SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

S.R.M. Nagar, Kattankulathur - 603203

DEPARTMENT OF MATHEMATICS

QUESTION BANK

IV SEMESTER

B. E- Civil, EEE, EIE

1918401 - NUMERICAL METHODS

Regulation - 2019

Academic Year - 2021 - 2022

Prepared by

Dr. S. Chitra Assistant Professor / Mathematics

Dr. V. Vijayalakshmi Assistant Professor / Mathematics

Mr. N. Sundarakannan Assistant Professor / Mathematics

SRM VALLIAMMAI ENGNIEERING COLLEGE

SRM Nagar, Kattankulathur – 603203.

DEPARTMENT OF MATHEMATICS

SUBJECT: 1918401 – NUMERICAL METHODS

SEM / YEAR: IV / II year B.E. (COMMON TO CIVIL, EEE, & EIE)

UNIT I - SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS: Solution of algebraic and transcendental equations - Fixed point iteration method – Newton Raphson method - Solution of linear system of equations - Gauss elimination method – Pivoting - Gauss Jordan method , Inverse of a matrix by Jordan Method – Iterative method of Gauss Seidel – Dominant Eigenvalue of a matrix by Power method.

Q.No.	Question	BT Level	Competence			
	PART – A					
1.	Give two examples of transcendental and algebraic equations	BTL -1	Remembering			
2.	When should we not use Newton Raphson method?	BTL -1	Remembering			
3.	Write the iterative formula of Newton's- Raphson Method	BTL -1	Remembering			
4.	State the rate of Convergence and the criteria for the convergence of Newton Raphson method.	BTL -2	Understanding			
5.	Derive the Newton's iterative formula for Pth root of a number N	BTL -3	Applying			
6	Find where the real root lies in between, for the equation $x \tan x = -1$.					
7.	State the order and condition for Convergence of Iteration method.	BTL -2	Understanding			
8	State the principle used in Gauss Jordon method.	BTL -2	Understanding			
9.	Find the inverse of $A = \begin{pmatrix} 4 & 1 \\ 1 & 3 \end{pmatrix}$ by Jordon method.	BTL -3	Applying			
10	Solve by Gauss Elimination method $x + y = 2$ and $2x + 3y = 5$	BTL -2	Understanding			
11.	Distinguish the advantages of iterative methods over direct method of solving a system of linear algebraic equations.	BTL -4	Analyzing			
12.	Find the inverse of $A = \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$ by Jordan method.	BTL -3	Applying			
13.	Compare Gauss Elimination, Gauss Jordan method.	BTL -4	Analyzing			
14.	State the condition for the convergence of Gauss Seidel iteration method for solving a system of linear equation.	BTL -2	Understanding			
15.	Compare Gauss seidel method, Gauss Jacobi method.	BTL -4	Analyzing			
16.	Which of the iterative methods is used for solving linear system of equations it converges fast? Why?	BTL -1	Remembering			
17.	Compare Gauss seidel method, Gauss Elimination method.	BTL -4	Analyzing			
18.	Explain Power method to find the dominant Eigen value of a square matrix A	BTL -2	Understanding			
19.	How will you find the smallest Eigen value of a matrix A.	BTL -4	Analyzing			

	,		
20.	Find the dominant Eigen value of $A = \begin{pmatrix} 2 & 3 \\ 5 & 4 \end{pmatrix}$ by power method up to 1 decimal place accuracy. Start with $X^{(0)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	BTL -3	Applying
	PART – B		
1.	Find the positive real root of log_{10} x = 1.2 using Newton – Raphson method.	BTL -3	Applying
2.(a)	Evaluate the inverse of the matrix $\begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix}$ using Gauss Jordan method.	BTL -5	Evaluating
2.(b)	Evaluate the positive real root of x^2 -2x -3 = 0 using Iteration method, Correct to 3 decimal places.	BTL -5	Evaluating
3.(a)	Find the inverse of the matrix $\begin{pmatrix} 2 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 3 & 5 \end{pmatrix}$ using Gauss Jordan	BTL -3	Applying
3.(b)	method. Solve by Gauss Elimination method $3x + y - z = 3$; 2x - 8y + z = -5; $x - 2y + 9z = 8$	BTL -3	Applying
4.	Find the dominant Eigen value and vector of $A = \begin{pmatrix} 3 & 2 & 4 \\ -1 & 4 & 10 \\ 1 & 3 & -1 \end{pmatrix} \text{ using Power method.}$	BTL -3	Applying
5. (a)	Solve by Gauss Jordan method $10 \times y + z = 12$; 2x + 10y + z = 13; $x + y + 5z = 7$.	BTL -3	Applying
5.(b)	Find the positive r root of $\cos x = 3x - 1$ correct to 3 decimal places using fixed point iteration method.	BTL -3	Applying
6.	Apply Gauss seidel method to solve system of equations $x - 2y + 5z = 12$; $5x + 2y - z = 6$; $2x + 6y - 3z = 5$ (Do up to 4 iterations)	BTL -3	Applying
7.	Using Newton's method find the iterative formula for $\frac{1}{N}$ where N is positive integer and hence find the value of $\frac{1}{26}$	BTL -1	Remembering
8.	By Gauss seidel method to solve system of equations $x + y + 54z = 110$; $27x + 6y - z = 85$; $6x + 15y - 2z = 72$.	BTL -4	Analyzing
9.	Find the real root of Cos $x = x e^x$ using Newton - Raphson method by using initial approximation $x_0 = 0.5$.	BTL -3	Applying
10.	Evaluate the dominant Eigen value and vector of $A = \begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix} \text{ using Power method.}$	BTL -5	Evaluating
11.	Determine the largest eigenvalue and the corresponding eigenvectors of the matrix $\begin{pmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{pmatrix}$	BTL -6	Creating
12.	Using Gauss-Jordan method, find the inverse of the matrix	BTL -3	Applying

	$\begin{pmatrix} 8 & -4 & 0 \\ -4 & 8 & -4 \\ 0 & -4 & 8 \end{pmatrix}$		
13.	Find the positive root of e^x -3x = 0 correct to 3 decimal places using fixed point iteration method.	BTL -3	Applying
14.	Solve using Gauss-Seidal method $8x - 3y + 2z = 20$, $4x + 11y - z = 33$, $6x + 3y + 12z = 35$.	BTL -3	Applying
	PART – C		
1.	Derive the iterative formula for \sqrt{N} where N is positive integer using Newton's method and hence find the value of $\sqrt{142}$.	BTL -4	Analyzing
2.	Solve using Gauss-Seidal method $4x + 2y + z = 14$, $x + 5y - z = 10$, $x + y + 8z = 20$	BTL -4	Analyzing
3.	Find all possible Eigen values by Power method for $A = \begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$	BTL -2	Understanding
4.	Using Power method, Find all the Eigen values of $A = \begin{pmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{pmatrix}$	BTL -2	Understanding

UNIT -II INTERPOLATION AND APPROXIMATION: Interpolation with unequal intervals - Lagrange's interpolation – Newton's divided difference operators and relations - Interpolation with equal intervals - Newton's forward and backward difference formulae.

Q.No.	Question	BT Level	Competence
	PART – A	Level	
1.	State Gregory- Newton's Backward difference formula.	BTL -1	Remembering
2.	Define inverse Lagrange's interpolation formula.	BTL -1	Remembering
3	Create Forward interpolation table for the following data X: 0 5 10 15 Y: 14 379 1444 3584	BTL -6	Creating
4.	Write the Lagrange's formula for y, if three sets of values $(x_0, y_0), (x_1, y_1), (x_2, y_2)$ are given?	BTL -1	Remembering
5.	Create the divided difference table for the following data $(0,1)$, $(1,4)$, $(3,40)$ and $(4,85)$.	BTL -6	Creating
6.	Write the divided differences with arguments a , b , c if $f(x) = 1/x^2$.	BTL -2	Understanding
7.	Estimate the divided differences of $f(x) = x^3 + x + 2$ for the arguments 1, 3, 6, 11.	BTL -3	Applying
8.	Create the divided difference table for the following data $X:$ 4 5 7 10 11 13 $f(x):$ 48 100 294 900 1210 2028 .	BTL-6	Creating
9.	State any two properties of divided differences.	BTL -2	Understanding
10.	Estimate $f(a, b)$ and $f(a, b, c)$ using divided differences, if $f(x) = 1/x$.	BTL -2	Understanding
11.	Identify the cubic Spline $S(x)$ which is commonly used for	BTL -1	Remembering

	interpolation.		
12.	Find $\Delta^4 y_0$, given $y_0 = 3$, $y_1 = 12$, $y_2 = 81$, $y_3 = 200$ $y_4 = 100$	BTL -3	Applying
13.	Define cubic spline.	BTL -1	Remembering
14.	Give the condition for a spline to be cubic.	BTL -2	Understanding
15.	Write any two applications of Newton's backward difference formula?	BTL -1	Remembering
17.	Find y, when $x = 0.5$ given $x : 0 1 2 y: 2 3 12$	BTL -4	Analyzing
18.	Evaluate y (0.5) given x: 0 1 2 y: 4 3 24	BTL -5	Evaluating
19.	y: 4 3 24 Write Newton's forward formula up to 3rd finite differences.	BTL -1	Remembering
20.	Estimate the Newton's difference table to the given data: $x : 1 2 3 4$ $f(x) : 2 5 7 8$	BTL -2	Understanding
	PART –B		
1.(a)	Find f(3), Using Lagrange's interpolation method, x: 0 1 2 5 y: 2 3 12 5 147	BTL -3	Applying
1. (b)	Using Newton's divided difference formula from the following table, Find f(1) from the following x: -4 -1 0 2 5 f(x): 1245 33 5 9 1335	BTL -3	Applying
2. (a)	Using Newton's divided difference formula From the following table, find f (8) x: 3 7 9 10 f(x): 168 120 72 63	BTL -3	Applying
2.(b)	Evaluate f(1) using Lagrange's method x: -1 0 2 3 y: -8 3 1 12	BTL -5	Evaluating
3. (a)	Use Newton divided difference method find $y(3)$ given $y(1) = -26$, $y(2) = 12$, $y(4) = 256$, $y(6) = 844$.		
3.(b)	Use Lagrange's Inverse formula to find the value of x for y = 7given x: 1 3 4 y: 4 12 19	BTL -3	Applying
4.	Find the natural cubic spline for the function given by $ \begin{array}{c cccc} X & 0 & 1 & 2 \\ \hline f(x) & 1 & 2 & 33 \end{array} $	BTL -4	Analyzing
5. (a)	Estimate x when $y = 20$ from the following table using Lagrange's method x: 1 2 3 4 y: 1 8 27 64	BTL -3	Applying
5.(b)	Using Lagrange's formula fit a polynomial to the data x: -1 1 2 y: 7 5 15	BTL -3	Applying
6.	Using Newton's divided difference formula find the missing value from the table: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BTL -3	Applying
7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BTL -2	Understanding
/	5	DIL -Z	Onderstanding

	given that $f(30) = -30$, $f(34) = -13$, $f(38) = 3$, $f(42) = 18$		
8.	Using Newton's interpolation formula find the value of 1955 and 1975 from the following table x: 1951 1961 1971 1981 y: 35 42 58 84	BTL -3	Applying
9.	y: 35 42 58 84 Evaluate f(7.5) from the following table Using Newton's backward	BTL -5	Evaluating
	formula		
	X:1 2 3 4 5 6 7 8 Y:1 8 27 64 125 216 343 512		
10.	Fit the following four points by the cubic splines.		
10.	x: 1 2 3 4	BTL -5	Evaluating
	y: 1 5 11 8, Use the end conditions $y_0'' = y_3'' = 0$. Hence		8
	compute (i) y (1.5) (ii) y'(2).		
11.	Using Suitable Newton's f interpolation formula find the value of	BTL -4	Analyzing
	y(46) and y(61) from the following		
	X: 45 50 55 60 65		
12	Y: 114.84 96.16 83.32 74.48 68.48 Colculate the pressure t = 142 and t = 175 from the following date	BTL -4	Analyzina
12.	Calculate the pressure $t = 142$ and $t = 175$, from the following data taken from steam table, Using suitable formula.	D1L -4	Analyzing
	Temp: 140 150 160 170 180		
	Pressure: 3.685 4.854 6.302 8.076 10.225		
13.	Determine by Newton's interpolation method, the number. of		
	patients over 40 years using the following data	BTL -3	Applying
	Age (over x years) : 30 35 45 55	DIL 3	rippijiiig
14.	Number(y)patients: 148 96 68 34 Using Newton's Forward interpolation formula find the Polynomial		
14.	f(x) to the following data, and find $f(2)$		
	x: 0 5 10	BTL -3	Applying
	f(x): 14 397 1444 3584		
	PART – C	1 7	
1.	The population of a town is as follows		
	Year (x): 1941 1951 1961 1971 1981 1991	BTL -4	A a la yeelin a
	Population 20 24 29 36 46 51 in lakhs (y):	D1L -4	Analyzing
	Estimate the population increase during the period 1946 to 1976.		
2.	Find the number of students who obtain marks between 40 and 45,		
	using Newton's formula	BTL -3	Applying
	Marks: 30 - 40 40 -50 50 - 60 60 - 70 70 - 80	DIL -3	Applying
2	No of students : 31		
3.	Evaluate f(2),f(8) and f(15) from the following table using Newton's divided difference formula		
	x: 4 5 7 10 11 13	BTL -5	Evaluating
	y: 48 100 294 900 1210 2028		
4.	The following table gives the values of density of saturated water		
	for various temperature of saturated steam. Find density at the		
	temperature T = 125, and T= 275.	BTL -4	Analyzing
	Temp T°C 100 150 200 250 300		
	Density hg/m ³ 958 917 865 799 712		

UNIT – III NUMERICAL DIFFERENTIATION AND INTEGRATION: Approximation of derivatives using interpolation polynomials - Numerical integration using Trapezoidal, Simpson's 1/3 rule – Romberg's Method – Evaluation of double integrals by Trapezoidal and Simpson's 1/3 rules.

Q.No.	Question	BT Level	Competence	
PART – A				
1.	Write down the first two derivatives of Newton's forward difference formula at the point $\mathbf{x} = \mathbf{x}_0$	BTL -1	Remembering	
2.	State Newton's backward differentiation formula to find $\left(\frac{dy}{dx}\right)_{x=x_n} and \left(\frac{d^2y}{dx^2}\right)_{x=x_n}$	BTL -1	Remembering	
3.	Find $\frac{dy}{dx}$ at x=50 from the following table: X 50 51 52 Y 3.6840 3.7084 3.7325	BTL -2	Understanding	
4.	Find y '(0) from the following table X: 0 1 2 3 4 5 Y: 4 8 15 7 6 2	BTL -2	Understanding	
5.	Write down the Gaussian quadrature 3 point formula.	BTL -1	Remembering	
6.	State the formula for trapezoidal rule of integration.	BTL -1	Remembering	
7.	State Simpson's one third rule of integration.	BTL -1	Remembering	
8.	State the formula for 2 – point Gaussian quadrature.	BTL -1	Remembering	
9.	Write down the trapezoidal double integration formula.	BTL -2	Understanding	
10.	Write down the order of the errors of trapezoidal rule.	BTL -1	Remembering	
11.	Using two point Gaussian quadrature formula, evaluate $\int_{-1}^{1} 3x^2 + 5x^4 dx$	BTL -2	Understanding	
12.	If the range is not (-1, 1) then what is the idea to solve the Gaussian Quadrature problems.			
13.	Apply Simpson's 1/3 rd rule to find $\int_0^4 e^x dx$ given that $e^0 = 1, e^1 = 2.72, e^2 = 7.39, e^3 = 20.09, e^4 = 54.6$.	BTL -3	Applying	
	4			
14.	Calculate $\int_{1}^{1} f(x)dx$ from the table by Simpson's 1/3 rd rule $x: 1 2 3 4$ $f(x): 1 8 27 64$	BTL -3	Applying	
14. 15.	x: 1 2 3 4	BTL -3	Applying Applying	
	x: 1 2 3 4 f(x): 1 8 27 64		11.0	
15.	x: 1 2 3 4 f(x): 1 8 27 64 Write down the Simpson's 1/3 rd rule for double integration formula. Compare trapezoidal rule and Simpson's one third rule. In numerical integration, what should be the number of intervals to apply Simpson's one – third rule and trapezoidal rule – Justify	BTL -3	Applying Analyzing	
15. 16.	x: 1 2 3 4 f(x): 1 8 27 64 Write down the Simpson's 1/3 rd rule for double integration formula. Compare trapezoidal rule and Simpson's one third rule. In numerical integration, what should be the number of intervals to	BTL -3 BTL -4	Applying	
15. 16. 17.	x: 1 2 3 4 f(x): 1 8 27 64 Write down the Simpson's 1/3 rd rule for double integration formula. Compare trapezoidal rule and Simpson's one third rule. In numerical integration, what should be the number of intervals to apply Simpson's one – third rule and trapezoidal rule – Justify State Romberg's integration formula to find the value of	BTL -3 BTL -4 BTL -2	Applying Analyzing Understanding	

PART -B

1.	Evaluate $\int_{0}^{6} \frac{1}{1+x^2} dx$, using trapezoidal and Simpson's $1/3^{\text{rd}}$ rules.	BTL -5	Evaluating
2. (a)	Using 3-point Gaussian quadrature, Evaluate $\int_0^5 \log_{10}(1+x)dx$.	BTL -5	Evaluating
2.(b)	Obtain first and second derivative of y at x = 0.96 from the data x: 0.96 0.98 1 1.02 1.04 y: 0.7825 0.7739 0.7651 0.7563 0.7473	BTL -2	Understanding
3.	Using backward difference, find y'(2.2) and y''(2.2) from the following table x: 1.4 1.6 1.8 2.0 2.2 y: 4.0552 4.9530 6.0496 7.3891 9.0250	BTL -3	Applying
4.	Evaluate $\int_{1}^{1.4} \int_{2}^{2.4} \frac{1}{xy} dx dy$ by using, Simpson's $1/3^{rd}$ rule, by considering $h = k = 0.1$	BTL -5	Evaluating
5. (a)	The table given below reveals the velocity of the body during the time t specified. Find its acceleration at t =1.1 t: 1.0 1.1 1.2 1.3 1.4 y: 43.1 47.7 52.1 56.4 60.8	BTL -2	Understanding
5.(b)	Apply Gaussian three point formula to find $\int_{3}^{7} \frac{dx}{1+x^2}$	BTL -4	Analyzing
6.	Calculate $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.35 from the following data: X 1.1 1.2 1.3 1.4 1.5 1.6 f(x) -1.62628 0.15584 2.45256 5.39168 9.125 13.83072	BTL -3	Applying
7. (a)	By dividing the range into 10 equal parts, evaluate $\int_{0}^{\pi} \sin x dx$ using Simpson's 1/3 rule.	BTL -2	Understanding
7.(b)	By Gaussian three point formula to estimate $\int_{0.2}^{1.5} e^{-r^2} dr$	BTL -2	Understanding
8.	Evaluate $\int_{1}^{2} \int_{1}^{2} \frac{dx dy}{x + y}$ h = k = 0.25 using trapezoidal, Simpson's rule, and justify.	BTL -4	Analyzing
9	Find the value of f '(8) from the table given below x: 6 7 9 12 f(x): 1.556 1.690 1.908 2.158 using suitable formula.	BTL - 3	Applying
10	From the following table, find the value of x for which y is minimum. X	BTL -5	Evaluating
11.	Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{dx dy}{1 + xy}$ using, Trapezoidal and Simpson's 1/3 rd rule, given that $h = k = 0.25$.	BTL -4	Analyzing
12.	Use Romberg method to estimate the integral from $x = 1.6$ to $x =$	BTL -4	Analyzing

3.6	from the data given below.		
x x	_		
y:			
y.			
y:			
	sing the following data, find $f'(5)$, $f''(5)$ and the maximum value of		
f(x)			
		BTL -4	Analyzing
I 	(x) 4 26 58 112 466 922		
13.(b) Ev	valuate $\int_0^1 \frac{dx}{1+x^2}$ using Trapezoidal rule with h = 0.2, hence obtain	DTI 5	E1
an	approximate value of π .	BTL -5	Evaluating
	valuate $\int_0^1 e^{-x^2} dx$ by dividing the range into 4 equal parts using		
	•	BTL -5	Evaluating
(a)	Trapezoidal rule (b) Simpson's 1/3 rd rule. PART- C		
1. A	Jet fighters position on an air craft carries runway was timed		
	ring landing		
	sec: 1.0 1.1 1.2 1.3 1.4 1.5 1.6		
	m: 7.989 8.403 8.781 9.129 9.451 9.750 10.03	BTL -2	Understanding
	here y is the distance from end of carrier estimate the velocity and		
	celeration at $t = 1.0$.		
	sing the given data find the first and second derivative at $x = 5$ and		
	= 6 by suitable formula to the given data:		
	: 0 2 3 4 7 9	BTL -4	Analyzing
	x): 4 26 58 112 466 992		
	ne Velocity v(km/min) of a moped which starts from rest, is		
	ven at fixed intervals of time (min) as follows.		
_	: 0 2 4 6 8 10 12		
	7: 4 6 16 34 60 94 131	BTL -2	Understanding
	timate approximate distance covered in 12 minutes, by		
	mpson's $1/3$ rd rule, also find the acceleration at $t=2$ seconds.		
4	1		
Th	the following table gives the values of $y = \frac{1}{1+x^2}$. Take h = 0.5,		
0.2	25, 0.125 and use Romberg's method to compute $\int_0^1 \frac{dx}{1+x^2}$. Hence	BTL -5	Evaluating
de	duce an approximate value of π .		
X	0 0.125 0.25 0.375 0.5 0.675 0.75 0.875 1		
Y	1 0.9846 0.9412 0.8767 0.8 0.7191 0.64 0.5664 0.5		

UNIT – IV INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONSSingle step methods - Taylor's series method - Euler's method - Modified Euler's method - Fourth order Runge - Kutta method for solving first order equations - Multi step methods - Milne's and Adams - Bash forth predictor corrector methods for solving first order equations.

Q.No.	Question	BT Level	Competence
	PART A		
1.	Give Euler's iteration formula for ordinary differential equation.	BTL -2	Understanding

2.	Estimate y (1.25) if $\frac{dy}{dx} = x^2 + y^2$, y (1) = 1 taking h = 0.25, using Euler's method.	BTL -5	Evaluating
3.	Estimate $y(0.2)$ given that $y' = x + y y(0) = 1$, using Euler's method.	BTL -5	Evaluating
4.	Using Euler's method, compute y(0.1) given $\frac{dy}{dx} = 1 - y$, y(0) = 0	BTL -2	Understanding
5.	Define initial value problems.	BTL -1	Remembering
6.	Write the Euler's modified formula for solving $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$	BTL -1	Remembering
7.	Using modified Euler's method to find y (0.4) given $y' = xy y(0) = 1$	BTL -5	Evaluating
8.	Write the merits and demerits of the Taylor's method.	BTL -1	Remembering
9.	Find y(0.1), if $\frac{dy}{dx} = y^2 + x$ given $y(0) = 1$, by Taylor series method.	BTL -3	Applying
10.	Using Taylor series formula to find $y(x_1)$ for solving $\frac{dy}{dx} = f(x, y), y(x_0) = y_0.$	BTL -2	Understanding
11.	Using Taylor's series up to x^3 terms for $2y' + y = x + 1$, $y(0) = 1$.	BTL -3	Applying
12.	Using Taylor series for the function $\frac{dy}{dx} = x + y$ when $y(1) = 0$ find y at $x = 1.2$ with $h = 0.1$.	BTL -3	Applying
13.	Explain Runge – Kutta method of order 4 for solving initial value problems in ordinary differential equation.	BTL -1	Remembering
14.	Find y(0.4) given $y' = xy$, $y(0) = 1$, using R-K method of fourth order	BTL -3	Applying
15.	Using fourth order Runge – Kutta method to find y (0.1) given $\frac{dy}{dx} = x + y \text{y (0)} = 1, \text{ h} = 0.1$	BTL -2	Understanding
16.	State Adam- Bashforth predictor and corrector formulae to solve first order ordinary differential equations.	BTL -2	Understanding
17.	State Milne's predictor corrector formula.	BTL -2	Understanding
18.	What are the single step methods available for solving ordinary differential equations.	BTL -1	Remembering
19.	What are the advantages of R-K method over taylor's method.	BTL -1	Remembering
20.	Prepare the multi-step methods available for solving ordinary differential equation.	BTL -4	Analyzing
	PART –B	Г	Γ
1.(a)	Apply Euler method to find y (0.2) given $\frac{dy}{dx} = y - x^2 + 1 \text{ and y}(0) = 0.5.$	BTL -3	Applying
1. (b)	Find the values of y at x = 0.1 given that $\frac{dy}{dx} = x^2 - y$, y(0) = 1 by	BTL -5	Evaluating
	Taylor's series method.		

2. (a)	Using Taylor series method find y at $x = 0.1$ given $\frac{dy}{dx} = x^2 y - 1$, $y(0) = 1$.	BTL -3	Applying
2.(b)	Using Euler Method to find y(0.2) and y(0.4) from $\frac{dy}{dx} = x + y$,		
	y(0) = 1 with $h = 0.2$.		
3.	Examine $2y' - x - y = 0$ given $y(0) = 2$, $y(0.5) = 2.636$, $y(1) = 3.595$, $y(1.5) = 4.968$ to get $y(2)$ by Adam's method.	BTL -4	Analyzing
4.	By Euler method for the function $\frac{dy}{dx} = \log_{10}(x+y)$, $y(0) = 2$ find	BTL -3	Applying
	the values of $y(0.2)$ $y(0.4)$ and $y(0.6)$ by taking $h = 0.2$.		
5.(a)	Find y(2) by Milne's method $\frac{dy}{dx} = \frac{1}{2}(x+y)$, given y(0) = 2,	BTL -3	Applying
	y(0.5) = 2.636, $y(1.0) = 3.595$ and $y(1.5) = 4.968$.		
5.(b)	Interpret y(0.1) given $\frac{dy}{dx} = x^2 + y^2$ y(0) =1 using modified Euler	BTL -3	Applying
	methods.		
	Given $\frac{dy}{dx} = x^2(1+y)$, $y(1) = 1$, $y(1.1) = 1.233$, $y(1.2) = 1.548$,		
6. (a)	y(1.3) = 1.979, evaluate $y(1.4)$ By Adam's Bash forth predictor	BTL -5	Evaluating
	agreement mathed		
	Solve the equation $\frac{dy}{dx} = \log(x + y)$, $y(0) = 2$ find y at x = 0.2 using		
6.(b)		BTL -4	Analyzing
	Modified Euler's method. Evaluate the value of y at $x = 0.2$ and 0.4 correct to 3decimal places		
7.		BTL -5	Evaluating
,.	given $\frac{dy}{dx} = xy^2 + 1$, y(0) =1, using Taylor series method	DIL 3	Evaluating
8. (a)	Calculate y(0.4) by Milne's predictor – corrector method, Given		
	$\frac{dy}{dx} = \frac{1}{2}(1+x^2)y^2$ and $y(0) = 1$, $y(0.1) = 1.06$, $y(0.2) = 1.12$,	BTL -5	Evaluating
		DIL 3	Lvaraating
9 (b)	y(0.3) = 1.21,		
8.(b)	Find the values of y at x = 0.1 given that $\frac{dy}{dx} = x^2 - y$, y(0) = 1 by	BTL -4	Analyzing
	modified Euler method.	DIL -4	Anaryzing
9.	Find y(4.4) given $5xy' + y^2 - 2 = 0$, $y(4) = 1$; $y(4.1) = 1.0049$;	DTI 4	A a le :
	y(4.2) = 1.0097; and $y(4.3) = 1.0143$. Using Milne's method.	BTL -4	Analyzing
10.	Find y(0.4) by Milne's method, Given $\frac{dy}{dx} = xy + y^2$, y(0) = 1,	BTL -3	Applying
	y(0.1) = 1.1169, $y(0.2) = 1.2773$ Find i) $y(0.3)$ by Runge -kutta method of 4 th order and ii) $y(0.4)$ by Milne's method.	DIL -3	Applying
11	Solve $\frac{dy}{dx} = 1 - y$ with the initial condition $x = 0$, $y = 0$ using Euler's		
	algorithm and tabulate the solutions at $x = 0.1, 0.2, 0.3, 0.4$. Using	BTL -3	Applying
	these results, Find y(0.5) using Adam's – Bash forth Predictor and		FF -78
12.	corrector method. Solve $\frac{dy}{dy} = v^2 + v$, $y(0) = 1$, (i) By modified Fuler method at $y = 0.1$	рті 2	A
14.	Solve $\frac{dy}{dx} = y^2 + x$, y(0)=1 (i) By modified Euler method at x=0.1	BTL -3	Applying

	and $x = 0.2$. (ii) By Fourth order R-K method at $x = 0.3$ (iii) By Milne's Predictor-Corrector method at $x = 0.4$.			
13.	Using Milne's method find y(2) if y(x) is the solution of, $\frac{dy}{dx} = \frac{1}{2}(x+y) \text{ , given y(0)} = 2, \text{ y(0.5)} = 2.636, \text{ y(1)} = 3.595 \text{ and}$ $y(1.5) = 4.968.$	BTL -3	Applying	
14.	Apply fourth order Runge-kutta method, to find an approximate value of y when $x = 0.2$ given that $y' = x + y$, $y(0)=1$ with $h=0.2$.	BTL -3	Applying	
	PART-C			
1.	Apply Milne's method find y(0.4) given $\frac{dy}{dx} = xy + y^2$, y(0) =1 ,using Taylor series method find y(0.1), Euler Method to find y(0.2) and y(0.3)	BTL -3	Applying	
2.	By Adam's method, find y (4.4) given, $5xy' + y^2 = 2$, $y(4) = 1$; Find y(4.1), y(4.2), y(4.3) by Euler's method.	BTL -5	Evaluating	
3.	Apply Runge – kutta method of order 4 solve $y' = y-x^2$, with $y(0.6) = 1.7379$, $h = 0.2$ find $y(0.8)$.	BTL -3	Applying	
4.	Using Adam's – Bash forth method and Milne's method, find y(0.4) given $\frac{dy}{dx} = \frac{xy}{2}$, y(0) = 1, y(0.1) =1.01, y(0.2) = 1.022, and y(0.3) = 1.023.	BTL -5	Evaluating	

UNIT- V: BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS:

Finite difference techniques for the solution of two dimensional Laplace's and Poisson's equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

SRM

Q.No.	Question	BT	Competence
Q.1.10.	Anonion	Level	o amp o como
	PART – A		
1.	Obtain the finite difference scheme for $2y''(x) + y(x) = 5$.	BTL -1	Remembering
2.	Write down the finite difference scheme for solving $y'' + x + y = 0$: $y(0) = y(1) = 0$.	BTL -1	Remembering
3.	Write down the finite difference scheme for the differential equation $\frac{d^2y}{dx^2} - 3y = 2$	BTL -2	Understanding
4.	Obtain the finite difference scheme for the differential equation 2 $\frac{d^2y}{dx^2} + y = 5$	BTL -1	Remembering
5.	State the finite difference approximation for $\frac{d^2y}{dx^2}$ and state the order of truncation error	BTL -1	Remembering
6.	Classify the PDE $y U_{xx} + U_{yy} = 0$.	BTL -2	Understanding
7.	Classify the PDE $x U_{xx} + y U_{yy} = 0$, $x>0$, $y>0$.	BTL -1	Remembering
8.	Write down the diagonal and standard five point formula in Laplace	BTL -2	Understanding

	equation $U_{xx} + U_{yy} = 0$		
9.	Write the Crank Nicholson formula to solve parabolic equations.	BTL -1	Remembering
10.	State one dimensional wave equation and its boundary conditions	BTL -1	Remembering
11.	Write down the two dimensional Laplace's equation and Poisson's equation	BTL -1	Remembering
12.	Write down Poisson's equation and its finite difference analogue	BTL -1	Remembering
13.	What is the order and error in solving Laplace and Poisson's equation by using finite difference method?	BTL -2	Understanding
14.	State the finite difference scheme for solving the Poisson's equation	BTL -4	Analyzing
15.	State one dimensional heat equation and its boundary conditions	BTL -4	Analyzing
16.	Name at least two numerical methods that are used to solve one dimensional diffusion equation	BTL -4	Analyzing
17.	State the implicit finite difference scheme for one dimensional heat equation	BTL -4	Analyzing
18.	Write down the finite difference scheme for $u_t = u_{xx}$.	BTL -2	Understanding
19.	Define difference quotient of a function y (x)	BTL -1	Remembering
20.	Evaluate the explicit finite difference scheme for one dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$.	BTL -5	Evaluating
	PART -B		,
1.(a)	Evaluate the pivotal values of the equation $U_{tt} = 16 U_{xx}$ taking $\Delta x = 1$ up to $t = 1.25$. The boundary conditions are $u(0,t) = u(5,t) = 0$, $u_t(x,0) = 0$ & $u(x,0) = x^2(5-x)$	BTL -5	Evaluating
1. (b)	Solve y" – y = x, $0 < x < 1$, given $y(0) = y(1) = 0$, using finite difference method dividing the interval into 4 equal parts.	BTL -4	Analyzing
2. (a)	Solve by Crank – Nicholson's method the equation $16~U_t = U_{xx}$ $0 < x < 1$ and $t > 0$ subject to $u(x, 0) = 0$, $u(0, t) = 0$ and $u(1, t) = 100~t$. Compute one time step, taking $\Delta x = \frac{1}{4}$ and $\Delta t = 1$.	BTL -3	Applying
2.(b)	Solve $y_{tt} = 4y_{xx}$ subject to the condition $y(0,t) = 0$; $y(2,t) = 0$; $y(x,0) = x(2-x)$; $u_t(x,0) = 0$, Do 4 steps. Find the values up to 2 decimal accuracy.	BTL -2	Understanding
3. (a)	Solve the boundary value problem x^2 y " $-2y + x = 0$ subject to y(2) =0 = y(3), find y (2.25) by finite difference method.	BTL -2	Understanding
3.(b)	Solve $25\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$, $\frac{\partial u}{\partial t}(x,0) = 0$ $u(0,t) = 0$, $u(5,t) = 0$ $u(x,0) = \begin{cases} 2x, 0 \le x \le 2.5 \\ 10 - 2x, 2.5 \le x \le 5 \end{cases}$ by the method derived above taking h = 1 and for one period of vibration, (i.e. up to t = 2)	BTL -3	Applying
4.	Solve the elliptic equation $U_{xx} + Uyy = 0$ for the following square mesh with boundary values as shown , using Liebman's iteration procedure. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BTL -3	Applying

	8.7 12.1 12.8		
	0.7 12.1 12.0		
5.	Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the initial conditions $u(0,t) = u(1,t) = 0$, $u(x,0) = \sin \pi x$, $0 \le x \le 1$, using Crank-Nicolson method.	BTL -4	Analyzing
6.	Solve the Laplace equation $U_{xx}+U_{yy}=0$ for the following square mesh with the boundary values as shown in the figure below. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BTL -2	Understanding
7.	Solve $U_{xx} + U_{yy} = 0$ over the square region of side 4, satisfying the boundary conditions (i) $u(0,y) = 0$, $0 \le x \le 4$, (ii) $u(4,y) = 12 + y$, $0 \le x \le 4$, (iii) $u(x,0) = 3x$, $0 \le x \le 4$, (iv) $u(x,4) = x^2$, $0 \le x \le 4$, By dividing the square into 16 square meshes of side 1 and always correcting the computed values to two places of decimals, obtain the values of u at 9 interior pivotal points.	BTL -5	Evaluating
8.	Solve the equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square mesh with sides $x = 0$, $y = 0$, $x = 3$ and $y = 3$ with $u = 0$ on the boundary and mesh length is 1.	BTL -4	Analyzing
9.	Solve $\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}$ with the boundary conditions $u(0,t) = 0$, $u(4,t) = 0$ and the initial conditions $u_t(x,0) = 0$ & $u(x,0) = x(4-x)$ by taking $h = 1$ (for 4 times steps)	BTL -3	Applying
10.	Solve: $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, given $u(0,t) = 0, u(4,t) = 0, u(x,0) = x(4-x)$, taking $h = 1$ (for 4 times steps)	BTL -3	Applying
11.	Solve the Poisson equation $U_{xx} + U_{yy} = -81xy$, $0 < x < 1$, $0 < y < 1$ given that $u(0,y)=0$, $u(1,y)=100$, $u(x,0)=0$, $u(x,1)=100$ and $h=1/3$.	BTL -3	Applying
12.	Solve $\nabla^2 u = 8x^2y^2$ Over the square x=-2, x=2, y=-2, y=2 with u=0 on the boundary and mesh length =1.	BTL -3	Applying
13.	Solve by Crank-Nicolson's method $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ For $0 < x < 1$, $t > 0$, $u(0,t)=0$, $u(1,t)=0$, $U(x,0)=100(x-x^2)$. Compute u for one time step. $h=1/4$.	BTL -3	Applying
14.	Solve $U_{xx}+U_{yy}=0$ in $0 \le x \le 4$, $0 \le y \le 4$ given that $u(0,y)=0$, $u(4,y)=8+2y$, $u(x,0)=x^2/2$, $u(x,4)=x^2$ taking $h=k=1$. Obtain the result correct of 1 decimal.	BTL -3	Applying
	PART C		

1.	Given the values of $u(x, y)$ on the boundary of the square in figure, evaluate the function $u(x,y)$ satisfying the Laplace equation $U_{xx} + U_{yy} = 0$ at the pivotal points of this figure by Gauss seidel method		
	1000 1000 1000 1000		
	2000 500	BTL -5	Evaluating
	2000 0		
	1000 500 0		
	1000 500 0 0		
2.	Solve $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$ subject to the following conditions $u(0,t)=0$,		
	$u(1,t)=0$, t>0 and $\frac{\partial u}{\partial x}(x,0) = 0$ $u(x,0) = \sin^3 \pi x$ for all in $0 \le x \le 1$.	BTL -3	Applying
	Taking h=1/4. Compute u for 4 time steps.		
3.	Using Bender Schmidt formula solve : $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ given u(0,t)=0,	· · · · · · · · · · · · · · · · · · ·	
	$u(5,t)=0$, $u(x,0)=x^2(25-x^2)$, assuming $\Delta x=1$. Find the	BTL -3	Applying
	value of u upto t =5.		
4.	Solve $U_{xx} + U_{yy} = 8 x^2 y^2$ in the square mesh given $u = 0$ on the four boundaries dividing the square into 16 sub squares of length 1 unit.	BTL -3	Applying

