

SRM VALLIAMMAI ENGEINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203.

(An Autonomous Institution) DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

I SEMESTER 1918106 – APPLIED MATHEMATICS FOR ELECTRICAL ENGINEERS Regulation – 2019

Academic Year 2021- 2022

Prepared by

Dr. S. Chitra, Assistant Professor/Mathematics

SRM VALLIAMMAI ENGEINEERING COLLEGE

QUESTION BANK

DEPARTMENT OF MATHEMATICS SUBJECT: 1918106 – APPLIED MATHEMATICS FOR ELECTRICAL ENGINEERS

SEM / YEAR : I / I year M.E. (PSE & CI)

UNIT I -MATRIX THEORY- Cholesky decomposition - Generalized Eigen vectors, Canonical basis - OR factorization - Least squares method - Singular value decomposition.

QR factorization - Least squares method - Singular value decomposition.					
Question	Bloom's Taxonomy Level	Domain			
PART – A	,				
Define Real Symmetric Matrix.	BTL -1	Remembering			
Write the necessary conditions for Cholesky decomposition of a matrix.	BTL -1	Remembering			
Find the Cholesky decomposition of $\begin{pmatrix} 4 & 2 \\ 2 & 10 \end{pmatrix}$	BTL -2	Understanding			
Find the sum and product of all Eigen values of $\begin{bmatrix} 1 & 2 & -2 \\ 1 & 0 & 3 \\ -2 & -1 & -3 \end{bmatrix}$	BTL -2	Understanding			
Define Least square method.	BTL -1	Remembering			
Find the least square solution to the system $x_1 + x_2 = 3$, $-2x_1 + 3x_2 = 1$ and $2x_1 - x_2 = 2$	BTL -2	Understanding			
Define Hermitian Matrix.	BTL -1	Remembering			
Write short note on Singular value decomposition of complex matrix A.	BTL -1	Remembering			
State Singular value decomposition theorem.	BTL -1	Remembering			
If A is a nonsingular matrix, then what is A ⁺ ?	BTL -4	Analyzing			
Define orthogonal and orthonormal vectors.	BTL -1	Remembering			
Define singular matrix with an example.	BTL -1	Remembering			
What is the advantage in matrix factorization methods?	BTL -1	Remembering			
If the sum of two eigenvalues and trace of a 3x3 matrix A are	BTL -1	Remembering			
	Question PART – A Define Real Symmetric Matrix. Write the necessary conditions for Cholesky decomposition of a matrix. Find the Cholesky decomposition of $\begin{pmatrix} 4 & 2 \\ 2 & 10 \end{pmatrix}$ Find the sum and product of all Eigen values of $\begin{bmatrix} 1 & 2 & -2 \\ 1 & 0 & 3 \\ -2 & -1 & -3 \end{bmatrix}$ Define Least square method. Find the least square solution to the system $x_1 + x_2 = 3$, $-2x_1 + 3x_2 = 1$ and $2x_1 - x_2 = 2$ Define Hermitian Matrix. Write short note on Singular value decomposition of complex matrix A. State Singular value decomposition theorem. If A is a nonsingular matrix, then what is A ⁺ ? Define orthogonal and orthonormal vectors. Define singular matrix with an example. What is the advantage in matrix factorization methods?	QuestionBloom's Taxonomy LevelPART - ADefine Real Symmetric Matrix.BTL -1Write the necessary conditions for Cholesky decomposition of a matrix.Find the Cholesky decomposition of $\begin{pmatrix} 4 & 2 \\ 2 & 10 \end{pmatrix}$ BTL -1Find the sum and product of all Eigen values of $\begin{bmatrix} 1 & 2 & -2 \\ 1 & 0 & 3 \\ -2 & -1 & -3 \end{bmatrix}$ BTL -2Define Least square method.BTL -1Find the least square solution to the system $x_1 + x_2 = 3$, $-2x_1 + 3x_2 = 1$ and $2x_1 - x_2 = 2$ BTL -1Define Hermitian Matrix.BTL -1Write short note on Singular value decomposition of complex matrix A.State Singular value decomposition theorem.BTL -1If A is a nonsingular matrix, then what is A+?BTL -1Define orthogonal and orthonormal vectors.BTL -1Define singular matrix with an example.BTL -1What is the advantage in matrix factorization methods?BTL -1			

	equal find the value of A .		
15.	Let $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix} = \mathbf{A_1}$. Compute A_2 using QR algorithm.	BTL -5	Evaluating
16.	Determine the canonical basis for the matrix $A = \begin{bmatrix} 3 & 5 \\ -2 & -4 \end{bmatrix}$.	BTL -3	Applying
17.	Define the generalized Eigen vector, chain of rank m, for a square matrix.	BTL -2	Understanding
18.	Find the generalized inverse of $\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$	BTL -5	Evaluating
19.	Check whether the given matrix is positive definite or not $ \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ -1 & -1 & 5 \end{pmatrix} $	BTL -4	Analyzing
20.	Give the nature of quadratic form without reducing into canonical form $x_1^2 - 2 x_1 x_2 + x_2^2 + x_3^2$	BTL -4	Analyzing
	PART – B	0	
1.	Determine the Cholesky decomposition of the matrix $\begin{bmatrix} 4 & 2i & -i \\ -2i & 10 & 1 \\ i & 1 & 9 \end{bmatrix}$	BTL -1	Remembering
2.	Find the Cholesky decomposition of the matrix $\begin{bmatrix} 4 & 2i & 2 \\ -2i & 10 & 1-i \\ 2 & 1+i & 9 \end{bmatrix}$	BTL -2	Understanding
3.	Find the QR factorization of $A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$	BTL -2	Understanding
4.	Solve the following system of equations in the least square sense $2x_1 + 2x_2 - 2x_3 = 1$, $2x_1 + 2x_2 - 2x_3 = 3$, $-2x_1 - 2x_2 + 6x_3 = 2$	BTL -5	Evaluating
5.	Determine the Cholesky decomposition of $\begin{bmatrix} 9 & -3 & 0 & -3 \\ -3 & 6 & 3 & 0 \\ 0 & 6 & 3 & 0 \\ -3 & 0 & -3 & 6 \end{bmatrix}$	BTL -3	Applying
6.	Fit a straight line in the least square sense to the following data X: -3 -2 -1 0 1 2 3	BTL -6	Creating
	Y: 10 15 19 27 28 34 42		
7.	Find the QR factorization of $A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & 1 & 1 \end{bmatrix}$	BTL -4	Analyzing
8.	Construct the singular value decomposition for $\begin{bmatrix} 2 & 2 & -2 \\ 2 & 2 & -2 \\ -2 & -2 & 6 \end{bmatrix}$	BTL -6	Creating

9.	Solve the following system of equations in the least square sense $x_1 + x_2 + 3x_3 = 1$; $x_1 + x_2 + 3x_3 = 2$	BTL -5	Evaluating
10.	Obtain the singular value decomposition of $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 3 \end{bmatrix}$	BTL -2	Understanding
11.	Determine the Cholesky decomposition of the matrix $\begin{bmatrix} 16 & -3 & 5 & -8 \\ -3 & 16 & -5 & -8 \\ 5 & -5 & 24 & 0 \\ 8 & -8 & 0 & 21 \end{bmatrix}$	BTL -3	Applying
12.	Obtain the singular value decomposition of $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \end{bmatrix}$	BTL -3	Applying
13.	Find the QR factorization of $A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$	BTL -1	Remembering
14.	Solve the following system of equations in the least square sense $x_1 + x_2 + x_3 = 1$; $x_1 + x_2 + x_3 = 2$; $x_1 + x_2 + x_3 = 3$.	BTL -5	Evaluating
	PART –C	0	
15.	Solve the system of equations using Cholesky decomposition $4x_1 - x_2 - x_3 = 3$; $-x_1 + 4x_2 - x_3 = -0.5$; $-x_1 - 3x_2 + 5x_3 = 0$	BTL -5	Evaluating
16.	Obtain the singular value decomposition of $A = \begin{bmatrix} 2 & -1 \\ -2 & 1 \\ 4 & -2 \end{bmatrix}$	BTL -2	Understanding
17.	Obtain A+of A= $\begin{bmatrix} 2 & -1 \\ -1 & 1 \\ 4 & -3 \end{bmatrix}$ the generalized inverse.	BTL -2	Understanding
18.	Find the Unique solution of least square problem $A = \begin{bmatrix} 2 & -2 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$ $b = \begin{bmatrix} 500 \\ 600 \\ 900 \end{bmatrix}$	BTL -6	Creating

UNIT –II-CALCULUS OF VARIATION: Concept of variation and its properties–Euler's equation–Functional dependant on first and higher order derivatives–Functional dependant on functions of several independent variables–Variational problems with moving boundaries–Isoperimetric problems-Direct methods: Ritz and Kantorovich methods.

Q.No.	Question	Bloom's Taxonomy Level	Domain
	PART – A		
1.	Define functional with an example.	BTL -1	Remembering
2.	Define Extremals of a functional.	BTL -1	Remembering

4. Find the extremals of the functional $\int_{x_0}^{1} \left(\frac{y^2}{x^3}\right) dx$. BTL -3 Applying 5. Write a formula for functional involving higher order derivatives. 6. Solve the Euler equation for $\int_{x_0}^{1} (1+x^2 y')y' dx$ 7. Solve the Euler equation for $\int_{x_0}^{1} (1+x^2 y')y' dx$ 8. Write Euler's equation for functional. Find the curve on which the functional straight 9. $\lim_{x_0} \int_{x_0}^{1} (y')^2 + 12xy dx$ with $y(0) = 0$ and $y(1) = 1$ can be extremised. 10. Write Euler-Poisson equation. 11. Write the Ostrogradsky equation for the functional $\iint F(x,y,u,u,x,u,y) dx dy$. 12. Write other forms of Euler's equation. 13. If $\frac{d^2y}{dx^2} = 6x$ then find y. 14. Define Geodesic. 15. Define isoperimetric problems 16. Define several independent variables. 17. Write short note on Rayleigh - Ritz method. 18. Write the surface area of a curve which generates extremal values. 19. Find the extremal of $F = x y + y^2 - 2 y^2 y^2$. BTL -2 Understanding of the functional problems of the extremal of $F = x y + y^2 - 2 y^2 y^2$. BTL -2 Understanding of the extremal of $F = x y + y^2 - 2 y^2 y^2$. BTL -2 Understanding of the extremal of $F = x y + y^2 - 2 y^2 y^2$. BTL -2 Understanding of the extremal of $F = x y + y^2 - 2 y^2 y^2$. BTL -2 Understanding of the extremal of $F = x y + y^2 - 2 y^2 y^2$. BTL -2 Understanding the extremal of $F = x y + y^2 - 2 y^2 y^2$. BTL -2 Understanding the extremal of $F = x y + y^2 - 2 y^2 y^2$. BTL -2 Understanding the extremal of $F = x y + y^2 - 2 y^2 y^2$. BTL -2 Understanding the extremal of $F = x y + y^2 - 2 y^2 y^2$.		State the necessary condition for the extremum of the functional		
5. Write a formula for functional involving higher order derivatives. 6. Solve the Euler equation for $\int_{x_0}^{x_1} (1+x^2 y')y'dx$ 7. Solve the Euler equation for $\int_{x_0}^{x_1} (x+y')y'dx$ 8. Write Euler's equation for functional. Find the curve on which the functional straight 9. $\lim_{x_0} \int_{x_0}^{x_1} (y')^2 + 12xy dx$ with $y(0) = 0$ and $y(1) = 1$ can be extremised. 10. Write Euler-Poisson equation. 11. Write the Ostrogradsky equation for the functional $\iint F(x,y,u,u_x,u_y)dxdy$. 12. Write other forms of Euler's equation. 13. If $\frac{d^2y}{dx^2} = 6x$ then find y. 14. Define Geodesic. 15. Define isoperimetric problems 16. Define several independent variables. 17. Write short note on Rayleigh - Ritz method. 18. Write the surface area of a curve which generates extremal values. 19. Find the extremal of $F = xy + y^2 - 2y^2y'$. BTL -2 Understanding PART -B	3.	$I = \int_{x_0}^{x_1} F(x, y, y') dx.$	BTL -2	Understanding
6. Solve the Euler equation for $\int_{x_0}^{x_0} (1+x^2 y')y' dx$ 7. Solve the Euler equation for $\int_{x_0}^{x_0} (1+x^2 y')y' dx$ 8. Write Euler's equation for functional. Find the curve on which the functional straight 9. $\lim_{x_0} \int_{x_0}^{x_0} [(y')^2 + 12xy] dx$ with $y(0) = 0$ and $y(1) = 1$ can be extremised. 10. Write Euler-Poisson equation. 11. Write the Ostrogradsky equation for the functional $\iint_{x_0} F(x,y,u,u_x,u_y) dx dy.$ 12. Write other forms of Euler's equation. 13. If $\frac{d^2y}{dx^2} = 6x$ then find y. 14. Define Geodesic. 15. Define isoperimetric problems 16. Define several independent variables. 17. Write short note on Rayleigh - Ritz method. 18. Write the surface area of a curve which generates extremal values. 19. Find the extremal of $F = x y + y^2 - 2y^2y'$. BTL -2 Understanding PART -B	4.	Find the extremals of the functional $\int_{x_0}^{x_1} \left(\frac{y^{2}}{x^3} \right) dx$.	BTL -3	Applying
8. Write Euler equation for $\int_{x_0}^{1} (1+x^2y')y'dx$ 8. Write Euler's equation for functional. 8. Write Euler's equation for functional. 8. Find the curve on which the functional straight 9. $\lim_{x_0}^{x_0} [(y')^2 + 12xy]dx$ with $y(0) = 0$ and $y(1) = 1$ can be extremised. 10. Write Euler-Poisson equation. 11. Write the Ostrogradsky equation for the functional $\iint F(x,y,u,u_x,u_y)dxdy$. 12. Write other forms of Euler's equation. 13. If $\frac{d^2y}{dx^2} = 6x$ then find y. 14. Define Geodesic. 15. Define isoperimetric problems 16. Define several independent variables. 17. Write short note on Rayleigh - Ritz method. 18. Write the surface area of a curve which generates extremal values. 19. Find the extremal of $F = x y + y^2 - 2y^2y'$. BTL -2 Understanding of the surface area of a curve which generates extremal values. 19. Find the extremal of $F = x y + y^2 - 2y^2y'$. BTL -2 Understanding of the surface area of a curve which generates extremal values. 19. Find the extremal of $F = x y + y^2 - 2y^2y'$. BTL -2 Understanding of the surface area of a curve which generates extremal values. 19. Find the extremal of $F = x y + y^2 - 2y^2y'$. BTL -2 Understanding of the surface area of a curve which generates extremal values. 19. Find the extremal of $F = x y + y^2 - 2y^2y'$. BTL -2 Understanding of the surface area of a curve which generates extremal values. 19. Find the extremal of $F = x y + y^2 - 2y^2y'$. BTL -2 Understanding of the surface area of a curve which generates extremal values. 19. Find the extremal of $F = x y + y^2 - 2y^2y'$. BTL -2 Understanding of the surface area of a curve which generates extremal values. 19. Find the extremal of $F = x y + y^2 - 2y^2y'$. BTL -2 Understanding of the surface area of a curve which generates extremal values.	5.	Write a formula for functional involving higher order derivatives.	BTL -1	Remembering
8. Write Euler's equation for $\int_{x_0}^{1} (x+y')y'dx$ 8. Write Euler's equation for functional. Find the curve on which the functional straight 9. $\lim_{x_0}^{1} \int_{x_0}^{1} (y')^2 + 12xy dx$ with $y(0) = 0$ and $y(1) = 1$ can be extremised. 10. Write Euler-Poisson equation. 11. Write the Ostrogradsky equation for the functional $\iint_{0}^{1} F(x,y,u,u_x,u_y) dx dy$. 12. Write other forms of Euler's equation. 13. If $\frac{d^2y}{dx^2} = 6x$ then find y. 14. Define Geodesic. 15. Define isoperimetric problems 16. Define several independent variables. 17. Write short note on Rayleigh - Ritz method. 18. Write the surface area of a curve which generates extremal values. 19. Find the extremal of $F = x$ y + y ² - 2 y ² y ² . BTL -2 Understanding PART -B	6.	Solve the Euler equation for $\int_{x_0}^{x_1} (1+x^2 y')y'dx$	BTL -5	Evaluating
Find the curve on which the functional straight 9.	7.	Solve the Euler equation for $\int_{x_0}^{x_1} (x+y')y'dx$	BTL -5	Evaluating
9. $\lim_{x_0} \int_{x_0}^{x_1} [(y')^2 + 12xy] dx$ with $y(0) = 0$ and $y(1) = 1$ can be extremised. 10. Write Euler-Poisson equation. 11. Write the Ostrogradsky equation for the functional $\iint F(x,y,u,u_x,u_y) dx dy$. 12. Write other forms of Euler's equation. 13. If $\frac{d^2y}{dx^2} = 6x$ then find y. 14. Define Geodesic. 15. Define isoperimetric problems 16. Define several independent variables. 17. Write short note on Rayleigh - Ritz method. 18. Write the surface area of a curve which generates extremal values. 19. Find the extremal of $F = x \ y + y^2 - 2 \ y^2 \ y^2$. 10. BTL -2 Understanding the part of $y = 0$. 11. BTL -2 Understanding the problems of $y = 0$. 12. Understanding the problems of $y = 0$. 13. BTL -2 Understanding the problems of $y = 0$. 14. Define several independent variables. 15. Define several independent variables. 16. Define several independent variables. 17. Write short note on Rayleigh - Ritz method. 18. BTL -2 Understanding the problems of $y = 0$. 19. Find the extremal of $y = 0$ and $y = 0$. 19. Find the extremal of $y = 0$ and $y = 0$. 19. Find the extremal of $y = 0$ and $y = 0$. 19. BTL -2 Understanding the part of $y = 0$ and $y = 0$. 19. Find the extremal of $y = 0$ and $y = 0$ an	8.	Write Euler's equation for functional.	BTL -2	Understanding
Write the Ostrogradsky equation for the functional $\iint F(x,y,u,u_x,u_y) dx dy$. 12. Write other forms of Euler's equation. 13. If $\frac{d^2y}{dx^2} = 6x$ then find y. 14. Define Geodesic. 15. Define isoperimetric problems 16. Define several independent variables. 17. Write short note on Rayleigh - Ritz method. 18. Write the surface area of a curve which generates extremal values. 19. Find the extremal of $F = x \ y + y^2 - 2 \ y^2 \ y^2$. 11. Write short note on find y. 12. Understanding the strength of the functional of the functional matter and the strength of the functional matter and the strength of the functional matter and the functional matter an		line $\int_{x_0}^{x_1} [(y')^2 + 12xy] dx$ with $y(0) = 0$ and $y(1) = 1$ can be	BTL -6	Creating
12. Write other forms of Euler's equation. BTL -1 Remembering 13. If $\frac{d^2y}{dx^2} = 6x$ then find y. BTL -1 Remembering 14. Define Geodesic. BTL -1 Remembering 15. Define isoperimetric problems BTL -1 Remembering 16. Define several independent variables. BTL -2 Understanding 17. Write short note on Rayleigh - Ritz method. BTL -2 Understanding 18. Write the surface area of a curve which generates extremal values. BTL -4 Analyzing 19. Find the extremal of $F = x \ y + y^2 - 2 \ y^2 \ y^2$. BTL -2 Understanding 19. Find the extremal of $F = x \ y + y^2 - 2 \ y^2 \ y^2$. BTL -2 Understanding 19. BTL -2 Understanding	10.	Write Euler-Poisson equation.	BTL -2	Understanding
13. If $\frac{d^2y}{dx^2} = 6x$ then find y. 14. Define Geodesic. 15. Define isoperimetric problems 16. Define several independent variables. 17. Write short note on Rayleigh - Ritz method. 18. Write the surface area of a curve which generates extremal values. 19. Find the extremal of $F = x y + y^2 - 2 y^2 y$. 10. If $\frac{d^2y}{dx^2} = \frac{-1}{2}$ then find y. 11. Remembering Remembering BTL -1 Remembering Remembering BTL -1 Remembering Remembering Remembering BTL -1 Remembering Rememberi	11.		BTL -2	Understanding
14.Define Geodesic.BTL -1Remembering15.Define isoperimetric problemsBTL -1Remembering16.Define several independent variables.BTL -2Understanding17.Write short note on Rayleigh - Ritz method.BTL -2Understanding18.Write the surface area of a curve which generates extremal values.BTL -4Analyzing19.Find the extremal of $F = x y + y^2 - 2 y^2 y^2$.BTL -2Understanding20.If $\frac{d^2y}{dx^2} = \frac{-1}{2}$ then find y.BTL -2Understanding	12.	Write other forms of Euler's equation.	BTL -1	Remembering
15. Define isoperimetric problems 16. Define several independent variables. 17. Write short note on Rayleigh - Ritz method. 18. Write the surface area of a curve which generates extremal values. 19. Find the extremal of $F = x y + y^2 - 2 y^2 y$. 19. If $\frac{d^2y}{dx^2} = \frac{-1}{2}$ then find y. 10. PART -B	13.	If $\frac{d^2y}{dx^2} = 6x$ then find y.	BTL -1	Remembering
16.Define several independent variables.BTL -2Understanding17.Write short note on Rayleigh - Ritz method.BTL -2Understanding18.Write the surface area of a curve which generates extremal values.BTL -4Analyzing19.Find the extremal of $F = x y + y^2 - 2 y^2 y^2$.BTL -2Understanding20.If $\frac{d^2y}{dx^2} = \frac{-1}{2}$ then find y.BTL -2Understanding	14.	Define Geodesic.	BTL -1	Remembering
17. Write short note on Rayleigh - Ritz method. 18. Write the surface area of a curve which generates extremal values. 19. Find the extremal of $F = x y + y^2 - 2 y^2 y^2$. 20. If $\frac{d^2 y}{dx^2} = \frac{-1}{2}$ then find y. PART -B	15.	Define isoperimetric problems	BTL -1	Remembering
Write short note on Rayleign - Ritz method. 18. Write the surface area of a curve which generates extremal values. 19. Find the extremal of $F = x y + y^2 - 2 y^2 y^2$. 20. If $\frac{d^2y}{dx^2} = \frac{-1}{2}$ then find y. PART -B	16.	Define several independent variables.	BTL -2	Understanding
Find the extremal of $F = x y + y^2 - 2 y^2 y^2$. BTL -2 Understanding PART -B Write the surface area of a curve which generates extremal values. BTL -2 Understanding	17.	Write short note on Rayleigh - Ritz method.	BTL -2	Understanding
20. If $\frac{d^2y}{dx^2} = \frac{-1}{2}$ then find y. PART -B	18.	Write the surface area of a curve which generates extremal values.	BTL -4	Analyzing
PART –B	19.	Find the extremal of $F = x y + y^2 - 2 y^2 y^2$.	BTL -2	Understanding
	20.	****	BTL -2	Understanding
1.(a) Find the extremals of (i) $\int_{0}^{x_1} (v^{1^2} + 2vv^1 - 16v^2) dx$ Applying				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.(a)	Find the extremals of (i) $\int_{x_0}^{x_1} (y^{1^2} + 2yy^1 - 16y^2) dx$.	BTL -3	Applying

	$\frac{\pi}{2}$		
1. (b)	Find the extremals of $\int_{0}^{\infty} [y^2 + (y')^2 - 2y \sin x] dx$	BTL -3	Applying
	$y(0) = y(\pi/2) = 0.$		
2. (a)	Solve the extremals $v[y(x)] = \int_{x_0}^{x_1} \frac{dy}{dx} (1 + x^2 \frac{dy}{dx}) dx$.	BTL -5	Evaluating
	Find the extremals of		
2.(b)	$\frac{\pi}{2}$	BTL -3	Applying
	$\int_{0}^{\infty} [y^{2} - (y')^{2} - 2y \sin x] dx y(0) = y(\pi/2) = 0.$		
3. (a)	Show that the straight line is the shortest distance between two	BTL -2	Understanding
	points.	D1L -2	
3.(b)	Find the extremals of $\int_{x_0}^{x_1} (y^2 + y^{1^2} - 2ye^x) dx$	BTL -2	Understanding
4.	A curve c joining the points (x_1, y_1) and (x_2, y_2) is revolved about the x-axis. Find the shape of the curve, so that the surface area	BTL -4	Analyzing
	generated is a minimum.	DIL 4	
5. (a)	Find the extremels of $\int_{-\pi}^{\pi} \left[\frac{1}{2} + \frac{2}{2} + \frac{4}{4} \right] dt = 0$		
	Find the extremals of $\int_0^{\pi} \left[y'^2 - y^2 + 4y \cos x \right] dx y(0) = y(\pi) = 0.$	BTL -3	Applying
	SKM	rts.	
	On what curve the functional		
5.(b)	$\int_{0}^{\frac{\pi}{2}} f(x) ^{2} dx = \int_{0}^{2} f(x) ^{2} $	BTL -2	Understanding
	$\int_{0}^{2} [y'^{2} - y^{2} + 2xy] dx \text{ with } y(0) = 0 y(\frac{\pi}{2}) = 0 \text{ be extremised.}$		
	Find the curves on which the functionals $\int [x]^2 + 12 yel dr with$		
6.	Find the curves on which the functionals $\int_{0}^{\infty} [y'^{2} + 12yx] dx$ with	BTL -4	Analyzing
	y(0) = 0, $y(1)=1$ can be extremised.		
7. (a)	Determine the extremals of the functional		Applying
7• (a)	$I[y(x)] = \int_{-a}^{a} \left\{ \frac{1}{2} \mu(y^{11})^2 + \rho y \right\} dx \text{ that satisfies the boundary}$	BTL -3	Applying
	condition $y(-a) = 0, y(a) = 0, y^{1}(-a) = 0, y^{1}(a) = 0.$		
7. (b)	Find the extremals of $\int_{0}^{x_1} [y^2 + (y')^2 + 2ye^x] dx$	BTL -3	Applying
-	x_0	~~~	
8.	$\int_{0}^{\frac{\pi}{2}} \left(dx \right)^{2} \left(dy \right)^{2}$	BTL -5	Evaluating
	Show that the functional $\int_{0}^{\frac{\pi}{2}} [2xy + \left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}] dt \text{ such that}$		
	$x(0) = 0 \ x(\pi/2) = -1 \ y(0) = 0$, $y(\pi/2) = 1$ is stationary for		
9.	x = - sin t y = sin t. Find the curve on which an extremum of the function	BTL -4	Analyzing
, ,	$I = \int_0^{\frac{\pi}{4}} \left\{ y^2 - \left(\frac{dy}{dx}\right)^2 \right\} dx, y(0) = 0 \text{ can be achieved if the second}$	DIL -T	1 mai y Zmig
	(100)		
	boundary point is permitted to move along the straight line $x = \frac{\pi}{4}$.		
	4		

10.	Solve the boundary value problem by Rayleigh Ritz method. $y^{11} - y + x = 0 \ (0 \le x \le 1) \ y(0) = y(1) = 0$	BTL -5	Evaluating
11.	Show that the curve which extremize	BTL -4	Analyzing
	$I = \int_0^{\frac{\pi}{2}} [(y^{11})^2 - y^2 + x^2] dx$ given that		
	$y(0) = 0, y^{1}(0) = 1, y\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, y^{1}\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} is \ y = \sin x.$		
12.	Solve the problem $y'' = 3x+4y$, $y(0) = 0$, $y(1) = 1$ by Rayleigh Ritz method.	BTL -5	Evaluating
13.	Find an approximate solution to the problem of minimum of the	BTL - 3	Applying
	functional $J(y) = \int_0^1 (y'^2 - y^2 + 2xy) dx, y(0) = 0 = y(1)$ by Ritz		
	method.		
14.	Find the extremals of $\int_{0}^{x_1} [2yz - 2y^2 + y^2 - z'^2] dx$.	BTL -3	Applying
	$\mathbf{PART} - \mathbf{C}$		
	TAKI - C		
15.	Prove that the sphere is the solid figure of a revolution which for a given surface has maximum volume.	BTL -2	Understanding
16.	Solve problem $y'' + (1+x^2)y + 1 = 0$ by Rayleigh Ritz method if $y(-1) = y(1) = 0$.	BTL -5	Evaluating
17.	Find the extremals of $\int_{1}^{2} \frac{\sqrt{(1+y'^{2})}}{x} y(1) = 0$, $y(2) = 1$.	BTL -3	Applying
18.	Find the extremals of the functional	100	
	$v[y(x),z(x)] = \int_0^{\frac{1}{2\pi}} (y^{1^2} + z^{1^2} + 2yz) dx \ given \ that \ y(0) = 0,$	BTL -3	Applying
	$y\left(\frac{1}{2}\pi\right) = -1$, $z(0)=0$, $z\left(\frac{1}{2}\pi\right) = 1$.		

UNIT – III PROBABILITY AND RANDOM VARIABLES: Probability—Axioms of probability—Conditional probability—Baye's theorem—Random variables—Probability function—Moments—Moment generating functions and their properties—Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions—Function of a random variable.

Q.No.	Question	Bloom's Taxonomy Level	Domain
	PART – A		
1.	Define conditional probability.	BTL -1	Remembering
2.	Define Random variable and mention its types.	BTL -2	Understanding
3.	If the mean of a Poisson variate is 2, then what is the standard deviation?	BTL -2	Understanding
4.	If $f(x) = K(x + x^2)$ in $1 < x < 5$ is a pdf of a continuous random variables. Find the value of K.	BTL -2	Understanding
5.	The mean of Binomial distribution is 20 and standard deviation is	BTL -6	Creating

	4. Find the parameters of the distribution.		
6.	If the pdf of a RV is $f(x) = \frac{x}{2}$, $0 \le x \le 2$, find $P(X > 1.5)$.	BTL -3	Applying
7.	The mean variances of binomial distribution are 4 and 3 respectively. Find P(X=0).	BTL -3	Applying
8.	Find the moment generating function of Poisson distribution.	BTL -3	Applying
9.	Define Exponential distribution.	BTL -2	Understanding
10.	Obtain the moment generating function of Geometric distribution.	BTL -1	Remembering
11.	The probability that a candidate can pass in an examination is 0.6. What is the probability that he will pass in third trial?	BTL -4	Analyzing
12.	If the RV X takes the values 1,2,3, 4 such that $2P(X = 1) = 3P(X = 2) = P(X = 3) = 5 P(X = 4)$ find the probability distribution.	BTL -4	Analyzing
13.	State the memory less property of an exponential distribution.	BTL -1	Remembering
14.	If a RV has the pdf $f(x) = \begin{cases} e^{-2x} & \text{for } x > 0 \\ 0, & \text{for } x \le 0 \end{cases}$, find the mean variance of RV X.	BTL -5	Evaluating
15.	Derive the mean of Uniform distribution.	BTL -4	Analyzing
16.	If $f(x) = \begin{cases} kx^2, 0 < x < 3 \\ 0, otherwise \end{cases}$ Find the value of X, then find the value of K.	BTL -5	Evaluating
17.	Define uniform distribution.	BTL -5	Evaluating
18.	If a RV has the probability density $(x) = \begin{cases} 2e^{-2x} & \text{for } x > 0 \\ 0, & \text{for } x \le 0 \end{cases}$, find the probabilities that will take a value between 1 and 3.	BTL -4	Analyzing
19.	The pdf of a continuous random variable X is $f(x) = k(1+x), 2 < x < 5$, Find k.	BTL -4	Analyzing
20.	For a continuous distribution $f(x) = k(x - x^2)$, $0 \le x \le 1$, where k is a constant. Find k .	BTL -1	Remembering
	PART –B		<u></u>
1.(a)	The mean and variance of a Binomial variate are 8 and 6, Find $P(x \ge 2)$	BTL -6	Creating
1. (b)	Derive the MGF of Poisson distribution and hence deduce its mean and variance.	BTL -1	Remembering
2.	The probability density function of a random variable X is given	BTL -4	Analyzing

			1
	by $f(x) = \begin{cases} x & 0 < x < 1 \\ k(2-x) & 1 \le x \le 2 \\ 0 & otherwise \end{cases}$ (i) Find the value of k		
	(ii) P (0.2 <x<1.2) (iii)="" 1.5="" <="" <math="" is="" p[0.5="" what="" x="">\ge1 (iv) Find the</x<1.2)>		
	distribution function of $f(x)$.		
3. (a)	If X has a Poisson distribution, if $P(x = 2) = 2/3 P(x=1)$; Evaluate		Applying
3. (a)	(i) $P(x = 0)$ and (ii) $P(x = 3)$	BTL -3	Applying
3.(b)	Let the random variable X has the p.d.f. $f(x) = \begin{cases} \frac{1}{2}e^{-\frac{x}{2}}, x > 0\\ 0 \cdot otherwise \end{cases}$ Find the mean and variance.	BTL -3	Applying
4.	Find the MGF, mean and variance of the Exponential distribution.	BTL -1	Remembering
	ENDINEER	D1L-1	
5. (a)	State and prove Memoryles property of Exponential distribution.	BTL -3	Applying
	The number of hardware failures of a computer system in week of operations has the following P.d.f, Deduce P(X<5 / X>1), K.		
5.(b)		BTL -4	Analyzing
	No.of failures 0 1 2 3 4 5 6 Probability K 2 K 2 K K 3 K K 4 K		
6.	Find the MGF, mean and variance of the Binomial distribution.	BTL -2	Understanding
7. (a)	If X is Uniformly distributed in $(0,10)$, find probability (i) $X < 2$	DTI 4	Analyzing
	(ii)X > 8 (iii) 3 <x <9?<="" th=""><th>BTL -4</th><th>, ,</th></x>	BTL -4	, ,
	VLSI chips, essential to the running condition of a computer system, fail in accordance with a Poisson distribution with the		
7. (b)	rate of one chip in about 5 weeks .if there are two spare chips on		Analyzing
	hand and if a new supply will arrive in 8 weeks .Evaluate	BTL -4	1
	the probability that during the next 8 weeks the system will be		
8.	down for a week or more, owing to a lack of chips? A discrete RV X has the probability function given below		
0.	X : 0 1 2 3 4 5 6 7		
	$P(x): 0$ a 2a 2a 3a $a^2 + 2a^2 + 7a^2 + a$	BTL -3	Applying
	Find (i) Value of a (ii) p (X <6), P ($X \ge 6$), P ($0 < X < 4$) (iii) Distribution function.		
9.	Find the MGF, mean and variance of the Uniform distribution.		Damambaring
у.	,	BTL -1	Remembering
10.(a)	The daily consumption of milk in a city, in excess of 20,000		
	gallons, in approximately distributed as a Gamma variate with the parameters $k = 2$ and $\lambda = \frac{1}{10.000}$. The city has a daily stock of	BTL -3	Applying
	30,000 gallons. What is the probability that the stock is	D1L-3	
	insufficient on a particular day?		
	-		

10.(b)	Let X be Uniformly distributed in (-1,1), Find (i) $P(X < 1/3)$ and (ii) $P(X \ge \frac{3}{4}$	BTL -5	Evaluating
11.	Find the MGF, mean and variance of the Geometric distribution.	BTL -1	Remembering
12.(a)	Buses arrive at a specific stop at 15 min intervals starting at 7am, they arrive at 7, 7.15, 7.30, and so on. If a passenger time that is uniformly distributed between 7 and 7.30. Find the probability that he waits, (i) Less than 5 min for a bus and (ii) at least 12 min for a bus.	BTL -3	Applying
12.(b)	If $P(X=x) = Kx$, $x = 1,2,3$ Find the value of K, mean and variance of X.	BTL -4	Analyzing
13.	If the probability mass function of a random variable X is given by $P[X = x] = kx^3$, $x = 1,2,3,4$, Identify the value of k, $P\left[\left(\frac{1}{2} < X < \frac{5}{2}\right)/X > 1\right]$, mean and variance of X.	BTL -3	Applying
14.	The number of monthly breakdown of a computer is a random variable having a Poisson distribution with mean equal to 1.8. Find the probability that this computer will function for a month (i)Without breakdown (ii) With only one breakdown and (iii)With at least one breakdown.	BTL -5	Evaluating
	Part – C	E	
15.	A dicrete RV X hass the following probability distribution. X: 0 1 2 3 4 5 6 7 8 P(x): a 3a 5a 7a 9a 11a 13a 15a 17a Find the value of a, Mean, variance P(X<3), P(X<5/X>3) and CDF of X.	BTL -3	Applying
16.	Let X be a continuous random variable with p.d.f $f(x) = \begin{cases} ax, & 0 \le x \le 1 \\ a, & 1 \le x \le 2 \\ -ax + 3a, & 2 \le x < 3 \\ 0, & otherwise \end{cases}$ (i) Find a,	BTL -2	Understanding
17.	 (ii) Compute P(X≤ 1.5) (iii) Find the c.d.f of X. Out of 800 families with 4 children each, how many would you expect to have (i) at least 1 boy (ii) 2 boys (iii) 1 or 2 girls (iv) no girls. 	BTL -2	Understanding
18.	Find the mean and variance of Normal distribution.	BTL -1	Remembering
IINIT _	IV LINEAR PROGRAMMING: Formulation—Graphical solution	n Simpley	method Rig M

UNIT – IV LINEAR PROGRAMMING: Formulation–Graphical solution–Simplex method–Big M method-Two phase method-Transportation and Assignment models.

Q.No.	Question	Bloom's Taxonomy Level	Domain
	PART – A		
1.	What is degeneracy in a transportation model?	BTL -1	Remembering
2.	Differentiate between balanced and unbalanced cases in Assignment model	BTL -2	Understanding
3.	List any two basic differences between a transportation and assignment problem	BTL -2	Understanding
4.	What do you mean by degeneracy?	BTL -1	Remembering
5.	Explain optimal solution in L.P.P.	BTL -1	Remembering
6.	Solve the following L.P.P by using graphical method $Maximize\ Z=3x_1-2x_2$, Subject to $x_1+x_2\le 1$, $3x_1+3x_2\ge 6$, $x_1,x_2\ge 0$	BTL -5	Evaluating
7.	What is the difference between feasible solution and basic feasible solution?	BTL -2	Understanding
8.	Obtain an initial basic feasible solution to the following transportation problem by using Matrix Minima method D_1 D_2 D_3 D_4 capacity $\begin{array}{ccccccccccccccccccccccccccccccccccc$	BTL -3	Applying
9.	What is an assignment problem? Give two applications.	BTL -1	Remembering
10.	Write down the mathematical formulation of L.P.P.	BTL -1	Remembering
11.	Enumerate the methods to find the initial basic feasible solution for transportation problem.	BTL -1	Remembering
12.	When will you say a transportation problem is said to be unbalanced?	BTL -2	Understanding
13.	Write short note on North west corner rule.	BTL -2	Understanding
14.	What is a travelling sales man problem?	BTL -2	Understanding

15.	Define transshipment problem.	BTL -1	Remembering
16.	What is meant by Unbalanced Assignment Problem?	BTL -1	Remembering
17.	Explain Row, Column, minima methods to find initial solution of transportation problem.	BTL -2	Understanding
18.	Solve by graphical method $Z = 5x_1 + 4x_2$, Subject to $4x_1 + 5x_2 \le 10, 3x_1 + 2x_2 \le 9, 8x_1 + 3x_2 \le 12, x_1, x_2 \ge 0$	BTL -5	Evaluating
	Solve the assignment problem		
19.	P Q R S A 5 7 11 6 B 8 5 9 6 C 4 7 10 7 D 10 4 8 3	BTL -5	Evaluating
	Find the initial solution to the following TP using Vogel's approximation method		
20.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BTL -5	Evaluating
	PART –B		
1.(a)	Solve the L.P.P by Simplex method Maximize $Z = 3x + 2y$ Subject to $2x + y \le 6, x + 2y \le 6, x, y \ge 0$	BTL -2	Understanding
	Solve the assignment problem		
1. (b)	P Q R S A 18 26 17 11 B 13 28 14 26 C 38 19 18 15 D 19 26 24 10	BTL -2	Understanding
2. (a)	Solve by Simplex method Maximize $Z=5x_1+4x_2$, Subject to $4x_1+10x_2 \le 10, 3x_1+2x_2 \le 9, 8x_1+3x_2 \le 12, x_1, x_2 \ge 0$	BTL -5	Evaluating
2.(b)		BTL -3	Applying

	b _i 10 10 8		
3.	Solve by Simplex method. Maximize $Z=5x_1+3x_2$, Subject to $5x_1+2x_2 \le 10, 3x_1+8x_2 \le 12, x_1+x_2 \le 2, x_1, x_2 \ge 0$.	BTL -5	Evaluating
4. (a)	Solve by Simplex method. Maximize $Z=3x_1+2x_2$, Subject to $4x_1+3x_2\leq 12, 4x_1+x_2\leq 8, 4x_1-x_2\leq 8, x_1, x_2\geq 0$.	BTL -5	Evaluating
5. (a)	Solve by Graphical method, Maximize $Z = 3x_1 + 4x_2$, Subject to $5x_1 + 4x_2 \le 200$, $3x_1 + 5x_2 \le 150$, $5x_1 + 4x_2 \ge 100$, $8x_1 + 4x_2 \ge 80$ $x_1, x_2 \ge 0$.	BTL -2	Understanding
5.(b)	Find the initial feasible solution for the following transportation problem D1 D2 D3 D4 D5 Supply 3 2 3 4 1 100 4 1 2 4 2 125 1 0 5 3 2 75 Total 100 60 40 75 25	BTL -3	Applying
6. (a)	Solve by Graphical method $\text{Maxi} Z = 40x_1 + 30x_2$, Subject to $3x_1 + x_2 \le 30,000$; $x_1 \le 8000$,; $x_2 \le 12,0000$,; $x_1,x_2 \ge 0$	BTL -2	Understanding
6.(b)	Solve the assignment problem for optimal job assignment Job Machine \[\begin{pmatrix} 10 & 3 & 3 & 2 & 8 \\ 9 & 7 & 8 & 2 & 7 \\ 7 & 5 & 6 & 2 & 4 \\ 3 & 5 & 8 & 2 & 4 \\ 9 & 10 & 9 & 6 & 10 \end{pmatrix} \]	BTL -4	Analyzing
7. (a)	Using Simplex method Maximize $Z = x_1 + 2 x_2 + 3x_3 - x_4$, Subject to $x_1 + 2 x_2 + 3x_3 = 15$; $2x_1 + x_2 + 5x_3 = 20$; $x_1 + 2 x_2 + x_3 + x_4 = 10$ and $x_1, x_2, x_3, x_4 \ge 0$	BTL -4	Analyzing
8.	Solve the assignment problem Job Machine [13 8 16 18 19] 9 15 24 9 12] 12 9 4 4 4 6 12 10 8 13 15 17 18 12 20]	BTL -4	Analyzing
9.	Solve by Simplex method Maximize $\mathbf{Z} = \mathbf{x}_1 + \mathbf{x}_2 + 3\mathbf{x}_3$, Subject to $3\mathbf{x}_1 + 2\mathbf{x}_2 + \mathbf{x}_3 \le 2$; $2\mathbf{x}_1 + \mathbf{x}_2 + 2\mathbf{x}_3 \le 2$ and $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \ge 0$	BTL -5	Evaluating
10.	Solve the transportation problem Supply	BTL -4	Analyzing

	15 51 42 33 23		
	80 42 26 81 44		
	90 40 66 60 33		
	Demand 23 31 16 30 100		
11.	Solve by Simplex method Maximize $\mathbf{Z} = 4\mathbf{x}_1 + 10\mathbf{x}_2$, Subject to		T. 1
	$2x_1 + x_2 \le 10$; $2x_1 + 5x_2 \le 20$ and $2x_1 + 3x_2 \le 18$ and $x_1, x_2 \ge 0$	BTL -5	Evaluating
		D/DI 4	A 1 '
12.	Find the assignment of machines to the job that will result in 62 78 50 111 82	BTL -4	Analyzing
	maximum profit 71 84 61 73 59		
	111 21 81 87 92 111 71 81 48 64 87 77 80		
13.(a)	Find the optimal solution of the transportation problem	BTL -4	Analyzing
	The state of the s		, ,
	P Q R S Supply		
	A 6 3 5 4 22		
	B 5 9 2 7 15		
	C 5 7 8 6 8		
12 (b)	Requirement 7 12 17 9	400	T 1
13.(b)	Solve by graphical method Minimize $Z = 2x_1 + 3x_2$, Subject to $x_1 + x_2 \ge 5$; $x_1 + 2x_2 \ge 6$; and $x_1, x_2, \ge 0$	BTL -5	Evaluating
14.	Solve the assignment problem,		
1	Job	1	
	7 7 0 4 8		
	9 6 4 5 6	BTL -3	Applying
	Machine 11 5 7 0 5 9 4 8 9 4		
	9 4 8 9 4 8 7 9 11 3		
	Part – C		
15.	Solve the transportation problem		
12.	Supply		
	5 2 4 3 22]		
	4 8 1 6 15	BTL -3	Applying
	4 6 7 5 8		
	Demand7 12 17 9 45		
16.	Solve the assignment problem,	BTL -3	Applying
	Job	DIL -3	

	Machine	12 10 10 6 8	3 14	15 25 8 10 11	22 16 5 13 7	18 12 9 13 13	8 11 6 12 10				
17.	Solve by	Simpl	ex met	hod.	Max	$\mathbf{Z} = 2$	$2x_1 + x_2$, Subje	ct to	BTL -2	Understanding
	$x_1 + 2x_2$	≤ 10 ;	$\mathbf{x}_1 + \mathbf{x}_2$	$2 \le 6$;; X ₁	- X ₂ ≤	≤ 2 ; x_1	$-2 x_2 \le$	$1, x_1, x_2, \geq 0$		
18.	A travell	ing sal	es man	has	to vi	sit 5 c	ities .He	wishe	s to start from	BTL -3	Applying
	a particul	lar city	, visit e	each	city	once a	and then	returns	s to his		
	starting p	oint. (Cost of	goir	ng fro	m one	city to	another	is shown		
	below. F	ind the	least c	cost	route						
			A]	В	С	D	Е			
		A	∞	4	4	10	14	2	0.		
		В	12	0	∞	6	10	4	"IN_		
		С	16		14	∞	8	14	G		
		D	24	8	8	12	∞	10	0		
		Е	2	(5	4	16	∞			

UNIT – V FOURIER SERIES: Fourier trigonometric series : Periodic function as power signals—Convergence of series—Even and odd function : Cosine and sine series—Non periodic function : Extension to other intervals-Power signals : Exponential Fourier series—Parseval's theorem and power spectrum—Eigenvalue problems andorthogonal functions—Regular Sturm-Liouville systems—Generalized Fourier series.

Q.No.	Question	Bloom's Taxonom y Level	Domain
	PART – A		
1.	If the periodic function $f(t) = \{ \begin{array}{l} 0 - \pi < t < 0 \\ \mathbf{t}, 0 < t < \pi \end{array} \}$ where $f(t + 2\pi) = f(t)$ is expanded as a Fourier series, find the value of a_n .	BTL -2	Understanding
2.	Define energy signals and power signals?	BTL -1	Remembering
3.	Find a Fourier sine series for the function $f(x) = 1$, $0 < x < \pi$.	BTL -2	Understanding
4.	Define a periodic function as power signals.	BTL -1	Remembering
5.	Calculate average power of period T =2, $f(t) = 2\cos 5\pi t + \sin 6\pi t$ using time domain analysis.	BTL -2	Understanding
6.	State Parseval's theorem.	BTL -1	Remembering
7.	Find the Fourier constants b_n for x sinx in $(-\pi, \pi)$.	BTL -3	Applying

8.	State convergence of the series.	BTL -1	Remembering
9.	Write note on Singular Sturm- Liouville System.	BTL -1	Remembering
10.	Find the value of a_0 in the Fourier series expansion of $f(x) = e^x in(0,2\pi)$.	BTL -4	Analyzing
11.	Define self ad joint operator.	BTL -1	Remembering
12.	Write the power signals Exponential Fourier Series.	BTL -2	Understanding
13.	Define generalized Fourier series?	BTL -1	Remembering
14.	If $(\pi - x)^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ in $0 < x < 2\pi$ then deduce the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$.	BTL -4	Analyzing
15.	Put the following DE in self – ad joint form x^2 y" + 3xy' + λ y = 0.	BTL -4	Analyzing
16.	Distinguish Periodic and Non Periodic functions, with example.	BTL -2	Understanding
17.	Write short note on Eigen value problem and orthogonal functions.	BTL -2	Understanding
18.	State the properties of the eigen values of a Regular Sturm- Liouville System.	BTL -1	Remembering
19.	Write note on cosine and sine series.	BTL -1	Remembering
20.	Find the root mean square value of the function $f(x) = x$ in $(0, l)$.	BTL -5	Evaluating
	PART –B		1
1.(a)	Find the Fourier series of the periodic Ramp function $ f(t) = \begin{cases} 0, & -\pi < t < 0 \\ t, & 0 < t < \pi \end{cases}, f(t+2\pi) = f(t) \text{ Using (i) time } $ domain analysis and (ii) Frequency domain analysis.	BTL -2	Understanding
1. (b)	Find the Fourier series of the function $f(x) = (\pi - x)^2$, in $(0,2\pi)$ with periodicity 2π .	BTL -3	Applying
2. (a)	Find the fourier series of the sawtooth function $f(t) = t$, $-1 < t < 1$ where $f(t+2) = f(t)$.	BTL -2	Understanding
2.(b)	A periodic function f(t) of period 2 is defined by $f(t) = \begin{cases} 3t & 0 \le t \le 1 \\ 3 & 1 \le t \le 2 \end{cases}, f(t+2) = f(t).$	BTL -3	Applying

	Determine a Fourier series expansion for the function and sketch		
	a graph of $f(t)$ for $-4 \le t \le 4$.		
3. (a)	Find a fourier series representation of f(t) = t², 0 < t < 1. i) as a sine series with period T =2 ii) as a cosine series with period T =2 iii) as a full trigonometric series with period T =1	BTL -4	Analyzing
3.(b)	Obtain the half range cosine series for $f(x) = (x - 1)^2$ in $0 < x < 1$. Deduce that $\sum_{1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$	BTL -3	Applying
4. (a)	Calculate the averge power of the periodic signal, period T = 2 $f(t) = 2 \cos 6\pi t + \sin 5\pi t$	BTL -5	Evaluating
4.(b)	Obtain the Fourier series for $f(x) = 1 + x + x^2$ in $(-\pi, \pi)$.	BTL -3	Applying
5. (a)	Find the eigen values and eigen functions of $y'' + \lambda y = 0$, $0 < x < p$, $y(0) = 0$, $y(p) = 0$.	BTL -4	Analyzing
5.(b)	Find the half range sine series of $f(x) = 4x - x^2$ in the interval $(0, 4)$. Hence deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \cdots$	BTL -3	Applying
6.	Find an expression for the Fourier coefficients associated with the generalised fourier series arising from the eigen functions of $y'' + y' + \lambda y = 0$, $0 < x < 3$, $y(0) = 0$, $y(3) = 0$.	BTL -4	Analyzing
7. (a)	Find the eigen values and eigen functions of $y'' + \lambda y = 0$, $-\pi < x < \pi$, $y(-\pi) = y(\pi)$, $y'(-\pi) = y'(\pi)$.	BTL -4	Analyzing
7. (b)	Obtain the cosine series for $f(x) = x$ in $0 < x < \pi$ and deduce that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^4} = \frac{\pi^4}{96}$	BTL -3	Applying
8.	Find the generalized Fourier Series expansion of the function $f(x) = 1$, $0 < x < 1$, in terms of the eign functions of $y'' + y' + \lambda y = 0$, $0 < x < 1$, $y(0) = 0$, $y(1) + y'(1) = 0$.	BTL -4	Analyzing
9.	Find half range cosine series given $f(x) = x 0 \le x \le 1$ $= 2-x 1 \le x \le 2$	BTL -3	Applying
10.	Find a Fourier series with period 3 to represent $f(x) = 2x - x^2$ in (0,3).	BTL -4	Analyzing
11.(a)	Find the Fourier series expansion of the periodic function $f(x)$ of period $2l$ define by $f(x) = l + x \qquad -l \le x \le 0$ $= l - x \qquad 0 \le x \le l \text{ Deduce that } \sum_{1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$	BTL -3	Applying

12.	Find the Fourier series expansion of		A malarin a
	$f(x) = \begin{cases} -x + 1 & for - \pi < x < 0 \\ x + 1 & for 0 < x < \pi \end{cases}$	BTL -3	Applying
	$\int (x)^{-1} (x+1 \text{ for } 0 < x < \pi)$		
13.	Expand $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi < x < 0 \\ 1 - \frac{2x}{\pi}, & 0 < x < \pi \end{cases}$ as a full range Fourier series in the	BTL -3	Applying
	interval $(-\pi, \pi)$. Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.		
14.	Obtain Fourier series for $f(x)$ of period $2l$ and defined as follows		
	$f(x) = \begin{cases} l - x & in & 0 \le x \le l \text{ Hence deduce that} \\ 0 & in & l \le x \le 2l \end{cases}$		Applying
		BTL -3	ripprymg
	(i) $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ (ii) $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$		
	Part – C		
15.	Find the Fourier series for $f(x) = x^2$ in $(-\pi, \pi)$. Hence find		
15.	i) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ ii) $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots$	BTL -3	Applying
	iii) $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} \dots \infty$	-	
16.	Find the eigen values, eigen functions of y" + λ y = 0, 0 < x < 1, y(0) = 0, y(1) + y'(1) = 0.	BTL -4	Analyzing
17.	Obtain the Fourier series to represent the function		A 1
	$f(x) = x , -\pi < x < \pi \text{ and Deduce } \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}.$	BTL -4	Analyzing
18.	Find the Fourier expansion of the following periodic function	BTL -1	Remembering
	of period 4 $f(x) = \begin{cases} 2+x, & -2 \le x \le 0 \\ 2-x, & 0 \le x \le 2 \end{cases}$		
	Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8}$.		