SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

S.R.M. Nagar, Kattankulathur - 603203

DEPARTMENT OF MATHEMATICS

QUESTION BANK

II SEMESTER

(COMMON TO ALL BRANCHES)

1918202-ENGINEERING MATHEMATICS –II

Regulation – 2019

Academic Year – 2022 – 2023

Prepared by

Dr.T.Isaiyarasi, Assistant Professor/ Mathematics Ms.A.Karpagam, Assistant Professor/ Mathematics Ms.V.Nagarani , Assistant Professor/ Mathematics Ms.M.H.A.Aysha Chithukka, Assistant Professor/ Mathematics

SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF MATHEMATICS

<u>OUESTION BANK</u> SUBJECT : 1918202 – ENGINEERINGMATHEMATICS-II SEM / YEAR: II SEMESTER / I YEAR (COMMON TO ALL BRANCHES)

UNIT I ORDINARY DIFFERENTIAL EQUATIONS

First order linear Differential equations- Exact differential equations- Second order linear differential equations with constant coefficients – Method of variation of parameters – Homogenous equation of Euler's and Legendre's type

O No	Question	BT	Competence
Q.10	Question	Level	
1	Find the order and degree of the following equation $\frac{dy}{dx} + y = x^2$.	BTL-1	Remembering
2	Form the Differential Equation by eliminating arbitrary constants for the	BTL-1	Remembering
	equation $y^2 = 4ax$.		
3	$Solve(D^2 + 1)y = 0.$	BTL-1	Remembering
4	$Solve(D-1)^2 y = 0$	BTL-1	Remembering
5	$Solve(D^4 - 1)y = 0.$	BTL-1	Remembering
6	Solve $(D^2 + a^2)y = 0$.	BTL-1	Remembering
7	$Solve(D^2 + 5D + 6)y = 0.$	BTL-3	Applying
8	Solve $(D^4 + D^3 + D^2)y = 0$	BTL-4	Analyzing
9	Solve $(D^4 + D^3 + D^2)y = 0$	BTL-4	Analyzing
10	Find the complementary function of $(D^2 + 4)y = sin 2x$.	BTL-2	Understanding
11	Find the complementary function of $y'' - 4y' + 4y = 0$.	BTL-2	Understanding
12	Estimate the P.I of $(D^3 + 3D^2 + 3D + 1)y = e^{-x}$.	BTL-4	Analyzing
13	Find the particular Integral for $(D^2 - 2D + 1)y = 2e^x$.	BTL-2	Understanding
14	Estimate the P.I of $(D^2 - 4D + 4)y = e^{2x}$	BTL-3	Applying
15	Find the P.I of $(D^2 + 2)y = x^2$	BTL-3	Applying
16	Estimate the P.I of $(D^2 + 5D + 4)y = sin 2x$.	BTL-3	Applying
17	Find the P.I of $(D^2 + 1)y = cos2x$	BTL-4	Analyzing
18	Find the P.I of $(D^2 + 4D + 5)y = e^{-2x}$	BTL-4	Analyzing
19	Find the P.I. of $(D - a)^2 y = e^{ax} sinx$	BTL-2	Understanding
20.	Rewrite the equation $(x^2D^2 - 2xD + 4)y = 0$ into the linear equation with	BTL-2	Understanding
	constant coefficients		
21.	Transform the equation $xy'' + y' + 1 = 0$ into a linear equation with	BTL-4	Analyzing
	constant coefficients.		
22.	Rewrite the equation $(x^2D^2 + xD + 1)y = logx$ into the linear equation	BTL-2	Understanding
	with constant coefficients		
23.	Solve the equation $x^2y'' - xy' + y = 0$	BTL-2	Understanding
24.	Rewrite the equation $((2x + 5)^2 D^2 - 6(2x + 5)D + 8)y = 6x$ into the	BTL-3	Applying
	linear equation with constant coefficients.		

25.	Reduce the differential equation given by	BTL-3	Applying
	$r^2 \frac{d^2y}{d^2y} + r \frac{dy}{d^2y} + v = \log r \sin(\log r)$		
	$\frac{dx^2}{dx^2} + \frac{dx}{dx} + y = \log x \sin(\log x)$		
	PART B		
1(a)	Evaluating the following equation $\frac{dx}{dy} + \frac{x}{1+y^2} = \frac{tan^{-1}y}{1+y^2}$	BTL-5	Evaluating
1(b)	Solve the differential equation $y'' + y = tanx$ by method of variation of parameters	BTL-1	Remembering
2(a)	Find the solution of $(D^3 - 1)y = e^{2x}$.	BTL-2	Understanding
2(b)	Solve $\frac{dy}{dx} + y \cot x = 2 \cos x$	BTL-1	Remembering
3 (a)	Solve $(2D^3 - D^2 + 4D - 2)y = e^x$	BTL-4	Analyzing
	Using the method of variation of parameters for the following	BTL-5	Evaluating
3(D)	$(D^2 + a^2)y = tanax$		
4(a)	Solve $(D^3 - 6D^2 + 11D - 6)y = e^{-2x} + e^{-3x}$	BTL-2	Understanding
4(b)	Solve $y'' + y = cotx$ by method of variation of parameters	BTL-5	Evaluating
5(a)	Solve $(D^2 + 3D + 2)y = sin3x$	BTL-4	Analyzing
5(b)	Solve $(D^2 + a^2)y = secax$ by method of variation of parameters	BTL-4	Analyzing
6(a)	Solve $(D^2 + 4) y = cos2x0000000$	BTL-4	Analyzing
6(b)	Solve the differential equation $y'' - 2y' + 2y = e^x tanx$ by method of	BTL-1	Remembering
0(2)	variation of parameters		
7(a)	Solve $(D^2 + 2D + 2)y = e^{-2x} + cos2x$	BTL-4	Analyzing
7(b)	Identify the solution of $(D^2 - 7D - 6)y = (1 + x)e^{2x}$	BTL-1	Remembering
8 (a)	Solve $(D^2 + 4)y = \sin 3x + \cos 2x$.	BTL-2	Understanding
8(b)	Evaluate the general solution of $(x^2D^2 - xD + 1) y = \left(\frac{\log x}{x}\right)^2$	BIL-2	Evaluating
9(a)	Solve $(D^2 + 1)y = sinx \sin 2x$.	BTL-1	Remembering
9(b)	Solve the equation $(D^2 + 4D + 3)y = e^{-x}sinx$	BTL-2	Understanding
10(a)	Solve $(D^2 + 4)y = x^2 \cos 2x$.	BTL-1	Remembering
10(b)	Solve $[(x + 1)^2 D^2 + (x + 1)D + 1]y = 4\cos[log(x + 1)].$	BTL-4	Analyzing
11(a)	Formulate the ODE and hence solve $(x^2D^2 + 4xD + 2)y = logx$	BTL-5	Evaluating
11(b)	Find the solution $(D^2 + 2D + 1)y = e^{-x}x^2$.	BTL-5	Evaluating
12(a)	Solve the homogeneous differential equation $(x^2D^2 - xD + 1)y = x^2$	BTL-2	Understanding
12(b)	Solve $(D^2 + 1)y = xcosx$		
13.	Solve $(D^2 - 6D + 9)y = 2x^2 - x + 3$	BTL-5	Evaluating
14.	Solve $(D^2 - 2D + 5)y = e^x \cos 2x$	BTL-4	Analyzing
15.	Find the solution $(D^2 + 4D - 12)y = (x - 1)e^{2x}$.	BTL-4	Analyzing
16.	Using the method of variation of parameters find the solution of $-\tau$	BTL-4	Analyzing
	$(D^2 + 2D + 1)y = \frac{e^{-x}}{x^2}$		
17.	Find the solution of $((2x + 3)^2 D^2 - 2(2x + 3)D - 12)y = 6x$	BTL-1	Remembering
18.	Solve the differential equation $(x^2D^2 - 3xD + 4)y = x^2 \cos(logx)$	BTL-4	Analyzing
	PART C		

1.	Solve $(1 - x^2)\frac{dy}{dx} + 2xy = x\sqrt{(1 - x^2)}$	BTL-2	Understanding
2.	A drug is excreted in a patient's urine. The urine is monitored continuously using catheter. A patient is administered 10 mg of drug at time t=0, which	BTL-3	Applying
	is excreted at the Rate of $-3t^{\frac{1}{2}}$ mg/h.(i)What is the general equation for the		
	amount of drug in the patient at time $t > 0$? (ii) When will the patient be		
	drug free?		
3.	Using the method of variation of parameter evaluate	DTI 5	Englanding
	$(D^2 - 6D + 9)y = \frac{e^{3x}}{x^2}$	BIL-3	Evaluating
4.	Formulate the ODE and hence solve $(x^2D^2 - 2xD + 4)y = x^2 + 2logx$	BTL-6	Creating
5.0	Solve the differential equation $(x^2D^2 - 3xD + 5)y = x^2 \sin(logx)$	BTL-3	Applying
UNIT	II- VECTORCALCULUS		
Gradie	ent and directional derivative – Divergence and curl- Irrotational and Solenoid	al vector fie	elds –Green's
theorem	m-Gauss divergence theorem and Strokes' theorems – Verification and application	ation in eval	luating line,
surface	e and volume integrals		
	PART A		
1.	If $\varphi = x^2 + y^2 + z^2$ then find grad φ at $(2, 0, 2)$.	BTL-1	Remembering
2.	If $\varphi = x^2 + yz$ then find grad φ .		
3.	Find the maximum directional derivative of $\varphi = xyz^2$ at (1, 0, 3).	BTL-1	Remembering
4.	If $\varphi = 3xy - yz$, Find $grad\varphi$ at $(1, 1, 1)$.	BTL-2	Understanding
5.	Find the Directional derivative of $\varphi = 4xz^2 + x^2yz$ at (1,-2,1) in the	BTL-1	Remembering
	direction $2\vec{i} + 3\vec{j} + 4k$.		
6.	Show that $V(r^n) = nr^{n-2}r$.	BTL-I	Remembering
7. o	Give the unit normal vector to the surface $xyz = 2$ at (2, 1, 1).	BIL-2	Understanding
<u>ð.</u>	Give the unit normal vector to the surface $x^2 + y^2 + z^2 = 1$ at (1, 1, 1). Find the unit normal to the surface $x^2 + y^2 - z = 10$ at (1, 1, 1).	DTI 5	Evolucting
<i>9</i> .	Find the unit normal to the surface $x + y - 2 = 10$ at (1,1,1) Find the unit normal to the surface $xy^3 \tau^2 = 4$ at (1, 1, 2)	DIL-J	Evaluating
10.	Find the unit normal to the surface $xy z = 4$ at (-1,-1,2)		Demonstrations
11.	What is the value of a, b, c if the vector \vec{r}	BIT-I	Remembering
	F = (x + y + az)i + (by + 2y - z)j + (-x + cy + 2z)k may be irrotational		
12.	Show that the vector $\vec{E} = 2u^4 \pi^2 \vec{i} + 4x^3 \pi^2 \vec{i} + 2x^2 u^2 \vec{k}$ is colonoidal	BTL-6	Creating
12.	Show that the vector $F = 3y/2 t + 4x/2 j - 5x/y/k$ is soleholdal.		Analyzing
13.	Show that the vector $F = (x + 3y)\vec{i} + (y - 3z)\vec{j} + (x - 2z)k$ is	BIL-4	Analyzing
	solenoidal.		
14.	Is the position vector $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ irrotational? Justify.		
15.	If \vec{r} is the position vector, Find $div\vec{r}$.	BTL-2	Understanding
16.	What is the value of <i>m</i> if the vector \vec{x}		
	$\vec{F} = (x+3y)\vec{i} + (y-2z)\vec{j} + (x+mz)\vec{k}$ is solenoidal		
17.	Show that the vector $\vec{\mathbf{x}}$	BTL-3	Applying
	$F = (y^2 - z^2 + 3yz - 2x)\vec{i} + (3xz + 2xy)\vec{j} + (3xy - 2xz + 2z)\vec{k}$ is		
10	solenoidal.		A
18.	Snow that $curl(graa \varphi) = 0$.	BIL-3	Applying
19.	If $F = 3xyi - y^2j$, Evaluate $\int F dr$, where C is the arc of the parabola	DIL-4	Anaryzing
20	$y = 2x^2$ from the point (0, 0) to the point (1, 2).		A pplyin ~
20.	If $F = (x^2)i + (xy^2)j$, evaluate $\int F dr$ from (0,0) to (1,1) along the path	DIL-3	Apprying

	y = x.		
21.	Using Green's theorem evaluate $\int_{C} [(2x^2 - y^2)dx + (x^2 + y^2)dy]$	BTL-6	Creating
	where C is the boundary of the square enclosed by the lines $x = 0, y =$		
	0, x = 2, y = 3.		
22.	State Gauss Divergence theorem.	BTL-5	Evaluating
23.	Evaluate using Gauss Divergence theorem for $\vec{F} = 4xz\vec{i} - y^2\vec{j} + yz\vec{k}$	BTL-5	Evaluating
	taken over the cube $x = 0, y = 0, z = 0, x = 1, y = 1, z = 1$.		
24.	State Stokes theorem.	BTL-6	Creating
25.	State Greens theorem	BTL-6	Creating
	PART B		
1(a)	Find the Directional Derivative of $\varphi = 3x^2yz + 4xz^2 + xyz$ at (1, 2, 3)	BTL-1	Remembering
1(a)	in the direction of $2\vec{i} + \vec{j} - \vec{k}$.		
1(b)	Find the constants a and b, so that the surfaces $5x^2 - 2yz - 9x = 0$ and	BTL-2	Understanding
1(0)	$ax^2y + bz^3 = 4$ may cut orthogonally at the point (1,-1,2).		
2(a)	Find the angle between the surfaces $x^2 - y^2 - z^2 = 11$ and	BTL-1	Remembering
	xy + yz - zx = 18 at the point (6,4,3).		TT 1 / 1'
2(b)	Find the unit normal to the surface $x^2y + 2xz^2 = 8$ at the point (1, 0, 2).	BIL-2	Understanding
3 (a)	Calculate the angle between the normal to the surface $xy = z^2$ at the points $(4, 1, 2)$ and $(3, 3, -3)$	DIL-I	Keinembering
	points (4, 1, 2) and (5, 5, -5).	BTL-3	Applying
3(b)	Find the work done when a force $F = (x^2 - y^2 + x)i - (2xy + y)j$ moves a	DILS	rippijing
	particle in the XY pane from (0,0,0) to (1,1,1) along the parabola $x = y^2$.		
4(a)	Find the angle between the surface $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 - 3 = 3$	BTL-2	Understanding
	z at the points (2,-1, 2). \vec{z}		A malaurin a
4(b)	Find the work done by the force $F = (2xy + z^3)\vec{i} + (x^2)\vec{j} + 3xz^2k$	BIL-4	Anaryzing
	when it moves a particle from $(1,-2, 1)$ to $(3, 1, 4)$ along any path?		A
5 (a)	Find the values of a and b so that the surfaces $ax^2 - byz = (a + 2)x$ and $4x^2y + z^3 = 4$ may out orthogonally at $(1 - 1 - 2)$	BIL-3	Applying
	Find the scalar potential if the vector field	BTL_5	Evaluating
5(b)	$\vec{F} = (x^2 \pm xy^2)\vec{i} \pm (y^2 \pm x^2y)\vec{i}$ is irrotational	DIL-J	Evaluating
	Find the value of a b c so that the vector	BTL-1	Remembering
6(a)	$\vec{F} = (r + v + az)\vec{i} + (hr - 2v - z)\vec{i} + (-r + cv + 2z)\vec{k}$	DILI	rteineinisering
U(u)	may be irrotational. Also find its scalar potential		
	Find the work done by the force $\vec{F} = 3xy\vec{i} - y^2\vec{i}$ where C is the arc of	BTL-2	Understanding
6(b)	the parabola $y = 2x^2$ from (0,0) to (1,2).		C
	Prove that the area bounded by a simple closed curve is given by	BTL-1	Remembering
7(a)	$\frac{1}{2}\int (xdy - ydx)$ Hence find the area of the ellipse $\frac{x^2}{y^2} + \frac{y^2}{y^2} = 1$		
	$\frac{2 J_c}{2 J_c} (x u y) = y u u (x u the und u the und u of the empty a^2 + b^2Find the Directional Derivative of a = r u z at P(1, 1, 2) in the direction of$	DTI 2	Applying
7(b)	Find the Directional Derivative of $\psi = xy2$ at $F(1, 1, 5)$ in the direction of the outward drawn normal to the sphere $x^2 + y^2 + z^2 = 11$ through the	DIL-3	Apprying
7(0)	ne outward drawn normar to the sphere $x + y + z = 11$ through the point P		
	Find the angle between the surface $x \log z = v^2 - 1$ and $x^2v = 2 - z$ at	BTL-1	Remembering
8(a)	the point $(1,1,1)$.		6
	Find the Directional Derivative of $\varphi = xy^2 \vec{i} + zy^2 \vec{i} + xz^2 \vec{k}$ at (2, 0, 3)	BTL-2	Understanding
8(b)	in the direction of the outward normal to the sphere $x^2 + y^2 + z^2$ at the		
	point(3,2,1)		
9.	Verify Green's theorem in the plane for $\int_{C} [(3x^2 - 8y^2)dx + (4y - 6xy)dy]$	BTL-5	Evaluating

	where C is the boundary of the region bounded by $x = 0, y = 0, x + y = 1.$		
10(a)	Verify Stokes' theorem for $\vec{F} = (xy + y^2)\vec{\iota} + x^2\vec{j}$ in the XOY plane bounded by $x = y$ and $y = x^2$	BTL-6	Creating
10(b)	Show that the field $\vec{F} = (x^2 - y^2 + x)\vec{i} - (2xy + y)\vec{j}$ is irrotational and find its scalar potential.	BTL-2	Understanding
11	Verify Green's theorem in the plane for $\int_c [(xy+y^2)dx+(x^2)dy]$ where c	BTL-2	Understanding
12	Verify Gauss divergence theorem for $\vec{F} = (x^3)\vec{\iota} + (y^3)\vec{j} + z^3\vec{k}$ where s is the surface of the cuboid formed by the planes $x = 0, x = a, y = 0, y = a, z = 0, z = a$.	BTL-3	Applying
13	Show that Stokes theorem is verified for $\vec{F} = (y - z + 2)\vec{i} + (yz + 4)\vec{j} - xz\vec{k}$ where S is the surface of the cube formed by $x = 0, x = 2, y = 0, y = 2, and z = 2$ above the XY- plane.	BTL-1	Remembering
14	Verify Gauss divergence theorem for $\vec{F} = (x^2)\vec{i} + (y^2)\vec{j} + (z^2)\vec{k}$ where s is the surface of the cuboid formed by the planes $x = 0, x = a, y = 0, y = b, z = 0, z = c$.	BTL-3	Applying
15	Verify Gauss divergence theorem for $\vec{F} = (x^3 - yz)\vec{i} - (2x^2y)\vec{j} + 2\vec{k}$ where s is the surface of the cuboid formed by the planes $x = 0$, x = a, y = 0, y = a, z = 0, z = a.	BTL-3	Applying
16	Verify the Stokes theorem is verified for $\vec{F} = (x^2)\vec{\iota} + xy\vec{j}$ integrated round the square those sides formed $x = 0, x = a, y = 0, y = a$ in the plane z = 0	BTL-5	Evaluating
17	Verify Gauss divergence theorem for $\vec{F} = (x^2)\vec{\iota} + z\vec{j} + yz\vec{k}$ taken over the cube bounded by $x = 0, x = 1, y = 0, y = 1, z = 0, z = 1$.	BTL-6	Creating
18	Verify the Stokes theorem is verified for $\vec{F} = (y - z)\vec{\iota} + (yz)\vec{j} - xz\vec{k}$ where S is the surface of the cube formed by $x = 0, x = 1, y = 0,$ y = 1, z = 0 and $z = 1$ above the XY- plane.	BTL-3	Applying
	PART C		
1	Verify Green's theorem to evaluate $\int_c (xy - x^2)dx + x^2y dy$ along the closed curve C formed by $y = 0$, $x = 1, y = x$.	BTL-2	Understanding
2	Verify Green's theorem in the plane for $\int_c [(3x^2 - 8y^2)dx + (4y - 6xy)dy]$ where C is the boundary of the region bounded by $y = x^2 + x - y^2$	BTL-4	Analyzing
3	Verify Gauss divergence theorem for $\vec{F} = (x^2 - yz)\vec{i} + (y^2 - zx)\vec{j} + (z^2 - xy)\vec{k}$ taken over the rectangular parallelepiped $x = 0, x = 1, y = 0, y = 2, z = 0, z = 3.$	BTL-3	Applying
4	Verify Stoke's theorem for $\vec{F} = (x^2 - y^2)\vec{i} + 2xy\vec{j}$ in the rectangular region in the xy plane bounded by the lines $x = 0, x = a, y = 0, y = b$.	BTL-5	Evaluating
5	Verify Gauss divergence theorem for $\vec{F} = 4xz\vec{i} - y^2\vec{j} + yz\vec{k}$ where s is the surface of the cube formed by the planes $x = 0, x = 1, y = 0,$ y = 1, z = 0, z = 1.	BTL-1	Remembering

	UNIT –III LAPLACE TRANSFORMS		
Existe	nce conditions - Transforms of elementary functions - Transform of unit ste	ep function	and unit impulse
functio	on – Basic properties – Shifting theorems -Transforms of derivatives and inte	grals – Inve	erse transforms -
Convo	lution theorem - Transform of periodic functions - Application to solution	tion of line	ear second order
ordina	ry differential equations with constant coefficients		
	PART-A		
1	State the sufficient conditions for the existence of Laplace transform.	BTL-1	Remembering
2	State first and second shifting theorem.	BTL-1	Remembering
3	State and prove change of scale property	BTL-1	Remembering
4	Find $L(e^{-3t})$	BTL-1	Remembering
5	State Convolution theorem	BTL-1	Remembering
	$\begin{bmatrix} \cos t \end{bmatrix}$	BTL-1	Remembering
6	Tell whether $L\left[\frac{\cos t}{t}\right]$ exist? Justify.		8
7	Find the inverse Laplace transform of $F(s) = \frac{1}{s(s-2)}$	BTL-2	Understanding
0			I Indonation din a
ð 0		BIL-2	Understanding
9	Estimate $L\left[\frac{\sin at}{t}\right]$	BIL-2	Understanding
10	Find $L((t-1)^2)$	BTL-2	Understanding
11	Find $L(t e^{-t})$	BTL-3	Applying
12	Find L(t cosh3t)	BTL-3	Applying
13	State the final value theorem of Laplace Transform	BTL-3	Applying
14	Find $L^{-1}[\cot^{-1}s]$	BTL-4	Analyzing
15	Find $L\left[\frac{e^{at}-e^{-bt}}{t}\right]$	BTL-4	Analyzing
16	Find $L^{-1}\left[\log\frac{s+1}{s-1}\right]$	BTL-4	Analyzing
17	Evaluate $L^{-1}\left[\frac{1}{(s+2)^4}\right]$	BTL-5	Evaluating
18	State the Initial value theorem of Laplace Transform	BTL-5	Evaluating
19	Formulate L[t sinh2t]	BTL-6	Creating
20	Formulate $L^{-1}\left[\frac{1}{s(s-4)}\right]$	BTL-6	Creating
21	Find $L(e^{-t} \sin 2t)$	BTL-4	Analyzing
22	Verify Final value theorem for $f(t) = 3e^{-t}$	BTL-2	Understanding
23	Evaluate $L^{-1}\left[\frac{s}{(s+2)^2}\right]$	BTL-2	Understanding
24	Find the Laplace Transform of unit step function.	BTL-3	Applying
25	Find the Laplace Transform of $\frac{1-e^{-t}}{t}$	BTL-3	Applying
	PART-B		
1(a)	Find L[t cost sinh2t]	BTL-2	Understanding
1(b)	Identify the Laplace transform of the saw tooth wave function of period 1,	BTL-4	Analyzing
	f(t) = kt, 0 < t < 1		

2(a)	Find the Laplace Transform of the function $\frac{1-\cos t}{t}$	BTL-2	Understanding
2(b)	Find the Laplace transform of $f(t)$ if $f(t) = e^t$, $0 < t < 2\pi$ and $f(t+2\pi) = f(t)$	BTL-2	Understanding
3(a)	Evaluate $L\left[\frac{\cos at - \cos bt}{t}\right]$	BTL-1	Remembering
3(b)	Identify the Laplace transform of the square - wave function of period <i>a</i> defined as $f(t) = \begin{cases} 1, when \ 0 < t < a/2 \\ -1, when \ a/2 < t < a \end{cases}$	BTL-4	Analyzing
4(a)	Evaluate $L(te^{-4t}sin3t)$	BTL-5	Evaluating
4(b)	Find the Laplace transform of the square- wave function of period 2	BTL-5	Evaluating
	defined as $f(t) = \begin{cases} 1, when \ 0 < t < 1 \\ 0, when \ 1 < t < 2 \end{cases}$ and $f(t+2) = f(t)$ for all t.		
5(a)	Identify the Laplace Transform of the function t sin3t cos2t	BTL-1	Remembering
5(b)	Identify the Laplace transform of the square- wave function of period $2a$	BTL-5	Evaluating
	defined as $f(t) = \begin{cases} k, when \ 0 < t < a \\ -k, when \ a < t < 2a \end{cases}$ and $f(t+2a) = f(t)$, for all t.		
6(a)	Analyze the Laplace transform of $tsin^2 3t$	BTL-4	Analyzing
6(b)	Find $f(t)$, if $L(f(t)) = \frac{s}{(s+2)^2}$	BTL-1	Remembering
7	Using convolution theorem, find $L^{-1}\left[\frac{s}{(s^2+4)(s^2+9)}\right]$	BTL-3	Applying
8	Apply convolution theorem, find $L^{-1}\left[\frac{s}{(s^2 + a^2)^2}\right]$	BTL-2	Understanding
9	Using Convolution theorem evaluate the inverse Laplace transform of $L^{-1}\left[\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right]$	BTL-5	Evaluating
10	Give the general solution of $y'' + 5y' + 6y = 2$, $y(0) = 0$, $y'(0) = 0$	BTL-2	Understanding
11	Solve $y'' - 3y' + 2y = e^{3t}$ when $y'(0) = -1$ and $y(0) = 1$ using Laplace transforms.	BTL-5	Evaluating
12	Using Laplace transforms, solve $y'' - 3y' - 4y = 2e^{-t}$ when $y'(0) = 1$ and $y(0) = 1$.	BTL-6	Creating
13	Using Laplace transforms, solve $y'' - 3y' + 2y = 1$ when $y(0) = 0$ and $y'(0) = 1$	BTL-6	Creating
14	Using Laplace transforms, solve $y'' - 2y' + y = e^t$ when $y'(0) = -1$ and $y(0) = 2$.	BTL-1	Remembering
15(a)	Estimate $L[f(t)]$, if $f(t) = \begin{cases} t, \ 0 < t < 1 \\ 0 & 1 < t < 2 \end{cases}$ and $f(t+2) = f(t)$,	BTL-3	Applying
	for all t. $(0,1 < t < 2)$		
15(b)	Verify initial and final value theorem for $f(t) = 1 + e^{-t}(\sin t + \cos t)$	BTL-5	Evaluating
16	Apply convolution theorem, find $L^{-1}\left[\frac{s^2}{(s^2+4)^2}\right]$	BTL-6	Creating
17	Apply convolution theorem, find $L^{-1}\left[\frac{1}{L^2 + L^2}\right]$	BTL-3	Applying
	$(s^2+1)(s+1)^3$		
18	Solve $y'' - 3y' + 2y = 2$, given $y(0) = 0$ and $y'(0) = 5$.	BTL-3	Applying

	$(\sin \omega t, for 0 < t < \frac{\pi}{\omega}$ (2π)	BTL-6	Creating
1	Estimate $L[f(t)]$, if $f(t) = \begin{cases} 0 & \text{for } \frac{\pi}{2} < t < \frac{2\pi}{2} \end{cases} \text{ and } f\left[t + \frac{\pi}{2}\right] = f(t), \end{cases}$		
	$ (0, j) \text{ or } \frac{1}{\omega} < t < \frac{1}{\omega} $		
2	for 0 < t < a	BTL-5	Evaluating
_	Find L [f(t)], if $f(t) = \begin{cases} 2a - t, \text{ for } a < t < 2a \end{cases}$ and $f(t+2a) = f(t)$, for all	DILS	Lituruuting
	t.		
	Using Convolution theorem calculate the inverse Laplace transform of	BTL-6	Creating
3	L^{-1}		
	$\frac{1}{[(s^2 + a^2)(s^2 + b^2)]}$		
4	Using Laplace transform evaluate the differential equation	BTL-5	Evaluating
	$y'' + y = t^2 + 2t, y(0) = 4, y'(0) = -2$	DTI 1	
5	Solve $y'' + y = \sin 2t$, $y(0) = 0$, $y'(0) = 0$ using Laplace Transform	BIL-I	Remembering
Analy	tia functiona Necessary and sufficient conditions for analyticity in Corte	aion and n	alar acardinatas
Dropo	rtice Harmonic conjugates. Construction of analytic function. Conform	siali allu p	Monning by
functi	a_{Hes} - Harmonic conjugates – Construction of analytic function - Comon	паг шаррп	ng – Mapping Uy
Tuncu	W = 2 + C, CZ, 1/Z, - Binnear transformation.		
1	$\frac{PARI-A}{Fxomino if f(a) - a^3 on obtain 2}$	DTI 1	Domomhoring
1	Examine if $f(z) = z$ analytic: Identify the constants a b o if $f(z) = x + ay + i(bx + cy)$ is analytic	DIL-I RTI 1	Remembering
2	Identify the constants a, b, c if $f(z) = x + uy + i(bx + cy)$ is analytic.	BTL-1	Remembering
	answer	DILI	Remembering
4	State necessary and sufficient condition for f (z) to be analytic.	BTL-1	Remembering
5	Show that $u = 2x - x^3 + 3xy^2$ is harmonic	BTL-2	Understanding
6	If $f(z)$ is an analytic function whose real part is constant, Point out $f(z)$ is a	BTL-2	Understanding
	constant function.		
7	Show that $ z ^2$ is not analytic at any point	BTL-2	Understanding
8	Examine whether the function xy^2 can be real part of analytic function	BTL-2	Understanding
9	Test the analyticity of the function $f(z) = e^{-z}$	BTL-3	Applying
10	Show that an analytic function in a region R with constant imaginary part	BTL-3	Applying
	is constant.		
11	Define conformal mapping	BTL-3	Applying
12	Evaluate the image of the circle $ z = 3$ under the transformation w = 5z.	BIL-5	Evaluating
13	Under the transformation $w = \frac{1}{z}$, evaluate the image of the circle	BTL-5	Evaluating
	z-1 = 1 in the complex plane.		
14	Evaluate the image of hyperbola $x^2 - y^2 = 1$ under the transformation	BTL-1	Remembering
	$w = \frac{1}{2}$		
15	Formulate the critical points of the transformation $w = z + \frac{1}{z}$	BTL-4	Analyzing
16	Estimate the invariant points of the transformation $w = \frac{z}{z}$	BTL-2	Understanding
10	Estimate the invariant points of the transformation $w = \frac{1}{z+1}$		enderstanding
17	Estimate the invariant point of the bilinear transformation $w = \frac{z-1-i}{z+2}$	BTL-2	Understanding
10		BTI 2	Understanding
10	Identify the invariant point of the bilinear transformation $w = \frac{z+v}{z+7}$	DIL-2	Understanding
19	Explain that a bilinear transformation has at most 2 fixed points.	BTL-4	Analyzing
20	Formulate the bilinear transformation which maps $z = 0, -i, -1$ into	BTL-4	Analyzing

	w = i, 1, 0 respectively		
21	Verify whether the function $u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$ is	BTL-3	Applying
	harmonic.		
22	Estimate the invariant point of the bilinear transformation $w = \frac{z^3 + 7z}{7 - 6zi}$	BTL-4	Analyzing
23	Find the value of m if $u = 2x^2 - my^2 + 3x$ is harmonic	BTL-3	Applying
24	Find the map of the circle $ z =3$ under the transformation $w = z + 1 + i$	BTL-6	Creating
25	Verify whether the function $w = \sin z$ is analytic. If so find its derivative.	BTL-5	Evaluating
	PART-B	L	
1	Given that $u = \frac{sin2x}{cosh2y-cos2x}$. Estimate the analytic function.	BTL-2	Understanding
2 (a)	Estimate the analytic function $w = u + iv$ if	BTL-2	Understanding
	$u = e^{x}(x\cos 2y - y\sin 2y).$		_
2(b)	Formulate the image of $ z + 1 = 1$ under the map $w = 1/z$.	BTL-6	Creating
3 (a)	Show that the function $u(x, y) = 3x^2y + 2x^2 - y^3 - 2y^2$ is harmonic.	BTL-2	Understanding
	Find also the conjugate harmonic function <i>v</i> .		
3(b)	Prove that an analytic function with constant modulus is constant.	BTL-1	Remembering
4	Estimate the analytic function $f(z) = u + iv$ given the imaginary part	BTL-3	Applying
	is $v = x^2 - y^2 + \frac{x}{x^2 + y^2}$		
5(a)	Estimate the analytic function $w = u + iv$ if	BTL-2	Understanding
	$u - v = e^{x}(\cos v - \sin v)$		6
5(b)	Find the image of $ z = 2$ under the transformation $w = z + 3 + 2i$	BTL-1	Remembering
6	Determine the analytic function $w = u + iv$ given that	BTL-1	Remembering
	$3u + 2v = y^2 - x^2 + 16xy$		
7	Identify the image of the infinite strip (i) $0 \le y \le \frac{1}{2}$ (ii) $\frac{1}{2} \le y \le \frac{1}{2}$ under	BTL-2	Understanding
	the transformation $w = 1/z$		
8	Point out the bilinear transformation that maps the point	BTL-3	Applying
	$z_1 = 1, z_2 = i, z_3 = -1$ into the points $w_1 = i, w_2 = 0, w_3 = -i$		
	respectively.		
9	Give the bilinear transformation which maps $z = 1, 0, -1$ into $w =$	BTL-2	Understanding
	$0, -1, \infty$ respectively. What are the invariant points of the transformation?		
10(a)	Solve the bilinear transformation that maps the point	BTL-1	Remembering
	$z_1 = i_1, z_2 = -1, z_3 = 1$ into the points $w_1 = 0, w_2 = 1, w_3 = \infty$		
	respectively.		
10(b)	Under the transformation $w = \frac{1}{r}$, find the image of a region $x > c$ where	BTL-4	Analyzing
	c > 0		
11	If $w = f(z)$ is analytic then show that $\left(\left(\frac{\partial^2}{\partial x^2}\right) + \left(\frac{\partial^2}{\partial y^2}\right)\right)\log(f(z)) = 0$	BTL-6	Creating
12	Determine the analytic function $f(z) = u + iv$ such that	BTL-1	Remembering
12	$2u + v = e^{x}(\cos v - \sin v)$		litemeting
13(a)	If $w = u(x, y) + iv(x, y)$ is an analytic function, show that the curves of	BTL-2	Understanding
	the family $u(x, y) = a$ and the curves of the family $v(x, y) = b$, cut		
	orthogonally where a and b are varying constants.		
13(b)	Solve the bilinear transformation that maps the point	BTL-3	Analyzing
	$z_1 = 0, z_2 = 1, z_3 = \infty$ into the points $w_1 = i, w_2 = 1, w_3 = -i$		
	respectively.		

14	Solve the bilinear transformation that maps the point	BTL-3	Analyzing
	$z_1 = 0, z_2 = 1, z_3 = \infty$ into the points $w_1 = -5, w_2 = -1$,		
	$w_3 = 3$ respectively. What are invariant points of transformation?		
15	Prove that $u = e^x(x\cos y - y\sin y)$ is harmonic. Hence find the analytic	BTL-5	Evaluating
	function = u + iv.		
16	Verify the families of curves $u = c_1$ and $v = c_2$ cut orthogonally, when	BTL-6	Creating
17	$\frac{u + iv = z^{\circ}}{1 + iv}$	DTI 2	Applying
1/	Find the analytic function $u + iv$, if $u = (x - y)(x^2 + 4xy + y^2)$. Also find the conjugate harmonic function	DIL-3	Apprying
18	Find the image of the circle $ z - 2i - 2$ under the transformation	BTL-3	Applying
10	The die mage of the crede $ z - z = z$ under the transformation w = 1/z		rippiying
	PART-C		
1	Show that the transformation $w = \frac{1}{2}$ maps in general circles and straight	BTL-1	Remembering
	lines into circles and straight lines. Point out the circles and straight lines		
	are transformed into straight lines and circles respectively		
2	If $y = x^2 - y^2$, $y = -\frac{y}{y}$ prove that y and y are harmonic functions	BTL-5	Evaluating
	If $u = x$ y , $v = \frac{1}{x^2 + y^2}$, prove that u and v are numbered entering		C
2	but $u + iv$ is not an analytic function.	DTI 2	Applying
5	If f (z) is a regular function of z, Show that $\nabla^2 f(z) ^2 = 4 f'(z) ^2$.	DIL-3	Apprying
4	Identify the bilinear mapping which maps $-1,0,1$ of the z-plane onto	BTL-1	Remembering
	-1, -i, 1 of the w-plane. Show that under this mapping the upper half of		
	z- plane maps onto the interior of unit circle $ w = 1$.		
5	Find the bilinear mapping which maps $z = 1, i, -1$ onto $w = i, 0, -i$.	BTL-3	Applying
	Hence find the image of plane $ z < 1$.		
	UNIT V COMPLEX INTEGRATION	1	т () .
Sing	plex integration – Cauchy's integral theorem – Cauchy's integral formula – 1a	avaluation	cf real integrals
Use o	of circular contour and semicircular contour	evaluation	of feat integrals –
0.50 (
	PART –A		1
1	State Cauchy's integral theorem.	BTL-1	Remembering
2	State Cauchy's integral formula.	BTL-1	Remembering
3	State Cauchy's residue theorem.	BTL-1	Remembering
4	Identify the value of $\int_C e^z dz$, where C is $ z = 1$?	BTL-1	Remembering
5	Estimate the residue of the function $f(z) = \frac{4}{z^3(z-2)}$ at a simple pole.	BTL-2	Understanding
6	Give the Laurent's series of $f(z) = \frac{1}{z(1-z)}$ valid in the region $ z + 1 < 1$.	BTL-2	Understanding
7	Give the Laurent's series expansion of $f(z) = \frac{e^z}{(z-1)^2}$ about $z = 1$.	BTL-2	Understanding
8	Give the Taylor's series for $f(z) = sinz$ about $z = \frac{\pi}{4}$	BTL-2	Understanding
9	Calculate the residue at $z = 0$ of $(z) = \frac{1-e^2}{z^3}$.	BTL-3	Applying
10	Calculate the residue of the function $\frac{z-3}{(z+1)(z+2)}$ at poles.	BTL-3	Applying
11	Determine the residues at poles of the function $f(z) = \frac{z+4}{(z-1)(z-2)}$.	BTL-3	Applying
12	(z-1)(z-2) Expand $\frac{1}{z}$ as Laurent's series about $z = 0$ in the appulue $0 \le z \le 1$	BTL-4	Analyzing
	Expand $\frac{1}{z-1}$ as Laurent's series about $z = 0$ in the annulus $0 \le z \le 1$.		, 2

13	Obtain the expansion of $\log(1 + z)$ where $ z < 1$	BTL-4	Analyzing
14	Evaluate $\int_C \frac{z}{(z-2)} dz$ where C is (a) $ z = 1$ (b) $ z = 3$.	BTL-4	Analyzing
15	Evaluate $\int_C \frac{z+2}{z} dz$ where C is the circle $ z = 2$ in the z –plane.	BTL-5	Evaluating
16	Evaluate $\frac{1}{2\pi i} \int_C \frac{z^2+5}{z-3} dz$ where C is the circle $ z = 4$ using Cauchy's integral formula.	BTL-5	Evaluating
17	Integrate $\int_C \frac{dz}{z+4}$ where C is the circle $ Z = 2$.	BTL-6	Creating
18	Integrate $\int_C \frac{e^z}{z-1} dz$ if C is $ z = 2$.	BTL-6	Creating
19	Expand $f(z) = \frac{1}{z^2}$ as Taylor's series about the point $z = 2$.	BTL-4	Analyzing
20	Find the residues of $f(z) = \frac{z+2}{(z-2)(z+1)^2}$ about each singularity.	BTL-5	Evaluating
21	Evaluate $\int_C \frac{dz}{(z-2)}$ where C is $ z-2 = 4$.	BTL-4	Analyzing
22	Evaluate $\int_C \log z dz$ where C is $ z = 2$.	BTL-4	Analyzing
23	Give the Taylor's series for $f(z) = cosz$ about $z = \frac{\pi}{2}$.	BTL-2	Understanding
24	Define removable singularity with an example.	BTL-1	Remembering
25	State Laurent's Theorem.	BTL-1	Remembering
	PART -B		
1(a)	Find the Taylor's series to represent the function $\frac{z^2-1}{(z+2)(z+3)}$ in $ z < 2$	BTL-4	Analyzing
1(b)	Applying Cauchy's integral formula solve $\int_C \frac{\cos \pi z^2 + \sin \pi z^2}{(z-1)(z-2)} dz$, C is the circle $ z = 3$	BTL-2	Understanding
2(a)	Identify the Taylor's series to represent the function $\frac{1}{(z+2)(z+3)}$ in $ z < 2$	BTL-1	Remembering
2(b)	Evaluate using Cauchy's integral formula $\int_C \frac{(z+1)}{(z-3)(z-1)} dz$ where C is the circle $ z = 2$.	BTL-2	Understanding
3(a)	Identify the Laurent's series of $f(z) = \frac{(z+3)}{(z-1)(z-4)}$, valid in $ z > 4$ and $0 < z-1 < 1$.	BTL 3	Applying
3(b)	Evaluate $\int_C \frac{zdz}{(z-1)(z-2)^2}$ where C is the circle $ z-2 = \frac{1}{2}$.		
Д	Identify the Laurent's series expansion for the function $f(z) = \frac{4z}{(z^2-1)(z-4)}$	BTL-1	Remembering
-	in the regions $2 < z - 1 < 3$ and $ z - 1 > 4$.		
5(a)	Identify the Laurent's series expansion for the function $\frac{7z-2}{(z+1)z(z-2)}$ in the region $1 \le z+1 \le 3$.	BTL 3	Applying
5(b)	Apply the calculus of residues to evaluate $\int_0^\infty \frac{x \sin x}{(x^2+1)(x^2+4)} dx$.	BTL 3	Applying
	Expand as Laurent's series of the function $\frac{z}{(z^2-2z+2)}$ in the regions	BTL-4	Analyzing
6(a)	(i) $ z < 1$ (ii) $1 < z < 2$ (iii) $ z > 3$.		
6(b)	Evaluate $\int_C \frac{z^2 dz}{(z-1)^2 (z+2)}$ where C is $ z = 3$	BTL-5	Evaluating
7	Apply the calculus of residues to prove that $\int_0^\infty \frac{dx}{(x^2+a^2)^2} = \frac{\pi}{4a^3}.$	BTL-1	Remembering

8	Apply the calculus of residues to prove that $\int_0^\infty \frac{dx}{(x^4 + a^4)} = \frac{\pi\sqrt{2}}{4a^3}$.	BTL-1	Remembering
9	Evaluate using contour integration $\int_0^\infty \frac{\cos x}{(x^2+a^2)(x^2+b^2)} dx$, $a > b > 0$.	BTL-5	Evaluating
10	Formulate $\int_{0}^{2\pi} \frac{d\theta}{13 + 5\sin\theta}$, using the method of contour integration.	BTL-6	Creating
11	Using Contour Integration evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+4)(x^2+9)}.$	BTL-5	Evaluating
12	Apply the calculus of residues to evaluate $\int_0^\infty \frac{x \sin mx}{x^2 + a^2} dx$, $a > 0$, $m > 0$.	BTL-4	Analyzing
13	Evaluate $\int_{0}^{2\pi} \frac{\cos 3\theta d\theta}{(5+4\cos \theta)}$ using contour integration.	BTL-5	Evaluating
14	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{(13+12\cos\theta)} (a > b > 0)$, using contour integration.	BTL-5	Evaluating
15	Find the Laurent's series of $f(z) = \frac{z^2-1}{(z+2)(z+3)}$ in $(i) z < 2, (ii) < z < 1$	BTL-4	Analyzing
15	3 and $ z > 3$		
16	Find the Taylor's series expansion of $f(z) = \frac{z}{(z+1)(z+2)}$ about $Z = i$.	BTL-5	Evaluating
	Using Cauchy's Residue Theorem, solve	BTL-2	Understanding
17	$\int_{C} \frac{zdz}{(z-1)(z-2)^2} \text{ where } C \text{ is } z-2 = 1/2.$		
18	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{(15+4\cos\theta)} (a > b > 0)$, using contour integration.	BTL-5	Evaluating
	PART-C		·
1	Using contour integration estimate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)} a > b > 0.$	BTL-2	Understanding
2	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{(a+b\cos\theta)} (a > 0, b > 0)$, using contour integration.	BTL-5	Evaluating
3	Evaluate using contour integration $\int_0^\infty \frac{\cos ax}{(x^2+b^2)^2} dx$, $a > 0, b > 0$.	BTL-5	Evaluating
4	Using Laurent's series, find $\frac{1}{z(z-1)}$ valid in (i) $ z+1 < 1$	BTL-2	Understanding
	(ii)1 < z+1 < 2 $(iii) z+1 > 1.$		
5	Find the residues of $f(z) = \frac{z^2}{(z-1)(z+2)^2}$ at its isolated singularities, using	BTL-4	Analyzing
	Laurent's series Expansions.		