SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF CIVIL ENGINEERING (M.E - STRUCTURAL ENGINEERING) QUESTION BANK - 2019

II SEMESTER

1917203 - FINITE ELEMENT ANALYSIS OF STRUCTURES.

Regulation – 2019

Academic Year 2019 – 20

Prepared by

Dr. S. Gunaselvi, Assistant Professor / CIVIL

SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF CIVIL ENGINEERING

QUESTION BANK

SUBJECT: 1917203 - FINITE ELEMENT ANALYSIS OF STRUCTURES

SEM / YEAR: II / FIRST

UNIT-1 INTRODUCTION

Approximate solutions of boundary value problems - Methods of weighted residuals, approximate solution using variation method, Modified Galerkin's method, Boundary conditions and general comments-continuity, compatibility, convergence aspects. Basic finite element concepts - Basic ideas in a finite element solution, General finite element solution procedure, Finite element equations using modified Galerkin's method.

	PART - A			
Q.No	Questions	BT	Competence	
1.	State the methods of Engineering Analysis.	BT-2	understand	
2.	Define Discretization and assemblage.	BT-6	Creating	
3.	What is meant by finite element analysis?	BT-3	Application	
4.	What do you mean by constitutive law?	BT-5	Evaluate	
5.	Write the three phases of finite element method.	BT-4	Analyze	
6.	What is a structural and non structural problems?	BT 5	Evaluate	
7.	What are the methods are generally associated with the FEA?	BT-5	Evaluate	
8.	Write the methods of weighed residual statement.	BT-2	understand	
9.	During discretization, mention the places where it is necessary to place a	BT-4	Analyze	
10.	Name any four FEA softwares.	BT 3	Application	
11.	Differentiate between global and local axes.	BT 6	Create	
12.	What are the limitations of Galerkin's formulation?	BT-2	understand	
13.	State the condition must be fulfilled by the approximating function.		Application	
14.	How to analysis Degrees of freedom with examples?		Remember	
15.	What is Rayleigh Ritz Method?	BT-2	Understand	
16.	What is the requirement of displacement field to be satisfied in the use of	BT-1	Remember	
	Rayleigh Ritz Method?			
17.	State the three phases of finite element method.	BT-3	Application	
18.	Express the linear constitutive relations.	BT-6	Creating	
19.	Draw the Pascal's triangle.	BT-1	Remember	
20.	What is aspect ratio?	BT-1	Remember	
	PART – B			
1.	The following differential equation is available for a physical	BT-3	Application	
	phenomenon $AE(d^2y/dx^2+q_0) = 0$ with the boundary conditions $y(0) = 0$			
	$(dy/dx)_{x=L} = 0$. Find the value of $f(x)$ using the weighed residual method.			

2.	Solve the following equations by Gauss elimination method?	BT 1	Remember
	a) $2x_1 + 4x_2 + 2x_3 = 15$		
	b) $2x_1 + x_2 + 2x_3 = -5$		
	c) $4x_1 + x_2 - 2x_3 = 0$		
3.	A simply supported beam is subjected to uniformly distributed load over	BT-1	Remember
	Entire span. Determine the bending moment and deflection at the mid		
	span using Rayleigh -Ritz method and compare with exact solution. Use		
	a two term Trial function $y=a_1\sin(\pi x/l) + a_2\sin(3\pi x/l)$.		
4.	The following differential equation is available for a physical	BT-2	Understand
	phenomenon $(d^2y / dx^2) + 50 = 0, 0 \le x \le 10$. Trial function is $y = a_1 x$ (10-		
	x). Boundary conditions are $y(0) = 0$; $y(10)=0$. Find the value of the		
	parameter a1 by the following methods: 1) Point Collocation 2) Sub		
	Domain 3) Least Square 4) Galerkin method.		
5.	The following differential equation is available for a physical	BT 1	Remember
	phenomenon $(d^2y / dx^2) - 10x^2 = 5, 0 \le x \le 1$. Trial function is $N_1 = x$ (x-1)		
	N2 = $x^2(x-1)$. Boundary conditions are $y(0) = 0$; $y(1)=0$. Find the value of		
	the parameter a1 by the following methods: 1) Point Collocation 2) Sub		
	Domain 3) Least Square 4) Galerkin method.		
6.	List out the advantages, disadvantages and applications of FEA.	BT 2	Understand
7.	Solve the following differential equation using Ritz method. $d^2y/dx^2 = -$	BT-3	Application
	sin (πx) boundary conditions u(0) = 0 and u(1) = 0.		
8.	Discuss the concepts of FEA. List out the errors and accuracy in FEA.	BT-2	Understand
9.	A simply supported beam of span L, young's modulus, moment of inertia	BT-6	Creating
	I is subjected to a uniformly distributed load of P/unit length. Determine		
	the deflection W at the mid-span. Use Rayleigh Ritz method.		

10.	For the bar shown in fig, evaluate the nodal displacement, stress in each	BT-5	Evaluate
	Material and reaction forces. $L1 = 300$ mm and $L2 = 400$ mm.		
	A1= 2400 mm ² , A2= 600mm ² , P= 200kN, E ₁ = 70GPa, E ₂ = 200GPa		
	P 1. Aluminum 2.Steel		
11.	The following differential equation is available for a physical	BT-2	Understand
	phenomenon $(d^2y / dx^2) + 500x^2 = 0$, $0 \le x \le 1$. Trial function is $y = a_1$ (x-		
	x ⁴). Boundary conditions are $y(0) = 0$; $y(1)=0$. Find the value of the		
	parameter a1 by the following methods: 1) Point Collocation 2) Sub		
	Domain 3) Least Square 4) Galerkin method.		
12.	A simply supported beam subjected to uniformly distributed load over	BT-1	Remember
	entire span. Determine the bending moment and deflection at mid span		
	by using Rayleigh-Ritz method and compare with exact solution.		
13.	A beam AB of span 'l' simply supported at ends and carrying a	BT-4	Analyze
	concentrated load W at the centre 'C' as shown in fig. Determine the		
	deflection at mid span by using Rayleigh-Ritz method and compare with		
	exact solution.		
1.4			
14.	A simply supported beam subjected to uniformly distributed load over	ВТ-4	Analyze
	entire span and it is subjected to a point load at the centre of the span.		
	Determine the bending moment and deflection at mid span by using		
	Rayleigh-Ritz method and compare with exact solution.		
	PART – C		
1.	List and briefly describe the basic steps in finite element analysis.	BT-1	Remember
2.	3x + y - z = 3	BT-2	Understand
	2x-8y+z = -5		
	x-2y+9z=8.		
	Solve the above equation using Gauss Elimination Method.		

3.	A bar of uniform cross section is clamped at one end left free at the other	BT-3	Application
	end and it is subjected to a uniform axial load P as shown in fig. Calculate		
	the displacement and stress in a bar by using two terms polynomial and		
	three terms polynomial. Compare with exact solutions.		
	P		
	$\mathbf{x} = 0$ $\mathbf{x} = \mathbf{I}$		
4.	The differential equation of a physical phenomenon is given by (d^2y/dx^2)	BT-6	Creating
4.	The differential equation of a physical phenomenon is given by (d^2y/dx^2) + y = 4x; 0 ≤ x ≤ 1. The boundary conditions are: y (0) = 0 and y (1) = 1.	BT-6	Creating
4.	The differential equation of a physical phenomenon is given by (d^2y/dx^2) + y = 4x; 0 ≤ x ≤ 1. The boundary conditions are: y (0) = 0 and y (1) = 1. Obtain one term approximation solution by using Galerkin's method of	BT-6	Creating

UNIT-2 APPLICATION : AXIAL DEFORMATION OF BARS, AXIAL SPRING

Natural Coordinates - Triangular Elements -Rectangular Elements - Lagrange and Serendipity Elements - Solid Elements - Isoparametric Formulation - Stiffness Matrix of Isoparametric Elements -Numerical Integration: One, Two and Three Dimensional - Examples.

PART – A				
Q.No	Questions	BT	Competence	
1.	How do you define two dimensional elements?	BT-2	understand	
2.	Define 'Natural coordinate system'?	BT-1	Remember	
3.	What are the types of loading acting on the structure?	BT 6	Create	
4.	What is shape function? Also write the properties of shape functions.	BT-1	Remember	
5.	Why polynomial are generally used as shape functions?	BT-1	Remember	
6.	Write down the stress strain relationship matrix for plane stress condition.	BT-6	Creating	
7.	How will u calculate the size of the global stiffness matrix?	BT-3	Application	
8.	Write the shape function and displacement function for a 1D 2 noded	BT-3	Application	
9.	Distinguish between essential boundary condition and natural boundary	BT-1	Remember	
10.	What do you mean by isoparametric formulation?	BT-2	understand	
11.	Write down the stress strain relationship matrix for plane stress condition.	BT-2	understand	
12.	Write the stiffness matrix for the simple beam element given below.	BT-3	Application	
13.	What do you mean by higher order elements?	BT-1	Remember	
14.	What are the types of non-linearity in structural analysis?	BT-4	Analyze	

15.	Write down the shape functions for four noded rectangular elements	BT-4	Analyze
	using natural coordinate system?		
16.	Differentiate 2 Dimensional scalar variable and vector variable problems.	BT-5	Evaluate
17.	What is the purpose of isoparametric element?	BT-1	Remember
18.	Examine the properties of stiffness matrix?	BT-4	Analyze
19.	Write down the stiffness matrix equation for four noded isoparametric quadrilateral elements?	BT-2	understand
20.	What are the advantages of natural coordinates over global coordinates?	BT-1	Remember
	PART – B		<u> </u>
1.	Derive shape functions for a 2D rectangular element.	BT-1	Remember
2.	Derive the displacement function and shape function for one dimensional	BT-5	Evaluate
	bar element based on global coordinate approach.		
3.	For the two bar truss shown in fig, determine the displacement of node 1	BT 1	Remember
	and stress in element 1-3. $E = 70$ Gpa, $A = 200$ mm2		
	500mm 12 kN SRM 300mm 400mm		
4.	Consider a bar as shown in fig. C/s area of the bar is 750mm^2 and E=	BT 1	Remember
	$2x10^{5}$ N/mm ² . If u1 = 0.5mm and u2 = 0.25mm, calculate the following:		
	1. Displacement at node P, 2. Strain, e 3. Stress σ , 4. Element stiffness		
	Matrix K, 5. Strain Energy, U.		
	$\begin{array}{c c} & & u1 & P(Centre) & & u2 \\ \hline x1=375mm & x=500mm & x2=575mm \end{array}$		

5.	The loading and other parameters for a two bar truss element is shown in	BT 4	Analyse
	fig. Determine 1) the element stiffness matrix for each element 2) Global		
	Stiffness matrix 3) nodal displacements 4) reaction forces 5) the stresses		
	induced in the elements. Assume $E = 200$ GPa.		
	$A = 1000 \text{ mm}^2 P = 5 \text{ kN}$ 500 mm $A = 1250 \text{ mm}^2$ 750 mm		
6.	Evaluate the shape functions N1, N2, N3 at the interior point P (3.85,	BT-5	Evaluate
	4.8) for the triangular element shown in fig.		
	y 1(1.5,2) 3(4,7) 2(7,3.5) x		

7.	A stepped bar shown in fig	s is subjected to an increase	e in temperature at 80°C.	BT 1	Remember
	Determine the displacement	nts, stresses, and support re	actions. Assume the		
	following data:				
	Bronze	Aluminium	Steel		
	$A = 2400 \text{ mm}^2$	1200 mm ²	600 mm ²		
	E = 83 Gpa	70 Gpa	200 Gpa		
	$\alpha = 18.9 \times 10^{-} 6 / {}^{0}C$	23x10 ⁻ 6/ ⁰ C	11.7x10 ⁻ 6/ ⁰ C		
		Bronze (P1) Alum L1= 800mm 12= 0	ainium (P2) Steel 600mm 13= 400mm		
		ALENGINEE	RINC		
8.	A fixed beam of length	2L m carries a udl of w	(N/m) which run over a	BT-4	Analyze
	length of L m from the	fixed end a <mark>s shown in F</mark>	ig. Calculate the rotation		
	at point B.	L B	L		
9.	How to assemble the loc	al stiffness matrix to glo	bal stiffness matrix.	BT-5	Evaluate
10.	Derive the shape function	ons for four noded bar e	lement using Lagrangian	BT 2	Understand
	interpolation function. N	lodes are equally spaced.			
11.	Explain the isoparametri	c elements and its types.		BT 2	Understand

12.	The (x,y) coordinates of nodes i, j, k of a triangular element are given by	BT 5	Evaluate
	(0,0), (3,0), (1.5,4) mm respectively. Evaluate the shape functions N1,		
	N2, N3 at an interior point P (2, 2.5) mm for the element. Obtain the		
	strain displacement relation matrix B.		
	(0,0)		
	(3,0) (1.5,4)		
13.	Consider the three bar truss element as shown in Fig. Take $E = 2x10^5 N/mm^2$,	BT-1	Remember
	calculate the nodal displacements. Take $A1 = 2000 \text{ mm}^2$, $A2 = 2500 \text{ mm}^2$, $A3 = 25000 \text{ mm}^2$, $A3 = 2$		
	P = 250 kN		
	H= 500mm		
	S NG		
	L= 1000mm		
14.	Derive the stiffness matrix for one dimensional bar element.	BT-2	understand
	PART - C		
1	Determine the Cartesian coordinate of the point P ($\xi = 0.8$, $n = 0.9$) as	BT /	Analysa
1.	shown in figure n (3.5.4)	DIT	Analyse
	shown in figure. (3.3,4)		
	ξ (3,1.5)		
2.	Why higher order elements are needed? Determine the shape functions of	BT-3	Application
2.	Why higher order elements are needed? Determine the shape functions of an eight noded rectangular element.	BT-3	Application
2.	Why higher order elements are needed? Determine the shape functions of an eight noded rectangular element.	BT-3	Application
2.	Why higher order elements are needed? Determine the shape functions of an eight noded rectangular element. Derive the shape functions for two dimensional Lagrange and serendipity elements with examples?	BT-3 BT-4	Application Analyze
2. 3. 4.	Why higher order elements are needed? Determine the shape functions of an eight noded rectangular element. Derive the shape functions for two dimensional Lagrange and serendipity elements with examples? Discuss the generation of stiffness matrix and load vector for a beam	BT-3 BT-4 BT-2	Application Analyze Understand
2. 3. 4.	Why higher order elements are needed? Determine the shape functions of an eight noded rectangular element. Derive the shape functions for two dimensional Lagrange and serendipity elements with examples? Discuss the generation of stiffness matrix and load vector for a beam element.	BT-3 BT-4 BT-2	Application Analyze Understand

UNIT III ANALYSIS OF FRAMED STRUCTURES

Stiffness of Truss Member - Analysis of Truss -Stiffness of Beam Member-Finite Element Analysis of Continuous Beam -Plane Frame Analysis -Analysis of Grid and Space Frame – Two Dimensional Solids - Constant Strain Triangle -Linear Strain Triangle -Rectangular Elements - Numerical Evaluation of Element Stiffness -Computation of Stresses, Geometric Nonlinearity and Static Condensation - Axisymmetric Element -Finite Element Formulation of Axisymmetric Element -Finite Element Formulation for 3 Dimensional Elements – Solution for simple frames.

	PART – A				
Q.No	Questions	BT Level	Competence		
1.	State the conditions to be satisfied in order to use axisymmetric elements?	BT-5	Evaluate		
2.	Explain the Jacobian transformation.	BT-1	Remember		
3.	What is meant by an Isoparametric element?	BT-1	Remember		
4.	Explain the Lagrange interpolation polynomials used for higher order elements.	BT-2	understand		
5.	Differentiate between CST and LST	BT-1	Remember		
6.	Show the stiffness matrix for an axisymmetric triangular element.	BT-4	Analyze		
7.	Write a strain displacement matrix for CST element.	BT-4	Analyze		
8.	Explain isoparametric elements? SRM	BT-2	understand		
9.	Write down the element force vector equation for 4 noded quadrilateral elements.	BT-4	Analyze		
10.	What are the methods used for numerical integration in finite element method?	BT-6	Creating		
11.	Why higher order elements are necessary?		Evaluate		
12.	Define load vector?	BT-6	Creating		
13.	What is LST element?	BT-1	Remember		
14.	What do you mean by higher order element? And why are they preferred?	BT-2	understand		
15.	What is geometric isotropy?	BT-1	Remember		
16.	In an element the geometry is defined using 4 nodes and the	BT-3	Application		
	displacement is defined using 8 nodes. What is this element called?				
17.	When Hermite interpolations functions are used?	BT-3	Application		
18.	What are the ways in which 3D problem can be reduced to a 2D approach?	BT-3	Application		
19.	Give four applications where axisymmetric elements can be used?	BT-2	understand		
20.	Write down the displacement equation for an axisymmetric element?	BT-1	Remember		

	PART – B		
1.	Determine the stiffness for the axisymmetric element shown in fig. Take	BT-3	Application
	E as $2.1 \times 10^5 \text{ N/mm}^2$ and Poisson's ratio as 0.3.		
	0,50 0,0 1 2		
2.	Derive the stiffness matrix for the constant strain triangular element	BT 6	Create
	(CST) element shown in fig. the coordinates are given in units of		
	millimeters. Assume plane stress conditions. Take $E = 210GPa$, $v = 0.25$,		
	t= 10mm. (50, 120)		
	(20,30) (80,30) (80,30)		
3.	Explain the Isoperimetric elements and its types.	BT-6	Creating
4.	Derive the displacement interpolation matrix, strain displacement	BT-3	Application
	interpolation matrix B, and Jacobian operator J for the three node truss		
	element shown in Fig. Also sketch the interpolation functions.		
	$r = -1 \qquad r = 0 \qquad r = +1 \qquad x_{u}$		

9.	1		
	Evaluate $\int (x^4 + x^2) dx$ by applying 3 point Gaussian quadrature.		
10.	The nodal coordinates for an axisymmetric triangular element	BT-2	understand
	are given below: (r1, r2, r3) as (20, 40, 30) and (z1, z2, z3) are (40,		
	40, 60) mm respectively. Evaluate strain displacement [B] matrix for		
	that element.		
	Node 3 (30,60)		
	Node 1 (20,40) Node 2 (40,40)		
	For the four noded quadrilateral element shown in fig determine the	BT-2	understand
	Jacobian and evaluate its value at the point $(1/2, \frac{1}{2})$		
	$y_{(15, 40)} \xrightarrow{\eta} (50, 50) \\ 4 \\ 2 \\ (40, 30) \\ (20, 20) \\ x$		
11.	Explain in detail about the potential energy approach and Galerkin's approach.	BT-5	Evaluate
12.	Evaluate the Jacobian matrix at the local coordinates $\epsilon=\eta=0.5$ for the	BT-1	Remember
	linear quadrilateral element with its global coordinates as shown in fig.		
	Also evaluate the strain-displacement matrix.		
	y = (3, 8)		

13.	Derive the strain-displacement matrix for CST element.	BT-4	Analyse
14.	Derive the expression for stress-strain relationship matrix for 2D	BT-1	Remember
	element.		
	PART – C		
1.	Consider the eight noded quadrilateral element defined by the following	BT-3	Application
	nodal coordinayes: x1 =5, y1= 7, x2= 1, y2=4, x3=2, y3= 1, x4=8, y4= 4,		
	x5= 3, y5= 3, x6= 6, y6 = 5, x7 = 2.5, y7 = 3, x8= 1.5, y8 = 2. Determine		
	the global coordinates $\eta = 1$, $\varepsilon = 0.75$.		
2.	Explain with an example of each of the following	BT-6	Creating
	a. Sub parametric element		
	b. Iso parametric element		
	c. Super parametric element		
3.	Explain in details for the finite element formulation.	BT-4	Analyze
4.	Evaluate the integral $\int (x4+x2) dx$ by applying 3 point Gaussian	BT-2	understand
	quadrature.		

UNIT IV PLATES AND SHELLS

Introduction to Plate Bending Problems - Finite Element Analysis of Thin Plate -Finite Element Analysis of Thick Plate -Finite Element Analysis of Skew Plate - Introduction to Finite Strip Method -Finite Element Analysis of Shell.

PART - A			
Q.No	Questions	BT Level	Competence
1.	What is a plate element?	BT 1	Remember
2.	What are the advantages of shell element?	BT 1	Remember
3.	Write any two boundary conditions for thick plate theory.	BT 1	Remember
4.	What are the three categories of displacement models for plate analysis?	BT 1	Remember
5.	Write the basic relationships of thin plate element.	BT 2	understand
6.	Write the advantages of finite strip method.	BT 2	understand
7.	What are the assumptions for thin shell theory?	BT 2	understand
8.	Write the theory of kirchhoff plate element.	BT 2	understand
9.	Differentiate thin and thick plates.	BT 3	Application
10.	Define shell. Write the types of shells.	BT 3	Application
11.	Differentiate the structural behaviour of plates and shells.	BT 3	Application
12.	Define shell element,	BT 4	Analyze
13.	What are the assumptions of Reissner Mindlin Thick Plate theory? Also draw the bending diagram.	BT 4	Analyze

14.	What are the three assumptions used to reduce the equations of three dimensional theory of elasticity to two dimensions in thin plate theory.	BT 4	Analyze
15.	Draw the kirchoff plate after bending.	BT 4	Analyze
16.	What are the boundary conditions need to satisfy along the direction of the plate for various boundaries.	BT 5	Evaluate
17.	Write down the general solution for the finite strip method.	BT 5	Evaluate
18.	List out the advantages of shell elements.	BT 5	Evaluate
19.	Write down the jacobian matrix for eight noded shell elements.	BT 6	Creating
20.	Write down the stress strain relationship for the shell element.	BT 6	Creating
	PART – B		
1.	What do we need to change in the program when using 3-node elements (6 global DOF per node) compared with 4-node elements (6 global DOF per node)?	BT 1	Remember
2.	Explain the Kirchhoff's plate bending theory. What are the assumptions made?	BT 1	Remember
3.	Describe in details about the Reissner - Mindlin thick plate theory. Draw	BT 2	understand
	the bending of thick plate.		
4.	Derive the element stiffness matrix and nodal load factor for triangular element with 9 DOF.	BT 2	understand
5.	Explain the Strain Displacement Relation of thick plate	BT 3	Application
6.	Explain in detail the finite element analysis of skew plate. Find the K Value.	BT 4	Analyze
7.	What is the general solution Finite strip Method and apply the boundary conditions for both end simply supported.	BT 1	Remember
8.	Explain Finite element plate Formulation by Gaussian quadrature method.	BT 4	Analyze
9.	Write down the Assumptions, classifications, and advantages of shell elements for thin shell theory	BT 2	understand
10.	Describe in detail the overview of shell finite elements.	BT 3	Application
11.	Explain Finite element shell Formulation of a degenerated 3D solid element.	BT 5	Evaluate
12.	Explain in detail the Jacobian Matrix for eight node shell element and element stiffness matrix	BT 6	Creating
13.	Write down the assumptions of thin plate and thick plate theory.	BT 5	Evaluate
14.	Explain in detail how to find the stiffness matrix of the rectangular thin plate bending element analysis.	BT 6	Creating
PART-C			
1.	Explain in detail the basic relationships and consecutive equations of thin plate theory.	BT 1	Remember
2.	Describe the element stiffness matrix for thin plate theory.	BT 6	Creating
3.	Differentiate Thin Plate theory and thick plate theory with case study.	BT 2	understand

4.	Explain the finite element formulation using Four noded degenerated quadrilateral shell element.	BT 4	Evaluate
			-

	UNIT-5 APPLICATIONS		
-	Finite Elements for Elastic Stability - Dynamic Analysis - Nonlinear, Vibration and Thermal		
Problem	ns - Meshing and Solution Problems - Modelling and analysis using recent s	softwares.	
	PART - A		
Q. No	Questions	BT Level	Competence
1.	List out the meshing techniques?	BT-1	Remember
2.	Give two examples of geometric nonlinear problems?	BT-1	Remember
3.	List the sources of errors in finite element analysis.	BT-1	Remember
4.	List the methods used for evaluation of Eigen values and Eigen vectors.	BT-1	Remember
5.	What is meant by error evaluation in FEM?	BT-3	Application
6.	How is geometry nonlinearity taken care in finite element analysis?	BT-4	Analyze
7.	What do you mean by material non linearity?	BT-2	understand
8.	What is a mass index?	BT-2	understand
9.	Give examples of thermal analysis problems.	BT-1	Remember
10.	Explain normal modes?	BT-6	Creating
11.	What is the difference between h and p methods?	BT-3	Application
12.	What are serendipity elements?	BT-2	understand
13.	What is discretization error?	BT-2	understand
14.	Explain weak formulation?	BT-6	Creating
15.	How error is evaluated in finite element analysis?	BT-5	Evaluate
16.	What are the types of non-linearity?	BT-1	Remember
17.	Form the consistent and lumped mass matrix for a truss element. Length	BT-5	Evaluate
	= 3m, Area = $20 \times 10^{-4} \text{ m}^2$ and mass density = $2.5 \times 104 \text{ kgm-3}$		
18.	When the equilibrium equations are established with respect to the	BT-4	Analyze
	deformed shape, then the system is analyzed as nonlinear one.		
19.	What are the types of meshes?	BT-4	Analyze
20.	How the discretization error is evaluated?	BT-3	Application
PART – B			
1.	Explain the automatic mesh generation technique.	BT-2	Understand
2.	State the need for mesh refinement. Discuss the methods of mesh refinement.	BT-1	Remember
3.	Explain the Fundamentals of vibrations in dynamic analysis.	BT-2	understand

4.	For the bar as shown in fig with length 2L, modulus of elasticity E, mass density, cross sectional area A, determine the first two natural frequencies.	BT-3	Application
	2L		
5.	Explain the causes and effects of vibrations in dynamic analysis.	BT-6	Creating
6.	Explain 2D mesh generation methods.	BT-2	understand
7.	Discuss the types of vibrations in dynamic analysis.	BT-6	Creating
8.	What is adoptive meshing? Explain any one algorithm for auto meshing.	BT-3	Application
9.	Derive the equations of motion based on weak form.	BT-6	Creating
10.	Briefly explain about Convergence and its requirements	BT-3	Application
11.	Explain the Analysis Software based on the structure of a FEA program.	BT-2	understand
12.	Explain in detail about the structural analysis program with software	BT-4	Analyze
	packages.		
13.	Differentiate conforming and non conforming element.	BT-5	Evaluate
14.	How will you calculate the consistent mass matrix for various elements?	BT-5	Evaluate
PART - C			
1.	Explain Auto and Adaptive Mesh Generation Techniques.	BT-2	understand
2.	Briefly explain the history of Mesh Generation Techniques in Finite Element Analysis.	BT-5	Evaluate
3.	Find the natural frequency of longitudinal vibration of the unconstrained steeped bar as shown in fig. Element 1 $A_1 = 2A$ Element 2, $A_2 = A$ L/2 L/2	BT-2	understand
4.	Explain the methods of Finite element Model Generation.	BT-5	Evaluate