SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) ESTD. 1999 - Approved by AICTE - Accredited by NBA 'A' Grade Accreditation by NAAC - Affiliated to Anna University ISO 9001:2015 Certified Institution

DEPARTMENT OF MATHEMATICS

QUESTION BANK

1918301 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS (Common to AGRI, CIVIL, EEE, ECE, EIE, MECH, MDE)

> Regulation – 2019 Academic Year 2021- 2022 Prepared by Dr. S. Chitra, Assistant Professor (Sl.G) / Mathematics Dr. G. Sasikala, Assistant Professor/ Mathematics Mr. L. Mohan, Assistant Professor/ Mathematics

SRM VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur – 603 203. DEPARTMENT OF MATHEMATICS

QUESTION BANK

SUBJECT : 1918301 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

SEMESTER / YEAR: III / II (AGRI, CIVIL, EEE, ECE, EIE, MECH & ME)

UNIT I - PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations - Solutions Lagrange's linear equation — Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types

PART- A G									
Q.No.	Question	Bloom's Taxonomy Level	Domain						
1.	Form a partial differential equation by eliminating the arbitrary constants 'a' and 'b' from $z = ax^2 + by^2$.	BTL -6	Creating						
2.	Eliminate the arbitrary function from $z = f(x^2 - y^2)$ and form the partial differential equation	BTL -6	Creating						
3.	Construct the partial differential equation of all spheres whose centers lie on the x-axis.	BTL -3	Applying						
4.	Form the partial differential equation by eliminating the arbitrary function f from $z = e^{ay} f(x + by)$.	BTL-6	Creating						
5.	Form the partial differential equation by eliminating the arbitrary constants a, b from the relation $z = (x^2 + a^2)(y^2 + b^2)$	BTL -6	Creating						
6.	Form the PDE by eliminating the arbitrary function from $\varphi\left[z^2 - xy, \frac{x}{z}\right] = 0$	BTL -6	Creating						
7.	Form the partial differential equation from $(x - a)^2 + (y - b)^2 = z^2 \cot^2 \alpha$	BTL -6	Creating						
8.	Form the partial differential equation by eliminating the arbitrary function Φ from $\Phi(x^2 - y^2, z) = 0$	BTL -6	Creating						
9.	Form the partial differential equation by eliminating arbitrary constants a and b from $(x - a)^2 + (y - b)^2 + z^2 = 1$	BTL-6	Creating						
10.	Form the partial differential equation by eliminating the arbitrary function f from $z = f(x/y)$	BTL -3	Applying						
11.	Form the partial differential equation by eliminating the arbitrary function f from $z = f(x y)$	BTL -3	Applying						
12.	Form a partial differential equation by eliminating the arbitrary constants 'a' and 'b' from $z = a (x + y) + b$.	BTL -3	Applying						

13.	Solve $px^2 + qy^2 = z^2$	BTL -3	Applying
14.	Solve $(D^2 - 7DD' + 6D'^2)z = 0$	BTL -3	Applying
15.	Solve $(D^3 - D^2D' - 8DD'^2 + 12D'^3)z = 0$	BTL -3	Applying
16.	Solve $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial z}{\partial x} = 0$	BTL -3	Applying
17.	Solve $(D^4 - D^4)z = 0$	BTL -3	Applying
18.	Solve $(D + D' - 1)(D - 2D' + 3)z = 0$	BTL -3	Applying
19.	Solve $(D - D')^3 z = 0$	BTL -3	Applying
20.	Solve $(D - 1)(D - D' + 1)z = 0$	BTL -3	Applying
	PART – B		
1.(a)	Find the partial differential equation by eliminating the arbitrary constants a, b, c from $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	BTL -6	Creating
1.(b)	Find the partial differential equation by eliminating the arbitrary functions from $z = f(x + 2y) + g(x - 2y)$	BTL -2	Understanding
2.	Form the partial differential equation by eliminating arbitrary function Φ from $\Phi(x^2 + y^2 + z^2, ax + by + cz) = 0$	BTL -6	Creating
3. (a)	Form the partial differential equation by eliminating arbitrary functions f and e from $z = xf(\frac{y}{r}) + yg(x)$	BTL -6	Creating
3.(b)	Solve p cot x + q cot y = cot z	BTL -3	Applying
4. (a)	Solve $x^2p + y^2q = z(x + y)$	BTL -3	Applying
4.(b)	Form the partial differential equation by eliminating arbitrary function f and g from the relation $z = x f(x+t) + g(x+t)$	BTL -6	Creating
5. (a)	Find the general solution of $(3z - 4y)p + (4x - 2z)q = 2y - 3x$	BTL -3	Applying
5. (b)	Solve $(D^2 - 5DD' + 6D'^2)z = y \sin x$		
6.	Solve $(y^2 + z^2)p - xyq + xz = 0$	BTL -2	Understanding
7. (a)	Solve $(D^2 + DD' - 6D^2)z = y \cos x$	BTL -4	Analyzing
7. (b)	Find the general solution of $(mz - ny)p + (nx - lz)q = ly - mx$	BTL -2	Understanding
8. (a)	Find the general solution of $(D^2 + D^2)z = x^2y^2$	BTL -2	Understanding
8.(b)	Solve $(D^3 - 7DD'^2 - 6D'^3)z = \sin(x + 2y)$	BTL -2	Understanding
9. (a)	Solve $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$	BTL -3	Applying

9.(b)	Solve $(D^{3} - 2D^{2}D^{2}) z = 2e^{2x} + 3x^{2}y$							
10.(a)	Solve $(D^2 - 3DD' + 2D'^2)z = (2 + 4x)e^{x+2y}$	BTL -3	Applying					
10.(b)	$Solve(D^2 - 3DD' + 2D'^2)z = sin(x + 5y)$	BTL -3	Applying					
11.	Solve the Lagrange's equation $(x + 2z)p + (2xz - y)q = x^2 + 2z$	y BTL -3	Applying					
12.	Solve the partial differential equation $(x - 2z) p + (2z - y) q = x - y$	BTL -3	Applying					
13.	Solve $(D^2 - DD' - 20D'^2) z = e^{5x+y} + sin(4x - y).$	BTL -3	Applying					
14.	Solve $(D^2 + 2DD' + D'^2)z = x^2y + e^{x-y}$	BTL -3	Applying					
PART-C								
1.	Solve $(x^2 - yz)p + (y^2 - xz)q = (z^2 - xy)$	BTL -1	Remembering					
2.	Solve $(D^2 - DD' - 2D'^2)z = 2x + 3y + e^{2x+4y}$	BTL -1	Remembering					
3.	Find the general solution of $(z^2 - y^2 - 2yz)p + (xy + zx)q = (xy - zx)$	BTL -1	Remembering					
4.	Find the general solution of $(D^2 + 2DD' + D'^2)z = 2\cos y - x \sin y$	BTL -2	Understanding					
UNIT II FOURIER SERIES: Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series – Parseval's identity – Harmonic analysis.								
	PART –A							
Q.No	Question	Bloom's Taxonomy Level	Domain					
1.	State the Dirichlet's conditions for a function $f(x)$ to be expanded as a Fourier series.	BTL -1	Remembering					
2.	Find the Fourier constant b_n for xsinx in $(-\pi, \pi)$.	BTL -1	Remembering					
	π^2 π^2 π^2 π^2 π^2							

Understanding
Evaluating
2 5

	$f(x) = x^3 \text{ in } (-\pi, \pi).$		
6.	Find the constant term in the expansion of $f(x) = x^2 + x$ as a Fourier series in the interval $(-\pi, \pi)$.	BTL -2	Understanding
7.	If $f(x)$ is an odd function defined in (- <i>l</i> , <i>l</i>). What are the values of a_0 and a_n ?	BTL -2	Understanding
8.	If the function $f(x) = x$ in the interval $0 < x < 2\pi$ then find the constant term of the Fourier series expansion of the function f.	BTL -2	Understanding
9.	Find the Fourier coefficient b_n for the function $f(x) = 2x - x^2$ defined in the interval $0 \le x \le 2$.	BTL -4	Analyzing
10.	Write a_0 , a_n in the expression $x + x^3$ as a Fourier series in $(-l, l)$	BTL -3	Applying
11.	Find the RMS value of $f(x) = x$ in (0, <i>l</i>)	BTL -4	Analyzing
12.	Find the root mean square value of $f(x) = x^2$ in $(0,\pi)$	BTL -1	Remembering
13.	Find the RMS value of $f(x) = x (l - x)$ in $0 \le x \le l$	BTL -3	Applying
14.	Find the RMS value of $f(x) = x^2$ in (0, <i>l</i>) SRM	BTL -1	Remembering
15.	Write down the Parseval's formula on Fourier coefficients	BTL-5	Evaluating
16.	Define the RMS value of a function $f(x)$ over the interval (a, b)	BTL -6	Creating
17.	Without finding the values of a_0 , a_n and b_n of the Fourier series, for the function $f(x) = x^2$ in the interval $(0,2\pi)$ find the value of $\left\{\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)\right\}$	BTL -4	Analyzing
18.	Find the R.M.S value of $f(x) = 1 - x$ in $0 < x < 1$.	BTL -1	Remembering
19.	State Parseval's identity for the half-range cosine expansion of $f(x)$ in (0,1).	BTL -6	Creating
20.	What is meant by Harmonic Analysis?	BTL -3	Applying
	PART – B		
1.	Obtain the Fourier series for the function $f(x)$ given by $f(x) = \begin{cases} 1-x, & -\pi < x < 0\\ 1+x, & 0 < x < \pi \end{cases}$ Hence deduce that $\frac{1}{12} + \frac{1}{22} + \frac{1}{52} + \dots = \frac{\pi^2}{8}$	BTL -1	Remembering
2.	Find the Fourier series of $f(x) = x(2 - x)$ in $0 \le x \le 3$.	BTL -1	Remembering

3.	Expand $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, -\pi < x < 0\\ 1 - \frac{2x}{\pi}, 0 < x < \pi \end{cases}$ as a full range Fourier series	BTL -1	Remembering
4.	Determine the Fourier series for the function $f(x) = xsinx$ in $0 < x < 2\pi$.	BTL -5	Evaluating
5.	Find the Fourier series expansion of $f(x) = \begin{cases} x & \text{for } 0 \le x \le \pi \\ 2\pi - x & \text{for } \pi \le x \le 2\pi. \end{cases}$	BTL -5	Evaluating
6.(a)	Expand $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \end{cases}$ as a series of cosines in the interval (0,2).	BTL -1	Remembering
6.(b)	Find the half range sine series of $f(x) = 4x - x^2$ in the interval $0 < x < 4$	BTL -2	Remembering
7.	Find the Fourier series of $f(x) = x + x^2$ in $(-\pi, \pi)$ with period 2π Hence deduce $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.	BTL -3	Applying
8.	Compute the first two harmonics of the Fourier series of $f(x)$ from the table given x 0 $\pi/3$ $2\pi/3$ π $4\pi/3$ $5\pi/3$ 2π $f(x)$ 11.41.91.71.51.21	BTL -6	Creating
9.	t sec x:0T/6T/3T/22T/35T/6TA amps y:1.981.301.051.30-0.88-0.251.98The table gives the time (t) in seconds as x and current (A) in amp as y, Obtain the first two harmonics from the given data.	BTL -3	Applying
10.	Find the half range Fourier cosine series of $f(x) = (\pi - x)^2$ in the interval $(0, \pi)$. Hence Find the sum of the series $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots$	BTL -1	Remembering
11.	By using Cosine series show that $\frac{\pi^4}{96} = 1 + \frac{1}{3^4} + \frac{1}{5^4} + \frac{1}{5^4} + \frac{1}{5^4} + \frac{1}{5^4}$ or for $f(x) = x$ in $0 < x < \pi$	BTL -4	Analyzing
12.	Find the Fourier cosine series up to third harmonic to represent the function given by the following data: $l = 6$ x012345	BTL -6	Creating
	y 4 8 15 7 6 2		

13.	Find the Fourier expansion of the following periodic function of period 4 $f(x) = \begin{cases} 2+x, -2 \le x \le 0\\ 2-x, & 0 \le x \le 2 \end{cases}$ Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8}$.										BTL -2	Remembering				
14.	14. Find the Fourier series as far as the second harmonic to represent the function $f(x)$ With period 6, $2l = 6$, $l = 3$. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							t BTL -6	Creating							
				•						PA	RT-0					
1.	1. Obtain the Fourier series to represent the function $f(x) = x , -\pi < x < \pi$ and deduce $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$.								BTL -2	Understanding						
2.	Find ded	the uce t	Fou hat	rier s $\frac{1}{1^4} +$	series $\frac{1}{2^4}$ +	$\frac{5 \text{ of } f}{\frac{1}{3^4}}$	f(x) $+\frac{1}{4^4}$	= x +	x^2 in $\infty =$	$\frac{(-\pi}{\pi^4}$,π) a	and h	nence		BTL -2	Remembering
Calculate the first 3 harmonics of the Fourier of f(x) from the following data									the	0						
3.	×	0	30	60	06	120	150	180	210	240	270	300	330	360	BTL -6	Creating
	f(x)	1.8	1.1	0.3	0.16	0.5	1.3	2.16	1.25	1.3	1.52	1.76	2	1.8	G	
4.	Find $f(x)$	1 a F () =	ourie 2 <i>x</i> -	$x^2 - x^2$	ries v in (l	vith _] 0,3).	peric	od 3 t	to rej	prese	nt				BTL -1	Remembering

UNIT III -APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of PDE – Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction in infinite plates(excluding insulated edges)

	PART –A							
Q.No.	Question	Bloom's Taxonomy Level	Domain					
1.	Classify the PDE $u_{xx} + u_{xy} + u_{yy} = 0$	BTL-4	Analyzing					
2.	Classify the PDE $Z_{xx} + 2Z_{xy} + (1 - y^2)Z_{yy} + xZ_x + 3x^2yz - 2Z = 0$	BTL-4	Analyzing					
3.	Solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x, 0) = 6e^{-3x}$ by method of separation of variables	BTL-3	Applying					
4.	What are the various solutions of one-dimensional wave equation	BTL-1	Remembering					
5.	In the wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ what does C ² stand for?	BTL-2	Understanding					

6.	What is the basic difference between the solutions of one-dimensional wave equation and one-dimensional heat equation with respect to the time?	BTL-3	Applying			
7.	Write down the initial conditions when a taut string of length $2l$ is fastened on both ends. The midpoint of the string is taken to a height b and released from the rest in that position	BTL-1	Remembering			
8.	A slightly stretched string of length <i>l</i> has its ends fastened at $x = 0$ and $x = l$ is initially in a position given by $y(x, 0) = y_0 sin^3 \frac{\pi x}{l}$. If it is released from rest from this position, write the boundary conditions	BTL-2	Understanding			
9.	A tightly stretched string with end points $x = 0 \& x = l$ is initially at rest in equilibrium position. If it is set vibrating giving each point velocity $\lambda x(l-x)$. Write the initial and boundary conditions	BTL-2	Understanding			
10.	If the ends of a string of length l are fixed at both sides. The midpoint of the string is displaced transversely through a height h and the string is released from rest, state the initial and boundary conditions	BTL-2	Understanding			
11.	State the assumptions in deriving the one-dimensional heat equation	BTL-1	Remembering			
12.	What are the possible solutions of one-dimensional heat flow equation?	BTL-1	Remembering			
13.	In the one-dimensional heat equation $\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$ what is C ² ?	BTL-2	Understanding			
14.	The ends A and B of a rod of length 20 cm long have their temperature kept 30° C and 80° C until steady state prevails. Find the steady state temperature on the rod	BTL-2	Understanding			
15.	An insulated rod of length 60 cm has its ends at A and B maintained at 20° C and 80° C respectively. Find the steady state solution of the rod.	BTL-2	Understanding			
16.	An insulated rod of length $l \text{ cm}$ has its ends at A and B maintained at 0°C and 80° C respectively. Find the steady state solution of the rod.	BTL-2	Understanding			
17.	Write down the three possible solutions of Laplace equation in two dimensions	BTL-1	Remembering			
18.	Write down the governing equation of two-dimensional steady state heat equation.	BTL-1	Remembering			
19.	A rectangular plate with insulated surface is 10cm wide. The two long edges and one short edge are kept $at0^{\circ}$ C, while the temperature at short edge x =0 is given by $u = \begin{cases} 20y & , & 0 \le y \le 5\\ 20(10-y), & 5 \le y \le 10 \end{cases}$ Write the boundary conditions to solve two-dimensional heat flow equation.	BTL-2	Understanding			
20.	A plate is bounded by the lines x=0, y=0, x=l and y=l. Its faces are insulated. The edge coinciding with x-axis is kept at 100° C. The edge coinciding with y-axis at 50° C. The other 2 edges are kept at 0° C. write the boundary conditions that are needed for solving two-dimensional heat flow equation.	BTL-2	Understanding			
PART-B						

1.	A string is stretched and fastened to two points that are distinct string l apart. Motion is started by displacing the string into the form $y = k(lx - x^2)$ from which it is released at time t=0. Find the displacement of any point on the string at a distance of x from one end at time t.	BTL-2	Understanding
2.	A tightly stretched string of length $2l$ is fastened at both ends. The Midpoint of the string is displaced by a distance b transversely and the string is released from rest in this position. Find an expression for the transverse displacement of the string at any time during the subsequent motion.	BTL-2	Understanding
3.	A slightly stretched string of length <i>l</i> has its ends fastened at $x = 0$ and $x = l$ is initially in a position given by $y(x, 0) = y_0 sin^3 \frac{\pi x}{l}$. If it is released from rest from this position, find the displacement y at any distance x from one end and at any time.	BTL-2	Understanding
4.	A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially at rest in its equilibrium position. If it is set vibrating string giving each point a velocity $3x(l - x)$. Find the displacement of the string.	BTL-3	Applying
5.	A tightly stretched string with fixed end points x=0 and x=l is initially at rest in its equilibrium position. If it is vibrating string by giving to each of its points a velocity $v = \begin{cases} \frac{2cx}{l}if0 \le x \le \frac{l}{2}\\ \frac{2c(l-x)}{l}if\frac{l}{2} \le x \le l \end{cases}$. Find the displacement of the string at any distance x from one end at any time t.	BTL-2	Understanding
6.	A tightly stretched string of length l is initially at rest in this equilibrium position and each of its points is given the velocity $v_0 \sin^3 \frac{\pi x}{l}$. Find the displacement $y(x, t)$.	BTL-2	Understanding
7.	Solve $\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$ subject to the conditions (i)u(0, t)=0 for all $t \ge 0$ (ii) $u(l,t) = 0$ for all $t \ge 0$ (iii) $u(x,0) = \begin{cases} x & if \ 0 \le x \le \frac{l}{2} \\ l - xif \ \frac{l}{2} \le x \le l \end{cases}$	BTL-3	Applying
8.	A rod 30 cm long has its ends A and B kept at 20° and 80° respectively until steady state conditions prevail. The temperature at each end is then suddenly reduced to 0° C and kept so. Find the resulting temperature function u(x, t) taking x = 0 at A.	BTL-2	Understanding
9.	A bar 10 cm long with insulated sides has its ends A and B maintained at temperature 50° C and 100° C respectively. Until steady state conditions prevail. The temperature at A is suddenly raised to 90° C and at the same time lowered to 60° C at B. Find the temperature distributed in the bar at time t.	BTL-2	Understanding
10.	A rod 40 cm long has its ends A and B kept at 0^0 and 80^0 respectively until steady state conditions prevail. The temperature at each end B is then suddenly reduced to 40^0 C and kept so, while at A the temperature is	BTL-2	Understanding

	0° c. Find the resulting temperature function $u(x, t)$ taking $x = 0$ at A		
11.	A square metal plate is bounded by the lines $x = 0$, $x = a$, $y = 0$, $y = \infty$. The edges $x = a$, $y = 0$, $y = \infty$ are kept at 0^0 temperature while the temperature at the edge $y = a$ is 100^0 temperature. Find the steady state temperature distribution at in the plate.	BTL-2	Understanding
12.	A rectangular plate with insulated surface is 10 cm wide and so long compared to its width that it may be considered infinite in length without introducing appreciable error. The temperature at short edge y=0 is given by $u = \begin{cases} 20x & , & 0 \le x \le 5 \\ 20(10-x), & 5 \le x \le 10 \end{cases}$ and all the other three edges are kept at 0°C. Find the steady state temperature at any point in the plate.	BTL-2	Understanding
13.	An infinitely long rectangular plate with insulated surface is 10cm wide. The two long edges and one short edge are kept at 0 ^o C, while the other short edge x=0 is kept at temperature $u = \begin{cases} 20y & , & 0 \le y \le 5\\ 20(10-y), & 5 \le y \le 10 \end{cases}$ Find the steady state temperature distribution in the plate.	BTL-2	Understanding
14.	A long rectangular plate with insulated surface is $l \text{ cm}$. If the temperature along one short edge y=0 is $u(x,0) = K(lx - x^2)$ degrees, for $0 < x < l$, while the other 2 edges x=0 and x=l as well as the other short edge are kept at 0°C, find the steady state temperature function $u(x, y)$.	BTL-2	Understanding
	PART-C		
1.	A tightly stretched string of length l with fixed end points initially at rest in its equilibrium position. If it is set vibrating by giving each point a velocity $y_t(x,0) = v_0 sin\left(\frac{3\pi x}{l}\right) cos\left(\frac{\pi x}{l}\right)$ where $0 \le x \le 1$. Find the displacement of the string at a point at a distance x from one end at any instant "t".	BTL -1	Remembering
2.	A string is tightly stretched between $x = 0$ and $x = 20$ is fastened at both ends. The midpoint of the string is taken to be a height and then released from rest in that position. Find the displacement of any point of the string x	BTL -1	Remembering
	at any time t.		
3.	A bar 20 cm long with insulated sides has its ends A and B maintained at temperature 40° C and 90° C respectively, until steady state conditions prevail. The temperature at A is suddenly raised to 70° C and at the same time lowered to 50° C at B. Find the temperature distributed in the bar at time t.	BTL -3	Applying
3.	A bar 20 cm long with insulated sides has its ends A and B maintained at temperature 40° C and 90° C respectively, until steady state conditions prevail. The temperature at A is suddenly raised to 70° C and at the same time lowered to 50° C at B. Find the temperature distributed in the bar at time t. A infinite rectangular plate with insulated surface is bounded by the lines $x = 0, x = a, y = 0$ and $y = \infty$. The temperature along the edge $y = 0$ kept at 100° C, while the temperature along the other three edges are at 0° C. Find the steady state temperature at any point in the plate.	BTL -3 BTL -3	Applying Applying

PART –A									
Q.No.	Question	Bloom's Taxonomy Level	Domain						
1.	State Fourier integral Theorem	BTL -1	Remembering						
2.	Write Fourier transform pair.	BTL -1	Remembering						
3.	Write Fourier Sine transform pair	BTL -3	Applying						
4.	If the Fourier transform of $f(x)$ is $F(s) = F[f(x)]$, then show $F[f(x-a)] = e^{ias}F(s)$.	BTL -3	Applying						
5.	Find the Fourier Transform of $e^{-a x }$.	BTL -2	Understanding						
6.	Find the Fourier Transform of $f(x) = \begin{cases} e^{i kx}, & \text{if } a < x < b \\ 0, & \text{if } x \le a \& x \end{cases}$	BTL -2	Understanding						
7.	State and Prove any one Modulation theorem on Fourier Trans	BTL -2	Understanding						
8.	Find the Fourier sine Transform of e^{-ax} .	ଁତ୍	BTL -2	Understanding					
9.	Define self-reciprocal with respect to Fourier Transform	1-1	BTL -1	Remembering					
10.	Prove that $F[f(ax)] = \frac{1}{a}F\left(\frac{s}{a}\right)$ if $a > 0$.	E	BTL -2	Understanding					
11.	Find the Fourier cosine Transform of e^{-2x} .	μ,	BTL -2	Understanding					
12.	Prove that $F_S[f(ax)] = \frac{1}{a} F_S\left(\frac{s}{a}\right)$		BTL -3	Applying					
13.	Write down the Fourier cosine Transform pair of formulae.		BTL -1	Remembering					
14.	If F(s) is the Fourier Transform of $f(x)$. Show that the Fourier of $e^{iax} f(x)$ is $F(s+a)$.	r Transform	BTL -3	Applying					
15.	Find the Fourier cosine transform of e^{-4x} .		BTL -3	Applying					
16.	If $F(s) = F[f(x)]$, then find $F[xf(x)]$.		BTL -2	Understanding					
17.	Find the Fourier cosine Transform of $f(x) = 2x$ in $0 \le x \le 4$		BTL -2	Understanding					
18.	Define Convolution of two functions $f(x)*g(x)$.		BTL -3	Applying					
19.	State Convolution theorem for Fourier Transform		BTL -1	Remembering					
20.	State Parseval's Identity for Fourier Transform		BTL -1	Remembering					
	PART-B								
1.	Find the Fourier Transform of $f(x) = \begin{cases} 1, x \le a \\ 0, x > a > 0 \end{cases}$ and hence evaluate $\int_0^\infty \left(\frac{\sin t}{t}\right) dt$. also using Parseval's Identity Prove that $\int_0^\infty \left(\frac{\sin t}{t}\right)^2 dt = \frac{\pi}{2}$		BTL -2	Understanding					
2.(a)	Find $F_C\left[\frac{e^{-ax}}{x}\right]$ and hence find $F_C\left[\frac{e^{-ax}-e^{-bx}}{x}\right]$		BTL -2	Understanding					

2.(b)	Find the function whose Fourier Sine Transform is $\frac{e^{-as}}{s}$, $a > 0$	BTL -1	Remembering
3.	Find the Fourier Transform of the function $f(x) = \begin{cases} 1 - x , if x \le 1\\ 0, if x > 1 \end{cases}$ Hence deduce that (i) $\int_0^\infty \left(\frac{\sin t}{t}\right)^2 dt = \frac{\pi}{2} (ii) \int_0^\infty \left(\frac{\sin t}{t}\right)^4 dt = \frac{\pi}{3}.$	BTL -2	Understanding
4	Show that the function $e^{\frac{-x^2}{2}}$ is self-reciprocal under the Fourier Transform.	BTL -3	Understanding
5.	Find the Fourier Transform of $f(x) = \begin{cases} 1 - x^2, & \text{if } x \le 1\\ 0, & \text{if } x > 1 \end{cases}$ Hence Show that $\int_0^\infty \left(\frac{\sin s - s \cos s}{s^3}\right) \cos \frac{s}{2} ds = \frac{3\pi}{16}$	BTL -1	Remembering
6.(a)	Find the Fourier Sine Transform of $f(x) = \begin{cases} x, 0 < x < 1 \\ 2 - x, 1 < x < 2 \\ 0, x > 2 \end{cases}$	BTL -2	Understanding
6.(b).	Using Parseval's Identity evaluate the following integrals. (i) $\int_0^\infty \frac{dx}{(a^2+x^2)^2}$, (ii) $\int_0^\infty \frac{x^2 dx}{(a^2+x^2)^2}$ where $a > 0$.	BTL -5	Evaluating
7.(a)	Find the Fourier sine transform of e^{-ax} (a>0). Hence find $F_s[xe^{-ax}]$ and $F_s\left[\frac{e^{-ax}}{x}\right]$	BTL -3	Applying
7.(b)	Evaluate $\int_0^\infty \frac{dx}{(x^2+a^2)(x^2+b^2)}$ using Fourier Transform	BTL -5	Evaluating
8.(a)	Solve the integral equation $\int_0^\infty f(x) \sin tx dx = \begin{cases} 1 & \text{if } 0 \le t \le 1 \\ 2 & \text{if } 1 \le t < 2 \\ 0 & \text{if } t \ge 2 \end{cases}$	BTL -4	Analyzing
8.(b)	Find the infinite Fourier sine transform of $\frac{1}{x}$.	BTL -2	Understanding
9.	Show that $x e^{-x^2/2}$ is self-reciprocal under the Fourier sine transform.	BTL -2	Understanding
10.	Find the Fourier Transform of $e^{-a x }$ and hence deduce that (i) $\int_0^\infty \frac{\cos xt}{a^2+t^2} dt = \frac{\pi}{2a} e^{-a x } (ii) F[xe^{-a x }] = i \sqrt{\frac{2}{\pi}} \frac{2as}{(a^2+s^2)^2}$, here F stands for Fourier Transform.	BTL -4	Analyzing
11.(a)	Find the Fourier cosine & sine Transform of e^{-x} . Hence evaluate (i) $\int_0^\infty \frac{1}{(x^2+1)^2} dx$ and (ii) $\int_0^\infty \frac{x^2}{(x^2+1)^2} dx$.	BTL -2	Understanding
11.(b)	Find the Fourier Sine Transform of the function $f(x) = \begin{cases} \sin x, 0 \le x < a \\ 0, x > a \end{cases}$	BTL -2	Understanding
12.	Find the Fourier sine and cosine transforms of x^{n-1} . Hence deduce that $\frac{1}{\sqrt{x}}$ is self reciprocal under both the transforms.	BTL -3	Understanding
13.(a)	Find the Fourier Transform of $e^{- x }$ and hence find the Fourier Transform of $f(x)=e^{- x }\cos 2x$.	BTL -2	Understanding

13.(b)	Using Parseval's Identity evaluate $\int_0^\infty \frac{dx}{(x^2+25)(x^2+9)}$.		BTL -5	Evaluating	
14.(a)	Using Fourier Sine transform prove that $\int_0^\infty \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)} = \frac{\pi}{2(a+b)}$		BTL -3	Applying	
14.(b)	Prove that $F_c[xf(x)] = \frac{d}{ds}[F_s\{f(x)\}]$ and $F_s[xf(x)] = -\frac{d}{ds}[F_c\{f(x)\}]$		BTL -3	Applying	
	PART-C				
1.	Show that the Fourier Transform of $f(x) = \begin{cases} a - x , if x \le a \\ 0, if x > a > 0 \end{cases}$ $\sqrt{\frac{2}{\pi}} \left(\frac{1 - \cos as}{s^2}\right)$. Hence deduce that $(i) \int_0^\infty \left(\frac{\sin t}{t}\right)^2 dt = \frac{\pi}{2}$, $(ii) \int_0^\infty \left(\frac{\sin t}{t}\right)^4 dt = \frac{\pi}{2}$.	В	TL -3	Applying	
2.	Show that the Fourier transform of $f(x) = \begin{cases} a^2 - x^2, x < a \\ 0, x > a > 0 \end{cases}$ $2\sqrt{\frac{2}{\pi}} \left(\frac{\sin as - as \cos as}{s^3}\right)$. Hence deduce that $(i) \int_0^\infty \left(\frac{\sin t - t \cos t}{t^3}\right) dt = \frac{\pi}{4}$, $(ii) \int_0^\infty \left(\frac{\sin t - t \cos t}{t^3}\right)^2 dt = \frac{\pi}{15}$.	В	TL -3	Applying	
3.	State and Prove (i) Convolution Theorem (ii) Parseval's identity for Fourier Transform.	В	TL -3	Applying	
4.	Find the Fourier cosine transform of $e^{-a^2 x^2}$ and hence find the Fourier cosine transform of $e^{\frac{-x^2}{2}}$	В	TL -2	Understanding	
UNIT -V: Z - TRANSFORMS AND DIFFERENCE EQUATIONS					
theorem	n - Solution of difference equations using Z - transform.	muen	in und resid		
	PART –A				
Q.No.	Questions		Bloom's Taxonomy Level	Domain	
1.	Define Z – Transform of the sequence $\{f(n)\}$.		BTL -1	Remembering	
2.	Find $Z(3^{n+2})$		BTL -2	Understanding	
3.	Find $Z\left[\frac{a^n}{n!}\right]$		BTL -2	Understanding	
4.	Find $Z\left[\frac{1}{n!}\right]$		BTL -2	Understanding	
5.	Find $Z\left[\frac{1}{n(n+1)}\right]$		BTL -2	Remembering	
6.	State initial value theorem		BTL -1	Remembering	

7.	State final value theorem	BTL -1	Remembering
8.	Find $Z[n^2]$.	BTL -2	Understanding
9.	Find inverse Z transform of $\frac{z}{(z-1)(z-2)}$	BTL -2	Understanding
10.	Find $Z\left[\frac{1}{(n+1)!}\right]$	BTL -2	Understanding
11.	Find $Z[e^t \sin 2t]$.	BTL -2	Understanding
12.	Prove that $Z[a^n f(n)] = f(\frac{z}{a})$	BTL -5	Evaluating
13.	Prove that $Z[a^n] = \frac{z}{z-a}$	BTL -5	Evaluating
14.	Find $z^{-1}[\frac{z}{(z-1)^2}]$	BTL -2	Analyzing
15.	Find Z transform of $\frac{1}{n}$	BTL -2	Understanding
16.	Find $z^{-1}[\frac{z}{(z+1)^2}]$	BTL -2	Understanding
17.	Solve $y_{n+1} + 2y_n = 0$ given that $y(0)=2$	BTL -3	Applying
18.	State Convolution theorem in Z – Transforms	BTL -1	Remembering
19.	If $z{f(n)} = \frac{z^2}{(z^2+1)}$, then find f(0), using initial value theorem.	BTL -6	Creating
20.	Prove that $Z[f(n+1)] = zF(z) - zf(0)$.	BTL -6	Creating
	PART-B	•	
1.(a)	Find the z transform of $f(n) = \frac{2n+3}{(n+1)(n+2)}$	BTL -2	Understanding
1.(b)	Find the inverse Z – Transform using partial fraction method of $\frac{z^2}{(z-3)(z-4)}$		
2.	Find the inverse Z – Transform of $\frac{z^2+z}{(z-1)(z^2+1)}$ by partial fraction method, and Cauchy Residue theorem.	BTL -2	Understanding
	Using convolution theorem find inverse Z transform of		
3.	$\left[\frac{z^2}{(z-a)(z-b)}\right]$	BTL -3	Applying
4.	Using convolution theorem find the inverse Z – Transform of $\frac{12z^2}{(3z-1)(4z+1)}$	BTL -3	Analyzing
5.	Using convolution theorem find inverse Z transform of $\frac{8z^2}{(2z-1)(4z+1)}$.	BTL -3	Applying
-			

7.	Using Z transform Solve $y_{n+2} - 3y_{n+1} + 2y_n = 0$ given that $y(0) = 0, y(1) = 1$	BTL -3	Analyzing
8.	Using Residue theorem and Partial fraction method find the inverse Z transform of U(z)= $\left[\frac{z^2}{(z+2)(z+4)}\right]$	BTL -3	Applying
9.	Using convolution theorem evaluate $Z^{-1}\left[\frac{z^2}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{4}\right)}\right]$	BTL -3	Applying
10.	Using Z transform solve $y_{n+2} - 3y_{n+1} - 10y_n = 0$ with y(0) = 0, y(1) = 1	BTL -3	Applying
11.	Using Z transform solve $u_{n+2} + 6u_{n+1} + 9u_n = 2^n$ given that $u(0) = 0, u(1) = 0$	BTL -3	Applying
12.	Solve $y_{n+2} + y_n = 2$ given that $y(0) = 0$, $y(1) = 0$	BTL -1	Remembering
13.	Form the difference equation y(k+3) - 3y(k+1) + 2y(k) = 0 with y(0) = 4, y(1) = 0 and $y(2) = 8$	BTL -3	Applying
14.	Solve the equation using Z – Transform $y_{n+2} - 5y_{n+1} + 6y_n = 36$ given that $y(0) = y(1) = 0$	BTL -3	Applying
	PART-C		
1.	Find(i)Z[$r^n \cos n\theta$], (ii)Z[$r^n \sin n\theta$]iii)Z($e^{-at} \cos bt$)	BTL-2	Understanding
2.(a)	Find inverse Z - Transform of $\frac{z^3}{(z-1)^2(z-2)}$ by the method of Partial fraction	BTL -2	Understanding
2.(b)	Find the $Z^{-1}\left(\frac{10z}{z^2 - 3z + 2}\right)$	BTL -2	Understanding
3.(a)	Using convolution theorem find $Z^{-1}\left[\frac{z^2}{(z-4)(z-5)}\right]$	BTL -3	Applying
3.(b)	Using Residue method find $Z^{-1}\left(\frac{z}{z^2-2z+2}\right)$	BTL -3	Applying
4.	Solve $U_{n+2} + 4 U_{n+1} + 3 U_n = 3^n$, given that $U_0 = 0$ and $U_1 = 1$.	BTL -6	Creating

