algorithm for step by step solution of linear system using New-mark Beta method.	BT-3	Application
10.	List the step by step procedure of direct integration method.	BT-4	Analyze
11.	Explain the procedure involved in the step by step numerical integration technique for analysis of non-linear MDOF systems.	BT-4	Analyze
12.	How does a non- linear MDOF system respond to dynamic forces? Explain.	BT-2	Understand
13.	Evaluate the algorithm for step by step solution for elasto plastic single degree of freedom system.	BT-5	Evaluate
14.	List the step by step procedure of linear acceleration method	BT-4	Analyze

PART-C (15 MARKS)

	And and a second s		
1.	Explain with a 2DOF system the step by step procedure involved in finding displacement of a damped system with forcing function F(t)	BT-2	Understand
2.	Explain in detail about the direct integration method.	BT-2	Understand
3.	List some methods for non- linear seismic analysis of regular building.	BT-1	Remember
4.	Create a Nonlinear MDOF model and evaluate it by Wilson $-\theta$ method and New-mark Beta method.	BT-6	Create