SRM VALLIAMMAI ENGINEERING COLLEGE

An Autonomous Institution SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF CIVIL ENGINEERING

QUESTION BANK

Dr. A. Leema Rose, Associate Professor

SRM VALLIAMMAI ENGINEERING COLLEGE

An Autonomous Institution

DEPARTMENT OFCIVIL ENGINEERING

OUESTION BANK

SUBJECT : 1917207–INDUSTRIAL STRUCTURES

SEM / YEAR : II/ I

	<u>UNIT-I</u> PLANNING AND FUNCTIONAL REQUIREMENTS			
Class	ification of Industries and Industrial structures - planning for Layou	at Requireme	ents regarding	
	PART-A	fuldenines of 1	raciones Act.	
Q.No	Questions	BT Level	Competence	
1.	List the major components of an industrial building.	BT-3	Application	
2.	List the types of fire hazards.	BT-1	Remember	
3.	Define Ventilation.	BT-1	Remember	
4.	Sketch a typical layout of a steel industry and mark its salient features.	BT-5	Evaluate	
5.	Write down the precautions to be undertaken for controlling vibration.	BT-6	Create	
6.	Criticize about "Resonance".	BT-4	Analyze	
7.	Criticize how protection against noise can be done in industrial buildings?	BT-4	Analyze	
8.	Describe classification of industrial structures.	BT-2	Understand	
9.	State any four preventive measures against fire in industries.	BT-2	Understand	
10.	List the factors that govern the site selection for an industrial building.	BT-1	Remember	
11.	Define the terms Frequency & Amplitude.	BT-1	Remember	
12.	Evaluate the significance of factories act.	BT-5	Evaluate	
13.	How can be vibrations are measured?	BT-1	Remember	
14.	Classify the different types of structural systems.	BT-2	Understand	
15.	Discuss the minimum front open space is to be provided for factory building as per NBC.	BT-2	Understand	
16.	How can noise originating from mechanical vibrations be controlled?	BT-4	Analyze	
17.	State any two requirements for cement industry	BT-1	Remember	

18.	Illustrate the causes for fire in Industrial Buildings.	BT-3	Application
19.	Write the sources of noise in Industries.	BT-3	Application
20.	Write about factors influencing plant layout.	BT-6	Create
	PART-B		
1.	Examine in brief the planning, types and elements of an industrial building.	BT-4	Analyze
2.	Classify the industries based on the ownership and investment. Explain with suitable example.	BT-2	Understand
3.	Explain the classification of industries based on NSSO & NBC.	BT-4	Analyze
4.	Demonstrate the major guidelines of factories act which forms the base for the industrial structure.	BT-3	Application
5.	a) What are the classifications of industrial fire?	0	
	b) Discuss about the various fire extinguishing agents and extinguishers in detail.	BT-1	Remember
6.	Describe the guidelines for industrial buildings from Factories Act.	BT-1	Remember
7.	Explain (i) Methods of providing Ventilation. (6) (ii) Protection against noise and Vibration in Industrial Buildings (7)	BT-2	Understand
8.	Demonstrate briefly how the planning for layout requirement is done for an industrial building. Supplement your answer with sketches.	BT-3	Application
9.	Explain in detail about the objective, importance and principles of Plant layout	BT-1	Remember
10.	State the various methods of providing lighting for industrial buildings.	BT-1	Remember
11.	 (i) Plan and write the safety measures to be used to minimize noise and vibration in industries? (6) (ii)Discuss about the firefighting equipment types and its uses. 	BT-5	Evaluate
12.	 (i) Draw a typical layout plan for a steel manufacturing industry. (ii) Also explain how ventilation can be planned in an industrial building? (7) 	BT-3	Application
13.	Draw and explain the layout of the Garment factory layout	BT-6	Create
14.	Discuss in detail about the heat or ignition sources	BT-2	Understand
	PART-C		
1.	List about the technical criteria for the design and basic principles for planning a good layout in a project	BT-1	Remember
2.	Plan a layout for a cement industry which should satisfy all the requirements.	BT-3	Application
3.	Explain about the classification of lightning? What are the points to be considered for providing natural lighting and ventilation?	BT-2	Understand

4.	Explain in detail about the different types of layout.	BT-6	Create			
	<u>UNIT-II</u>					
	INDUSTRIAL BUILDINGS					
	Steel and RCC - Gantry Girder, Crane Girders - Design of Corbels and Nibs	– Design of	f Staircase.			
1.	State about gantry girder.	BT-1	Remember			
2.	Write the minimum rise and tread in residential buildings.	BT-6	Create			
3.	Write about crane girders.	BT-6	Create			
4.	Explain the loads to be considered for the design of gantry girder.	BT-4	Analyze			
5.	Describe corbel and its advantages.	BT-2	Understand			
6.	Evaluate the formula for checking the bending stress in corbel.	BT-5	Evaluate			
7.	Evaluate why impact factor is considered in the computation of loads acting on gantry girder?	BT-5	Evaluate			
8.	Summarize the major components of an industrial building.	BT-2	Understand			
9.	List the various effects of cranes to be considered under imposed loads in the design of gantry girder.	BT-1	Remember			
10.	Which section is recommended for gantry girder? Why?	BT-1	Remember			
11.	How will you calculate the load effects on a stairs waist slab spanning in the longitudinal direction?	BT-3	Application			
12.	Draw a neat sketch by marking the structural components of staircase.	BT-3	Application			
13.	Define (i) Tread (ii) Rise (iii) Going	BT-1	Remember			
14.	Classify the types of staircases.	BT-2	Understand			
15.	State the functions of corbels.	BT-1	Remember			
16.	Differentiate corbel and nibs S	BT-2	Understand			
17.	Draw the stress - strain diagram of corbel for the evaluation of internal force.	BT-4	Analyze			
18.	Sketch and point out the reinforcement detailing of a corbel.	BT-4	Analyze			
19.	Sketch the reinforcements in nibs with large loads.	BT-3	Application			
20.	Define drag force.	BT-1	Remember			
	PART-B					
1.	What is a gantry girder? Explain its components and loading considerations in detail.	BT-1	Remember			
2.	Find the suitable design for a gantry girder to be used in an industrial building carrying an EOT crane for the following data:					

	Crane capacity = 200 kN .		
	Total self weight of all components $= 240$ kN.		
	Minimum approach at the carne hook of gantry girder = 1.2m		
	Wheel base = 3.5m C/C distance between gantry rails = 16m C/C		
	distance between columns $= 8m$		Create
	Self weight of rail section = 300 N/m	B1-0	Create
	Yield stress = 250 N/mm^2		
	Design the main gantry section. Connection design not required.		
3.	An industrial building is to be provided with a hand operated 50 kN		
	crane facility. The details of the building and the gantry girders are:		
	Longitudinal spacing of columns = 6m, Centre to Centre distance of		
	gantry girders= 12m, Wheel spacing = 3m, Edge distance = 1m, Weight		
	of crane girder = 40 kN , Weight of trolley car = 10 kN . Solve the gantry	BT-3	Application
	girder for bending and shear.		
4.	Arrive at a proper sectional design of a simply supported gantry girder	BT-2	Understand
	(main section) to carry one electric overhead travelling crane, Given that	-	
	Span of $GG = 6.5m$		
	Span of crane crane girder = $16m$		
	Crane capacity = 250 kN		
	Self weight of crane girder excluding trolley = 200kN		5
	Self weight of trolley = 50 kN		100
	Minimum hook approach = 1 m Distance between crab wheels = 3.5 m		
	Self weight of rails = 0.3 kN/m		6
5.	A Longitudinal type of a staircase spans a distance of 3.75 m c/c of		
	beams. The flight consists of 15 steps. Take rise = 175 mm, tread is 250		111
	mm. Assuming grade25 concrete and Fe 415 steel, examine the staircase		P
	for a live load of 5 kN/ m^2 . Assuming the breadth of the staircase as 1.4m	DT 1	
	(i)Design the staircase (10)	B1-1	Remember
	(ii)Skotch the reinforcement details (3)		
6	An intermediate flight of a staircase is supported only at the edges of		
0.	An intermediate high of a stancase is supported only at the edges of landing (support Perpendicular to the direction of the flight) Height		
	between landings is 1.5m. The Elight has steps consisting of 10 rivers		
	(auch rise=150mm) and a treads (auch tread=250mm). The store are		
	supported on a waist slab Landing is 1 m width Support width is 300		
	mm each Examine the waist slab and landing for bending moment		
	alone Use M20 concrete and Fe 415 steel Live load on stair is		
	alone. Use M20 concrete and re 415 steel. Live load on start is 3.0kN/m^2 Width of flight -1.5 m	BT-4	Analyze
	(i) Design the staircase (10)		2
	(ii) Sketch the reinforcement details (3)		
7.	Mention the components and explain different types of stair case in	BT_1	Remember
	detail with neat sketch	D1-1	
8.	Explain about Corbel and under what circumstances would you use		TT 1 . 1
	them? Sketch the reinforcement details.	ы-2	Understand

9.	Estimate a corbel to support a factored load of 400 kN at a distance of		
	200mm from the face of the column. The dimension of the column is	BT-5	Evaluate
	300mm x 400mm. Use M25 and Fe 415 steel.	D 15	Lvaluate
10.	Reproduce the design of a RCC corbel to carry a factored load of 500		
	kN at a distance 200 mm from the face of a 300 x 300 RCC Column.	BT-1	Remember
	Use M35 concrete and Fe 415 steel.		
11.	Design a continuous nib (beam support) projecting from an RCC wall to		
	support a prefabricated slab unit transmitting a service shear froce o	Ĭ	
	15kN/m, given that the following data		
	Projection of $nib = 200 \text{mm}$	BT-4	Analyse
	$A_v = 100$ mm M20 and E-415 and a functional	DIT	7 mary 50
10	M30 and Fe415 grade of materials.		
12.	Develop a corbel design for a 350mm square column to support an	5	
	ultimate vertical load of 600kN with its line of action 200mm from the	BT-3	Application
12	Tace of the column. Use M20 grade concrete and Fe 415 grade steel.	DT 1	Domorphon
15.	In what way corder differ from fild. Justify your answer.	B1-1	Remember
14.	Explain about Nib and under what circumstances would you use them?		
	Sketch the reinforcement details in Nibs with		
	a) Light loads(6)	BT-2	Understand
	b) Large loads.(7)	DIZ	Onderstand
	PART-C		111
1.	Reproduce the design of a gantry girder for a manufacturing industry for		0
	the following data: Crane capacity=250kN		100 m
	Weight of crane (excluding crab) = 200 kN		
	Weight of crab girder= 50kN		7.117.
	Mini. Hook approach=1.2m		
	Wheel base distance= 3.5m		
	C/C Spacing of Columns= 8m		
	C/C Spacing of gantry rail= 16 m	BT-1	Remember
	Self-weight of rail section= 300 N/m	DII	Remember
	Depth of rail section=75mm		
	Take fy = 250 N/mm^2 , E = $2 \times 10^3 \text{N/mm}^2$		
2.	Discuss the design procedure of a gantry girder as per codal provisions.	BT-2	Understand
3.	A flight of a dog-legged staircase has the following details:	BT-5	Evaluate
	Going =2.25 m		
	Landing width -1.25 m		
	Raise of a flight = 1.5 m		
	Support width = 300 mm		
	Choosing appropriate dimensions for rise and tread, and taking the	e	
	flight to span longitudinally between the supports, design the flight		
	Assume live load as 3 kN/m^2 .		
	(i) Design the staircase with data's provided (10)		
14. 1. 2. 3.	Explain about Nib and under what circumstances would you use them?Sketch the reinforcement details in Nibs witha) Light loads(6)b) Large loads.(7)PART-CReproduce the design of a gantry girder for a manufacturing industry forthe following data: Crane capacity=250kNWeight of crane (excluding crab) = 200 kNWeight of crab girder= 50kNMini. Hook approach=1.2mWheel base distance= 3.5mC/C Spacing of Columns= 8mC/C Spacing of gantry rail= 16 mSelf-weight of rail section= 300 N/mDepth of rail section=75mmTake fy = 250 N/mm², E = 2 x 10 ⁵ N/mm²Discuss the design procedure of a gantry girder as per codal provisions.A flight of a dog-legged staircase has the following details: Going =2.25 mLanding width = 1.25 mRaise of a flight = 1.5 mSupport width = 300 mmChoosing appropriate dimensions for rise and tread, and taking the flight to span longitudinally between the supports, design the flight Assume live load as 3 kN/m².(i) Design the staircase with data's provided (10)	BT-2 BT-1 BT-2 BT-5	Understand Remember Understand Evaluate

	(ii) Sketch the reinforcement details (3)						
4.	Write down the design procedure for CORBEL & NIBS.	BT-4	Analyse				
	<u>UNIT-III</u>						
	POWER PLANT STRUCTURES						
Ty	pes of power plants – Containment structures - Cooling Towers - Bunkers a	nd Silos - Pi	pe supporting				
	PART-A						
1.	1. Explain about the nuclear containment structures? BT-2 Understand						
2.	Evaluate the theories that are adopted for the design of silos.	BT-5	Evaluate				
3.	State reasons for the use of elevated steel storage tanks.	BT-1	Remember				
4.	Write the Cooling Tower Design Consideration in practice.	BT-1	Remember				
5.	Write the various loads considered in pipe supporting structures.	BT-6	Create				
6.	List the types of cooling towers.	BT-1	Remember				
7.	Choose the minimum grade of concrete and steel to be used for nuclear		-				
	containment structures?	BT-3	Application				
8.	Memorize and state the points to be considered while constructing						
	nuclear containment structures?	BT-1	Remember				
9.	Distinguish between bunker and silo.	ВТ-2	Understand				
10.	Sketch a typical cooling tower model and name the components.	BT-2	Understand				
11.	Evaluate the precautionary measures to be considered while constructing						
	nuclear containment structures?	BT-5	Evaluate				
12.	Differentiate between free vibration and forced vibration.	BT-4	Analyse				
13.	List the different types of power plants	BT-1	Remember				
14.	List few power companies in India	BT-1	Remember				
15.	Examine the structural elements of bunker with neat sketch.	BT-4	Analyse				
16.	Illustrate the theories used for calculation vertical weight carried by the						
	wall due to compression in silos.	BT-3	Application				
17.	Explain about the stresses that the RCC chimney is subjected.	BT-4	Analyse				
18.	Write the steps involved in design of rectangular bunkers.	BT-6	Create				
19.	Identify the assumptions made in the design of silos by Janssen's theory.	BT-2	Understand				
20.	Draw a neat sketch of a bin and list its components.	BT-3	Application				

PART-B						
1.	Draw the typical layout of nuclear power plant structures.		BT-	3	Applic	ation
2.	Explain the design procedure of cooling tower.		BT-	2	Unders	stand
3.	Explain the various factors increasing the bin loads.		BT-	2	Unders	stand
4.	Show the design procedure of silos in detail.		BT-	4	Analys	e
5.	In what way, bunker differs from a silo? Explain in detail.		BT-	1	Remen	nber
6.	Show the design procedure of bunkers in detail.		BT-	3	Applic	ation
7.	Describe the factors to be borne in mind while designing nuclear containment structures.	2	BT-	1	Remer	nber
8.	Describe about cooling towers and its types.	-	BT-	3	Applic	ation
9.	Write about power plant structures and its types in detail.		BT-	6	Create	e
10.	Describe about the construction methodologies and related aspects of power plant structures.	BT-			Remember	
11.	Design a circular cylindrical bunker to store 20 t of coal. Density of coal is 9 kN/m ³ . Angle of repose is 30°. Adopt M 20 grade of concrete and Fe 41 steel. & Sketch the details of reinforcements.	15 BT-5		.5	Evalua	te
12.	What do you mean by cross flow & counter flow in cooling towers?	BT-		1	Remen	nber
13.	Analyze the concept of AIRY'S Theory for the design of bunkers and silos	BT-4		4	Analys	se
14.	Discuss about JANSSEN'S Theory for the design of bunkers and silos		BT-	2	Unders	stand
	PART-C					
1.	A rectangular cylindrical bunker is to be designed to store 300 kN of coal having a unit weight of 8 kN/m ³ . The stored coal is to be surcharged at an angle of repose which is 25° for coal. Design the side walls and hopper bottom. Sketch the details of reinforcements. Adopt M 20 grade of concrete and Fe 415 steel.	BT	-3	Ар	plication	
2.	Explain about Containment structures & its construction methodology.	BT-2		Understand		
3.	Design a circular steel silo of 12m height and 4m internal diameter to store a cement of bulk density 15.50 kN/m ³ with an angle of internal friction 25°. the dimensions of the silo is 4m diameter, cylindrical portion height is 12m and hopper bottom height is 3m with the diameter of hopper at the bottom as 0.6m, 8mm thick plate with stiffeners ISA $65x65x6mm$	BT	-5	Eva	ıluate	
4.	Briefly discuss the use and function of pipe supporting structure in power plant with salient features.	ВТ	-2	Un	derstand	

UNIT-4

TRANSMISSION LINE STRUCTURES AND CHIMNEYS

Analysis and design of steel monopoles, transmission line towers – free standing and guyed towers – Design of self-supporting and guyed chimney, Design of Chimney bases.

1.	List the components of power cables.	BT-1	Remember
2.	Classify the types of chimneys.	BT-2	Understand
3.	Draw a neat sketch of a single diagonal braced tower.	BT-3	Application
4.	Justify why is lining provided for chimneys?	BT-6	Create
5.	Discuss the factors for the stress developed in Chimney.	BT-2	Understand
6.	Define sag in towers.	BT-1	Remember
7.	Evaluate the factor of safety adopted for the design of structural members of steel transmission line towers?	BT-5	Evaluate
8.	Write the types of structures which support the electric power transmission lines.	BT-6	Create
9.	Define the term: wind span and Weight span	BT-1	Remember
10.	List the types of towers recommended as per the codal provisions.	BT-2	Understand
11.	Describe what do you understand by broken wire condition?	BT-1	Remember
12.	Criticize the transmission line towers?	BT-4	Analyse
13.	Write short notes on gu <mark>yed chimneys.</mark>	BT-3	Application
14.	Write the different types of power cables?	BT-3	Application
15.	Explain about the requi <mark>rements of</mark> substation structures	BT-4	Analyse
16.	List the points to be considered while selecting a site for substation	BT-1	Remember
17.	Examine the advantages of fire brick lining in RC Chimneys.	BT-4	Analyse
18.	Estimate the wind forces on 60m high tower with a basic wind speed of		
	45m/sec.	BT-2	Understand
19.	List the materials used for constructing substation structures.	BT-1	Remember
20.	Mention the components of self-supporting chimney with neat sketch.	BT-5	Evaluate
	PART-B		
1.	Illustrate with sketches describe the various lattice tower configurations with bracing systems.	BT-2	Understand
2.	Enlist and explain in detail about the Main Components of Transmission	BT-2	Understand

	Tower.		
3.	Discuss about the design data guidelines for transmission line towers.	BT-4	Analyse
4.	Explain the followinga) Self-supporting towerb) Guyed towersc) Monopole	BT-3	Application
5.	Show and explain the forces acting on steel chimney	BT-3	Application
6.	Explain about loading and load combinations in transmission line towers?	BT-6	Create
7.	Summarize the different bracing systems adopted in transmission line tower.	BT-5	Evaluate
8.	List and explain the step by step design procedure of Chimney.	BT-1	Remember
9.	Reproduce the design of a self-supporting steel chimney for a height of 40 m above foundation with diameter of cylindrical portion 2 m. Assume thickness of lining as 100 mm and wind pressure as 1.5 kN/m^2 .	BT-1	Remember
10.	A self-supporting steel chimney is 80 m high and 3 m diameter at top. Identify the thickness of plate required at 30 m and 60 m from top. Assume wind pressure as 1.5 kN/m ²	BT-1	Remember
11.	Distinguish in what way design of self-supporting chimney and guyed chimney differ?	BT-2	Understand
12.	Analyze and design a transmission line tower with sag-tension calculation with a example.	BT-4	Analyse
13.	Describe the behavior of RC and Steel chimney.	BT-1	Remember
14.	Discuss about power cables & control cable in transmission line towers.	BT-3	Application
	PART-C		
1.	Generalize the concept of substation structures in detail.	BT-6	Create
2.	A concrete chimney of height 80m with external diameter of shaft being 4m at top and 5m at bottom is required in a place where wind intensity is 1.5 kN/m ² . Thickness of fire lining is 10 cm. temperature differences between inside and outside of the shaft is 75° C. Permissible bearing pressure on soil at site is 150 kN/m ² . Adopt M25 and Fe415 and design the base of the chimney.	BT-5	Evaluate
3.	Explain the following		
	 a) Along & Across wind loads on SS chimney b) Dynamic component of wind system & constant she dding 	BT-4	Analyse
4.	Explain the various methods adopted for testing of towers.	BT-4	Analyse
	<u>UNIT-5</u>		

	FOUNDATION		
Design techniq	of foundation for Towers, Chimneys and Cooling Towers - Machine ues for foundation of rotary machines.	Foundation	n - Construction
1.	State the general requirements of machine foundations?	BT-1	Remember
2.	Illustrate the points to be considered in the design of foundation for towers?	BT-3	Application
3.	Evaluate the various parameters influencing the design of a machine foundation.	BT-5	Evaluate
4.	Describe about turbo-generator foundation.	BT-1	Remember
5.	Categorize the types of loads to be considered for tower foundation	BT-4	Analyse
6.	List and name the methods used for dynamic investigation of soil at the site.	BT-1	Remember
7.	How the safety of tower foundation is checked against uplift?	BT-3	Application
8.	List the types of machine foundation.	BT-1	Remember
9.	Discuss the IS codes to be followed for the satisfactory performance of a cooling tower foundation?	BT-4	Analyse
10.	Discuss about foundation used for self-supporting steel chimney?	BT-2	Understand
11.	Enlist critical parameters of transmission line towers.	BT-5	Evaluate
12.	Discuss the factors to be checked on tower foundation?	BT-2	Understand
13.	Write the formula used for checking the uplift capacity of tower foundation.	BT-2	Understand
14.	Which types of foundation is well suited for turbo generator machines.	BT-1	Remember
15.	Indicate the general design criteria for the satisfactory performance of a tower foundation.	BT-2	Understand
16.	Define solidity ratio.	BT-1	Remember
17.	Explain the method of selecting a proper type of foundation for transmission.	BT-4	Analyse
18.	Write the types of tower foundation?	BT-6	Create
19.	Demonstrate the stability analysis for tower foundation.	BT-6	Create
20.	Write about Pad Foundation.	BT-3	Application
	PART-B	<u> </u>	

1.	Discuss the design criteria involved while designing foundation for		
	reciprocating machine foundation.	BT-2	Understand
2.	Explain in detail different types of machine foundation.	BT-4	Analyse
3.	Enumerate the step by step design criteria for turbo generator		
	foundation.	BT-6	Create
4.	Recall the method of selecting a proper type of foundation?	BT-1	Remember
5.	Describe the important codal stipulations for R.C.C Tower foundations?	BT-2	Understand
6.	Design the foundation for a lathe. Which has the following		
	characteristics. Weight of machine = 150 kN		
	Base area = $1.2mx5.0m$, Height of CG of machine = $0.9m$	-	
	The machine supported by 3 pairs of bolts @	5	
	2.5 mC/C Allowable amplitude = 0.1 mm Use M20 grade concrete and Ee/15		
	Steel Speed of the machine -1200 rpm	BT-3	Application
	Mass moment of Inertia $I_{mm} = 7500 \text{ kg/m}^3$	DIS	rippileution
	Vertical Excitation Force $F_z = 50 \text{ kN}$		P
	Allowable Bearing Stress = 110kN/m ²		
7.	Employ how stability against overturning, uplift and lateral thrust is		5
	checked in tower found <mark>ation design.</mark>	BT-1	Remember
8.	Write down the design procedures adopted for the foundation of		0
	chimneys.	BT-3	Application
9.	Explain design principles adopted for foundation of cooling towers.	BT-5	Evaluate
10.	Write in detail about the Masts and Trestles.	BT-1	Remember
11.	Outline the general philosophy in the design of Concrete Pad & chimney		
	foundation.	BT-2	Understand
12.	Give the necessary Basic Concept and forces action on Transmission	D1 2	Onderstand
	Tower Foundation.		A 1
12	Examine the vibration offects to be considered in design of machine	B1-4	Analyse
15.	Examine the vibration effects to be considered in design of machine		
	foundation.	BT-1	Remember
14.	Record the bulb of pressure concept proposed by "Balakrishna Rao" for the design of Machine foundations.	BT-3	Application
	PART-C	I	
1.	Take a heavy industrial building having larger number of vibrating		
	machines. Discuss the type of foundation to be adopted for the		
	machines. Illustrate with example.	BT-3	Application
2.	Sketch and discuss in detail the various types of foundations used for	BT-3	Application
	towers.		**

3.	Design a suitable foundation circuit 132 kV transmission dense sand with $\phi = 30^{\circ}$ and below the ground level and broken wire condition	ion for a 20° ang on line. The fo nd 17kN/m3. De l. Use overload ns respectively.	gle tower to be used in a undation is located in m epth of groundwater table factors of 2 and 1.5 for The foundation is subje	double nedium e is 5.0 normal cted to	BT-1	Remember
	the following loadings. Nature of load	Load in kN	under Conditions			
		N.C	B.W.C			
	Downward	400	45 0	IA.		
	Uplift	300	38 0		G	
	Shear in transverse direction	3.3	25		0	
	Shear in longitudinal direction		16		0	-
	1	~	SRM			5
4.	Describe the steps in the features.	e design of tow	ver foundations and its	salient	BT-4	Analyse