SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)

S.R.M. Nagar, Kattankulathur - 603203

DEPARTMENT OF MATHEMATICS

IV SEMESTER

B.E - COMPUTER SCIENCE ENGINEERING B.Tech - INFORMATION TECHNOLOGY B.E - CYBER SECURITY

1918402 – PROBABILITY AND QUEUEING THEORY

Regulation - 2019

Academic Year – 2021 - 22

Prepared by Dr. T. ISAIYARASI / AP Mathematics Mr. N. SUNDARAKANNAN / AP Mathematics Mr. L. MOHAN / AP Mathematics

SRMVALLIAMMAI ENGNIEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603203.

DEPARTMENT OF MATHEMATICS

S.No	QUESTIONS	BTLevel	Competence					
UNIT	I RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS		9L+3T					
Randor	m Variables - Discrete and continuous random variables – Moments – Moment g	generating fur	nctions -					
Binom	ial, Poisson, Geometric, Uniform, Exponential and Normal distribution							
	Part - A (2 MARK QUESTIONS)							
1.	Define Discrete Random variables	BTL1	Remembering					
2.	If $f(x) = K (x + x^2)$ in $1 < x < 5$ is a pdf of a continuous random variables. Find the value of K.	BTL1	Remembering					
3.	Define Continuous Random variables.	BTL1	Remembering					
4.	The mean of Binomial distribution is 20 and standard deviation is 4. Find the parameters of the distribution.	BTL1	Remembering					
5.	If 3% of the electric bulbs manufactured by a company are defective, Find the probability that in a sample of 100 bulbs exactly 5 bulbs are defective.	BTL1	Remembering					
6.	Suppose that, on an average , in every three pages of a book there is one typographical error. If the number of typographical errors on a single page of the book is a Poisson random variable. What is the probability if at least one error on a specific page of the book?	BTL1	Remembering					
7.	The probability that a candidate can pass in an examination is 0.6. What is the probability that he will pass in third trial?	BTL2	Understanding					
8.	Define Moment Generating function of a random variable.	BTL2	Understanding					
9.	Suppose that the life of industrial lamp(in thousands of hours) is exponentially distributed with mean life of 3000 hours, find the probability that the lamp will last between 2000 and 3000 hours.	BTL2	Understanding					
10.	State the memory less property of the exponential distribution.	BTL2	Understanding					
11.	If a random variable X has the MGF $M_X(t) = \frac{2}{2-t}$. Find the mean of X.	BTL3	Applying					
12.	Show that the function $f(x) = \begin{cases} e^{-x}, x \ge 0\\ 0, x < 0 \end{cases}$ is a probability density function of a continuous random variable X.	BTL3	Applying					
13.	Find the MGF of Uniform distribution.	BTL3	Applying					
14.	The number of hardware failures of a computer system in a week of operations has the following p.d.f, Find the mean of the number of failures in a week.No.of failures0123456Probability.18.28.25.18.06.04.01	BTL4	Analyzing					
15.	The number of hardware failures of a computer system in a week of operations has the following p.d.f, Calculate the value of K.No.of failures0123456ProbabilityK2K2K3K4K	BTL4	Analyzing					
16.	A continuous random variable X has p.d.f $f(x) = 2x$, $0 \le x \le 1$. Find $P(X > 05)$.	BTL4	Analyzing					
17.	The p.d.f of a continuous random variable X is $f(x) = k(1 + x), 2 < x < 5$, Find k.	BTL5	Evaluating					
18.	For a continuous distribution $f(x) = k(x - x^2), 0 \le x \le 1$, where k is a	BTL5	Evaluating					

	constant. Find <i>k</i> .		
19.	If $f(x) = kx^2$, $0 < x < 3$, is to be a density function, find the value of k.	BTL6	Creating
20.	If the pdf of a RV is $f(x) = \frac{x}{2}$, $0 \le x \le 2$, find $P(X > 1.5)$.	BTL6	Creating
	Part – B (13 MARK QUESTIONS)		
1.	(a) If the discrete random variable X has the probability function given by the table.		
	x 1 2 3 4	BTL1	Remembering
	$P(x) \qquad k/3 \qquad k/6 \qquad k/3 \qquad k/6$		-
	Find the value of k and Cumulative distribution of X.		
	(b) Find the MGF of Binomial distribution and hence find its mean and	BTL2	Understanding
2	Variance		6
۷.	(a) The atoms of a factoactive element are fandomly disintegrating. If every gram of this element, on average, emits 3.9 alpha particles per second, then		
	what is the probability that during the next second the number of alpha	BTL1	Remembering
	particles emitted from 1 gram is (1) at most 6 (2) at least 2 and (3) at least		6
	and atmost5		
	(b)Find the MGF of Geometric distribution and hence find its mean and	BTL1	Remembering
2	variance		6
3.	(a) The number of monthly breakdowns of a computer is a random variable having a Poisson distribution with mean equal to 1.8. Find the probability		
	that this computer will function for a month (1) without breakdown (2) with	BTL2	Understanding
	only one breakdown and (3) with at least one breakdown.		
	(b) Find the MGF of Uniform distribution and hence find its mean and	BTI 3	Applying
	variance SRM	DILS	Apprying
4.	(a) A random variable X has the following probability distribution: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BTL2	Understanding
	(b) Derive the MGF of Poisson distribution and hence find its mean and variance	BTL4	Analyzing
5.	(a)The probability mass function of a discrete R. V X is given in the		
	following table:		
	X -2 -1 0 1 2 3	BTL3	Understanding
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	Find (1) Find the value of k, (2) $P(X<1)$,(3) $P(-1 \le X \le 2)$		
	(b) Find the MOF of Exponential distribution and hence find its mean and	BTL5	Evaluating
6	The probability mass function of a discrete P V V is given in the following		
0.	table		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	BTL2	Understanding
	Find (i) the value of a (ii) $P(X < 3)$ (iii) Mean of X. (iv) Variance of		
	X.		
7.	(a) The probability mass function of a RV X is given by $P(X = r) = kr^3$,	BTI 5	
	$r = 1,2,3,4$. Find (1) the value of k, $(2)P(\frac{1}{2} < X < \frac{5}{2}/X > 1)$		Evaluating
	(b) State and Prove the memory loss property of Exponential distribution		TT 1 . 1
	(b) State and Frove the memory less property of Exponential distribution	BTL2	Understanding

8.	(a) Find the mean and variance of the following probability distribution							on			
	Xi	1	2	3	4	5	6	7	8	BTL4	Analyzing
	Pi	0.08	0.12	0.19	0.24	0.16	0.10	0.07	0.04	DILI	8
	(b) State	e and Pro	ve the m	emory le	ss prope	rty of Ge	ometric d	listributi	on.	BTL5	Evaluating
9.	(a) Mes of 6 per hour, no within c	sages arri hour. Fi message one hour.	nge rate hin one rive	BTL1	Remembering						
	 (b) 4 coins were tossed simultaneously. What is the probability of getting (i) 2 heads, (ii) atleast 2 heads, (iii) at most 2 heads. 									BTL6	Creating
10.	The pro P[$X = j$ (3) P(X	bability d	listributio = 1,2,3. (4) P	on of an i) Find ((X is div	infinite d 1) Meau isible by	liscrete d n of X, (2 7 3)	istributio 2) P [X is	n is give even],	n by	BTL4	Analyzing
11.	(a) A no Find P(formal dist $15 \le X \le X$	ribution ≤ 40).	has mean	$\mu = 20$) and stan	dard dev	iation σ	= 10.	BTL1	Remembering
	(b)Find function	the MGF $f(x) = \begin{cases} \\ \\ \\ \\ \end{cases}$	f of the ratio $\frac{x}{4}e^{-\frac{x}{2}}$, 0	andom va $x > 0$	ariable X) . Also e . 📢	having t find the	he proba	bility der d variand	nsity ce.	BTL2	Understanding
12.	(a) Suppose that the life of a industrial lamp in 1,000 of hours is exponentially distributed with mean life of 3,000 hours. Find the probability that (i)The lamp last more than the mean life (ii) The lamp last between 2,000 and 3,000 hours (iii) The lamp last another 1,000 hours given that it has already lasted for 250 hours						bability een hat it	BTL2	Understanding		
	(b)Assu Determine 10,(ii) a	me that 5 ine the pr tleast 15	0% of al obabilitio are good	l enginee es that ar in mathe	erin <mark>g s</mark> tue nong 18 ema <mark>tics</mark> .	dents are engineer	good in 1 ing stude	nathema nts (i) e	tics. exactly	BTL1	Remembering
13.	(a) The life (in years) of a certain electrical switch has an exponential distribution with an average life of $\frac{1}{\lambda} = 2$. If 100 of these switches are installed in different systems; find the probability that at most 30 fail during the first year						l re during	BTL1	Remembering		
	(b)Let X Determining function	K be a Un ine (i) P(X n of X (iformly $C \le 2$, (iv) Var(2)	listribute ii) P(X K)	ed R. V. e > 2) (ii	over [-5, ii) Cumul	5]. lative dist	tribution		BTL1	Remembering
14.	In a test was nor Deviation than 212 less that	t on 2000 mally dis on of 60 h 50 hours n 2160 ho	electric l tributed nours. Fr (ii) less t purs.	bulbs, it with an a and the number of the second se	was foun iverage 1 umber of) hours a	nd that the ife of 204 f bulbs lik nd (iii) m	e life of a 40 hours cely to bu hore than	particul and Stan Irn for (i 1920 ho	ar make, dard) moe urs bus	BTL1	Remembering
			PAR'	Г С(15 М	Aark Qu	estions)					
Q.No					Question	n				BT Level	Competence
1.	Out of 2 expect t	2000 fami to have i)	ilies with at least	1 4 childr 1 boy ii)	en each, 2 boys i	Find hov ii) 1 or 2	w many f girls iv)	amily w no girls	ould you	BTL1	Remembering
2.	If a rand Find (a)	$\frac{1}{P(X < 1)}$	ble X ha	s p.d.f f	$(x) = \begin{cases} \\ \\ \end{pmatrix} (c) P(c) \end{cases}$	$\frac{1}{4}, X $ $0, Othe$ $(2X+3)$	< 2 erwise > 5).			BTL6	Evaluating

3.	In an Engineering examination, a student is considered to have failed, secured second class, first class and distinction, according as he scores less		
	than 45%, between 45% and 60% between 60% and 75% and above	BTL2	Understanding
	75% respectively. In a particular year 10% of the students failed in the		
	examination and 5% of the students get distinction. Find the percentage of		
	students who have got first class and second class. Assume normal		
	distribution of marks.		
4.	Buses arrive at a specified stop at 15 minutes interval starting at 6 AM ie		
	they arrive at 6 AM, 6.15AM, 6.30 AM and so on. If a passenger arrives at	BTL2	Understanding
	the stop at a time that is uniformly distributed between 6 and 6.30 AM. Find		
	the probability that he waits (i) Less than 5 minutes for a bus. (ii) More than		
	10 minutes for a bus.		
TINTER :		01.07	

UNIT II TWO – DIMENSIONAL RANDOM VARIABLES

9L+3T

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression – Transformation of random variables – Central limit theorem (for independent and identically distributed random variables).

PART-A						
1.	Define Two dimensional Discrete random variables.	BTL4	Analyzing			
2.	Define Two dimensional Continuous random variables.	BTL1	Remembering			
3.	The joint probability distribution of X and Y is given by $p(x, y) = \frac{x+y}{21}$, $x = 1,2,3$; $y = 1, 2$. Find the marginal probability distributions of X.	BTL2	Understanding			
4.	Find the probability distribution of X + Y from the bivariate distribution of (X,Y) given below: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BTL1	Remembering			
5.	The joint probability function (X,Y) is given by $P(x,y) = k(2x + 3y)$, $x = 0,1,2$ $y = 1,2,3$, Find the value of K.	BTL1	Remembering			
6.	Y 0 1 2 0 0.1 0.4 0.1 1 0.2 0.2 0	BTL1	Remembering			
7.	If the joint pdf of (X, Y) is $f(x, y) = \begin{cases} \frac{1}{4}, & 0 < x, y < 2\\ 0, & otherwise \end{cases}$. Find $P(X + Y \le 1)$	BTL2	Understanding			
8.	Let X and Y be random variables with joint density function $f(x,y) = \begin{cases} 4xy, & 0 < x < 1, & 0 < y < 1 \\ 0, & otherwise \end{cases}$ formulate the value of E(XY)	BTL2	Understanding			
9.	If the joint probability density function of a random variable X and Y is given by $f(x, y) = \begin{cases} \frac{x^3 y^3}{16}, & 0 < x < 2, \\ 0, & otherwise \end{cases}$. Find the marginal density function of X.	BTL2	Understanding			
10	What is the condition for two random variables are independent?	BTL2	Understanding			
11.	The joint probability density of a two dimensional random variable (X,Y) is	BTL3	Applying			

	given by $f(x, y) = \begin{cases} kxe^{-y}; 0 \le x < 2, y > 0\\ 0, & otherwise \end{cases}$. Evaluate k.		
12.	The joint probability density function of a random varaiable (X, Y) is $f(x, y) = k e^{-(2x+3y)}, x \ge 0, y \ge 0$. Find the value of k.	BTL3	Applying
13.	State the correlation coefficient formula.	BTL3	Applying
14.	The regression equations are $x + 6y = 14$ and $2x + 3y = 1$. Find the correlation coefficient between X & Y.	BTL4	Analyzing
15.	If $\bar{X} = 970$, $\bar{Y} = 18$, $\sigma_x = 38$, $\sigma_y = 2$ and $r = 0.6$, Find the line of regression of X on Y.	BTL4	Analyzing
16.	In a partially destroyed laboratory, record of an analysis of correlation data, the following results only are legible; Varaince of $X = 9$; Regression equations are $8X - 10Y + 66 = 0$ and $40X-18Y = 214$. Find the mean values of X and Y?	BTL4	Analyzing
17.	The regression equations are $3x + 2y = 26$ and $6x + y = 31$. Find the correlation coefficient.	BTL5	Evaluating
18.	Define Marginal probability density function of X.	BTL5	Evaluating
19.	What is the formula to find the acute angle between the two lines of regression?	BTL6	Creating
20.	State Central Limit Theorem.	BTL6	Creating
	Part – B (16 Mark Questions)		
1.	If X, Y are RV's having the joint density function f(x, y) = k(6-x-y), 0 < x < 2, 2 < y < 4, Find (<i>i</i>) $P(x < 1, y < 3)$ <i>ii</i>) $P(x < 1/y < 3)$ <i>iii</i>) $P(y < 3/x < 1)$ <i>iv</i>) $P(X + Y < 3)$	BTL1	Remembering
	(a) The joint distribution of X and Y is given by $f(x, y) = \frac{x+y}{21}$, $x = 1,2,3; y = 1,2$. Find the marginal distributions of X and Y.	BTL1	Remembering
2	(b) The joint pdf a bivariate R.V(X, Y) is given by $f(x, y) = \begin{cases} Kxy & 0 < x < 1, 0 < y < 1 \\ 0 & 0 & otherwise \end{cases}$ Find K. (2) Find P(X+Y<1). (3)Are X and Y independent R.V's.	BTL2	Understanding
3.	(a)If the joint pdf of (X, Y) is given by $P(x, y) = K(2x+3y)$, x=0, 1, 2, 3, y = 1, 2, 3 Find all the marginal probability distribution. Also find the probability distribution of X+Y.	BTL1	Remembering
	(b)The joint pdf of X and Y is given by $f(x,y) = \begin{cases} kx(x-y), 0 < x < 2, -x < y < x \\ 0, & otherwise \end{cases}$ (i)Find K (ii) Find $f_x(x)$ and $f_y(y)$	BTL3	Applying
4.	The joint pdf of a two dimensional random variable (X, Y) is given by $f(x, y) = xy^2 + \frac{x^2}{8}, 0 \le x \le 2, 0 \le y \le 1$. Compute (i) $P\left(X > 1 / Y < \frac{1}{2}\right)$ (ii) $P\left(Y < \frac{1}{2}/X > 1\right)$ (iii) $P(X + Y) \le 1$.	BTL2	Understanding

	From the following table for bivariate distribution of (X, Y). Find (i) $P(X \le 1)$ (ii) $P(Y \le 3)$ (iii) $P(X \le 1, Y \le 3)$ (iv) $P(X \le 1/X \le 3)$ (v) $P(X \le 3/X \le 1)$ (vi) $P(X + X \le 4)$									
	Y X	1/1 5	2	3	4	5	6			
5.	0	0	0	$\frac{1}{32}$	$\frac{2}{32}$	2 32	$\frac{3}{32}$		BTL2	Understanding
	1	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$			
	2	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{64}$	$\frac{1}{64}$	0	$\frac{2}{64}$			
6.	(a)The two dimensional random variable (X, Y) has the joint probability mass function $f(x, y) = \frac{x+2y}{27}$, $x = 0,1,2$; $y = 0,1,2$. Find the conditional distribution of Y given X = 1 also find the conditional distribution of X given Y = 1								BTL1	Remembering
	(b)Find P f(x, y) =	$(X < Y/X)$ $e^{-(x+y)}, 0$	$< 2Y$) if $\leq x < \infty$,	the joint p $0 \le y \le$	df of(<i>X</i> , <i>Y</i>)) is			BTL6	Creating
7.	If the joint pdf of a two-dimensional RV(X,Y) is given by $f(x,y) = \begin{cases} x^2 + \frac{xy}{3}; 0 < x < 1, 0 < y < 2\\ 0, \ elsewhere\\ (ii) \ P(Y < \frac{1}{2}, X < \frac{1}{2}) (iii) \ P\left(Y < \frac{1}{2} / X < \frac{1}{2}\right) \end{cases}$ Find (i) $P\left(X > \frac{1}{2}\right)$								BTL5	Evaluating
8.	If $f(x,y) = \frac{6-x-y}{8}$, $0 \le x \le 2$, $2 \le y \le 4$ for a bivariate random variable (X,Y). Find the correlation coefficient a								BTL3	Applying
9.	(a) If X_1, X_1 theorem $\cdots + X_n$	$X_2, X_3, \cdots X_n$ n to estime and n=75.	are Poiss te <i>P</i> (120	on variates $< S_n < 10$	s with mea 60) where	$x_n 2$, use ce $S_n = X_1 + X_1$	entral limit $X_2 + X_3$	+	BTL2	Understanding
	(b) Find the Coefficient of Correlation between industrial production and export using the following table :Production (X)1417232125Export (Y)1012152023								BTL5	Evaluating
10.	Find the constant x of son when X of x of y of x	orrelation of d also find en the heig 66 67 68 65	coefficient the equati ht of fathe 67 68 68 72	for the following ons of regr r is 71 69 7 72 6	llowing he ression line 0 72 9 71	eights of fa es. Hence	thers X, th find the he	neir eight	BTL4	Analyzing
11	(a)The equ is as follow Calculate	tation of two ws: $3x + 12$ the correla	vo regress 2y = 19, 3 ation coeff	ion lines o y + 9x = 46 icient.	btained by 5. (i)	y in a corre Mean valu	lation anal e of X&Y	ysis 7. (ii)	BTL1	Remembering
11.	(b) Two ra density fur probability	andom vari nction $f(x)$	ables X ar $(y) = \begin{cases} x \\ y \end{cases}$	$\begin{array}{l} \text{id Y have} \\ + y; 0 \le x \\ 0, ot \\ \text{the randor} \end{array}$	the follow $\leq 1, 0 \leq herwise$ n variable	$\frac{y \leq 1}{U = XY}.$	robability nd the		BTL6	Creating

12.	If X and Y independent Random Variables with pdf e^{-x} , $x \ge 0$ and e^{-y} , $y \ge 0$. Find the density function of $U = \frac{X}{X+Y}$ and $V = X+Y$. Are	BTL1	Remembering
	they independent?		
13.	(a) If X and Y each follow an exponential distribution with parameter 1 and are independent, find the pdf of $U = X-Y$.	BTL2	Understanding
	(b) 20 dice are thrown. Find the approximate probability that the sum obtained is between 65 and 75 using central limit theorem.	BTL3	Applying
14.	Two random variables X and Y have the joint density function $f(x, y) = x + y, 0 \le x \le 1, 0 \le y \le 1$. Calculate the Correlation coefficient between X and Y.	BTL3	Applying
	PART-C		
1.	The lifetime of a certain brand of an electric bulb may be considered a RV with mean 1200h and standard deviation 250h. Find the probability, using central limit theorem, that the average life time of 60 bulbs exceeds 1250 h.	BTL -4	Analyzing
2.	Three balls are drawn at random without replacement from a box containing 2 white, 3 red and 4 blue balls. If X denotes the number of white balls drawn and Y denotes the number of red balls drawn, Find the probability distribution of X and Y.	BTL -1	Remembering
3.	From the following data, Find (i)The two regression equations (ii) The coefficient of correlation between the marks in Mathematics and Statistics (iii) The most likely marks in Statistics when marks in Mathematics are 30 Marks in Maths: 25 28 35 32 31 36 29 38 34 32 Marks in Statistics: 43 46 49 41 36 32 31 30 33 39	BTL -2	Understanding
4.	Out of the two lines of regression given by $x + 2y - 5 = 0$ and $2x + 3y - 8 = 0$, which one is the regression line of X on Y? Use the equations to find the means of X and Y. If the variance of X is 12, find the variance of Y.	BTL -2	Understanding
UNIT]	III: RANDOM PROCESSES	9L+3T	
Classif	ication – Stationary process – Markoy process – Poisson process – Discrete para	meter Marko	v chain –
Chapm	an Kolmogorov equations – Limiting distributions.		
1	Part – A (2 Mark Questions)		
1	Define Discrete Random Process with example	BTL1	Remembering
2.	Define continuous random process. Give an example.	BTL1	Remembering
3.	Define wide sense stationary process.	BTL1	Remembering
4.	State and two properties of Poisson process.	BTL1	Remembering
5.	What are the four types of a stochastic process?	BTL1	Remembering
6.	Consider the Markov chain with 2 states and transition probability matrix	+	
	$P = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$. Find the stationary probabilities of the chain.	BTL5	Evaluating
7.	The one-step transition probability matrix of a Markov chain with states (0,1) is given by $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Check whether it is irreducible Markov chain?	BTL6	Creating

8.	Find the transition matrix of the following transition diagram.		
	0.5		
	V 01 702 7	BTL6	Creating
	0.3 0.4		
	<i>Y</i>		
0	0.5		
9.	Show that the random process $X(t) = A\cos(\omega_c t + \theta)$ is not stationary if it is		
	assumed that A and ω_c are constants and θ is a uniformly distributed	BTL3	Applying
10	variable on the interval $(0,\pi)$.		Analyzing
10.	Define Poisson process	BTL4 BTL2	Analyzing Understanding
11.	Check whether the Markov chain with transition probability matrix	DIL2	Onderstanding
		RTI /	Analyzing
	$P = \begin{bmatrix} 1/2 & 0 & 1/2 \end{bmatrix}$ is irreducible or not?	DIL4	Anaryzing
12	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ Consider the random process $\mathbf{Y}(t) = aos(t + \phi)$ where ϕ is uniform random		
15.	Consider the random process $X(t) = \cos(t + \phi)$, where ϕ is dimornination	BTL5	Evaluating
	variable in $\binom{-n}{2}, \binom{n}{2}$. Check whether the process is stationary.		0
14.	Define Strict Sense Stationary Process.	BTL3	Applying
15	Find the mean of a stationary random process whose auto correlation		
	function is given by $R_{XX}(\tau) = 18 + \frac{2}{2}$	BTL2	Understanding
1.5	$6+\tau^2$ SRM		
16.	Derive the auto correlation for a Poisson process with rate λ .	BTL4	Analyzing
17.	A random process X (t) = A sin t + B cos t where A and B are independent		A na latin a
	mean of the process	DILS	Applying
18.	Define a Markov chain.	BTL1	Remembering
19.	State Chapman Kolmogorov theorem.	BTL2	Understanding
20.	Find the mean of a stationary random process whose auto correlation		
	function is given by $P = \frac{25Z^2 + 36}{25Z^2 + 36}$	BTL2	Understanding
	$R_{(Z)} = \frac{1}{6.25Z^2 + 4}$		
	Part B: 13 - MARK QUESTIONS		
1.	The process $\{X(t)\}$ whose probability distribution under certain conditions is		
	$(at)^{n-1}$ $n-1$ 2		
	given by $P\{X(t) = n\} = \begin{cases} \frac{1}{(1+at)^{n+1}}, n=1,2 \\ \frac{1}{(1+at)^{n+1}} \end{cases}$ Show that it is not stationary	BTL3	Applying
	$\begin{bmatrix} g(v) & oy & f(x(t) - n) \end{bmatrix} = \begin{bmatrix} a & b & b & other interval is not stationary. \\ at & n = 0 \end{bmatrix}$		
	$\left(\frac{1+at}{(1+at)}, n=0\right)$		
2.	The transition probability matrix of a Markov chain $\{X_n\}$, $n = 1, 2, 3,$		
	$\begin{bmatrix} 0.1 & 0.5 & 0.4 \end{bmatrix}$		
	having 3 states 1,2 and 3 is $P = \begin{bmatrix} 0.6 & 0.2 & 0.2 \end{bmatrix}$ and the initial distribution is		
	0.3 0.4 0.3	BTL5	Evaluating
	$P(0) = (0.7, 0.2, 0.1)$. Evaluate i) $P(X_2 = 3)$		
	ii) $P(X_2 = 2, X_2 = 3, X_1 = 3, X_2 = 2)$		
3	Show that the random process $V(t) = A \sin(\alpha t + 0)$ is wide sone stationary		
5.	process where A and ω are constants and θ is uniformly distributed in	BTL3	Applying

	(0, 2π).		
4.	(a) Given that the random process $X(t) = \cos(t + \varphi)$ where φ is a random variable with density function $f(x) = \frac{1}{\pi}, \frac{-\pi}{2} < \varphi < \frac{\pi}{2}$. Check whether the process is stationary or not.	BTL2	Understanding
	(b) Find the mean and autocorrelation of the Poisson processes		
5.	(a) Consider a random process $X(t) = B \cos (50 t + \Phi)$ where B and Φ are independent random variables. B is a random variable with mean 0 and variance 1. Φ is uniformly distributed in the interval $[-\pi,\pi]$. Find the mean and auto correlation of the process.	BTL1	Remembering
	(b) Let {X _n : n = 1,2,3} be a Markov chain on the space S = {1,2,3} with one step t.p.m $P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 \end{bmatrix}$ 1.Sketch the transition diagram, 2. Is the chain irreducible? Explain.	BTL5	Evaluating
6.	3. Is the chain ergodic? Explain. Show that the random process $X(t) = A \cos(\omega t + \theta)$ is wide sense stationary, if A and ω are constant and θ is a uniformly distributed random variable in	BTL1	Remembering
7.	(0, 2π). (a) Three boys A, B and C are throwing a ball to each other. A always throws the ball to B and B always throws the ball to C but C is just as likely to throw the ball to B as to A. Show that the process is Markovian. Find the transition probability matrix and classify the states.	BTL2	Understanding
	(b) If the customers arrive in accordance with the Poisson process, with rate of 2 per minute, Find the probability that the interval between 2 consecutive arrivals is (i) more than 1 minute, (ii) between 1 and 2 minutes, (iii) less than 4 minutes.	BTL1	Remembering
8.	The probability of a dry day following a rainy day is 1/3 and theat the probability of a rainy day following a dry day is 1/2. Given that May 1 st is a dry day. Find the probability that May 3 rd is a dry day also May 5 th is a dry day.	BTL4	Analyzing
9.	(a) An engineer analyzing a series of digital signals generated by at testing system observes that only 1 out of 15 highly distorted signal with no recognizable signal whereas 20 out of 23 recognized signals follow recognizable signals with no highly distorted signals between. Given that only highly distorted signals are not recognizable, find the fraction of signals that are highly distorted.	BTL4	Analyzing
	(b)Prove that the sum of two independent Poisson process is a Poisson process.	BTL3	Applying
10.	(a)Check whether the Poisson process $X(t)$ given by the probability law $P\{X(t) = n\} = \frac{e^{-\lambda t} (\lambda t)^n}{n!}, n = 0, 1, 2, \dots$ is stationary or not.	BTL6	Creating
	(b) A salesman's territory consists of three regions A, B, C. He never sells in the same region on successive days. If he sells in region A, then the next day he sells in B. However, if he sells either B or C, then the next day he is twice as likely to sell in A as in the other region. Explain How often does he sell in each of the regions in the steady state?	BTL4	Analyzing
11.	(a) Prove that the difference of two independent Poisson process is not a Poisson process.	BTL3	Applying

	(b)Consider a Markov chain chain $\{X_n, n=0, 1, 2, \dots\}$ having states space		
	S={ 1,2} and one step TPM $P = \begin{bmatrix} \frac{4}{10} & \frac{6}{10} \\ \frac{8}{10} & \frac{2}{10} \end{bmatrix}$. (1) Draw a transition diagram, (2) Is the chain irreducible? (3) Is the state -1 ergodic? Explain. (4) Is the chain ergodic? Explain	BTL5	Evaluating
12.	(a) Show that the random process $X(t) = A \cos(\omega t + \theta)$ is not stationary if A and ω are constants and θ is uniformly distributed random variable in $(0, \pi)$.	BTL3	Applying
	(b) At an intersection, a working traffic light will be out of order the next day with probability 0.07, and an out of order traffic light will be working on the next day with probability 0.88. Find the state space and tpm. Also find $P(X_2=1)$.	BTL1	Remembering
13.	Consider the Markov chain $\{X_n, n=0, 1, 2, 3,\}$ having 3 states space $S=\{1,2,3\} \text{ and one step TPM } P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix}$ and initial probability distribution P(X_0=i)=1/3, i= 1,2,3. Compute (1) P(X_3=2, X_2=1,X_1=2/X_0=1) (2) P(X_3=2, X_2=1/X_1=2,X_0=1) (3) P(X_2=2/X_0=2) (4) Invariant Probabilities of the Markov Chain.	BTL6	Creating
14.	Consider the random process $Y(t) = X(t) \cos(\omega_0 t + \theta)$, where $X(t)$ is wide sense stationary process, θ is a Uniformly distributed R.V. over $(-\pi, \pi)$ and ω_0 is a constant. It is assumed that $X(t)$ and θ are independent. Show that $Y(t)$ is a wide sense stationary.	BTL3	Applying
	Part C: 15 - MARK QUESTIONS		
1.	On a given day, a retired English professor, Dr. Charles Fish amuses himself with only one of the following activities reading (i), gardening (ii) or working on his book about a river valley (iii) for $1 \le i \le 3$, let $X_n = i$, if Dr. Fish devotes day <i>n</i> to activity <i>i</i> . Suppose that $\{X_n : n=1,2\}$ is a Markov chain, and depending on which of these activities on the next day is given by the t. p. m $P = \begin{bmatrix} 0.30 & 0.25 & 0.45 \\ 0.40 & 0.10 & 0.50 \\ 0.25 & 0.40 & 0.35 \end{bmatrix}$ Find the proportion of days Dr. Fish devotes to each activity.	BTL1	Remembering
2.	A man either drives a car or catches a train to go to office each day. He never goes 2 days in a row by train but if he drives one day, then the next day he is just as likely to drive again as he is to travel by train. Now suppose that on the first day of the week, the man tossed a fair die and drove to work if and only if 6 appeared. Find (i) the probability that he takes a train on the third day (ii) the probability that he drives to work in the long run.	BTL2	Understanding

3.	 A machine goes out of order whenever a component fails. The failure of this part follows a Poisson process with mean rate of 1 per week. Find the probability that 2 weeks have a elapsed since last failure. If there are 5 spare parts of this component in an inventory and that the next supply is not due in 10 weeks, find the probability that the machine will not be out of order in the next 10 weeks. A fair die is tossed repeatedly. If X_n denotes the maximum of the numbers 	BTL5	Evaluating
	occurring in the first n tosses, find the transition probability matrix P of the Markov chain $\{X_n\}$. Find also P $\{X_2=6\}$ and P ² .	BTL6	Creating
UNI	TIV : QUEUEING MODELS	9L+3T	
Mark	ovian queues – Birth and death processes – Single and multiple server queueing n	nodels – Littl	e's formula –
Queu	es with finite waiting rooms – Queues with impatient customers : Balking and rend Port A (2 MARK OUESTIONS)	eging.	
	Tart – A (2 MARK QUESTIONS)		1
1.	State the characteristics of a queueing model.	BTL1	Remembering
2.	Write Kendall's notation for Queueing Model.	BTL2	Understanding
3.	What are the service disciplines available in the queueing model?	BTL1	Remembering
4.	For $(M/M/1)$: $(\infty/FIFO)$ model, Write the Little's formula.	BTL3	Applying
6. 7	Write the formulae for P_0 and P_n in a Poisson queue system in the steady – state.	BIL2	Understanding
7. 8	Define steady state and transient state queueing systems	BTI 2	Understanding
0. 9	Give the formula for average waiting time of a customer in the queue for $(M/M/1)$).	Onderstanding
2.	(K/FIFO).	BTL4	Analyzing
10.	Find the probability that a customer has to wait more than 15 min to get his servi completed in a $(M/M/1)$: (1.2 /EIEO) group system if $\lambda = 6$ ner hour and	ce BTI 3	Applying
	$\mu = 10 \text{ per hour?}$	DILJ	rippiying
11.	If $\lambda = 3$ per hour, $\mu = 4$ per hour and maximum capacity $K = 7$ in a (M/M/1):		
	(K/FIFO) system, Find the average number of customers in the system.	BTL6	Creating
12.	A drive in banking service is modeled as an $M/M/1$ queueing system with a service of 2 per minute. It is desired to have fewer than 5 customer	th BTI 4	Analyzing
	line up 99 percent of the time. How fast should the service rate be?	DIL4	Anaryzing
13.	If people arrive to purchase cinema tickets at the average rate of 6 per minute, takes an average of 7.5 seconds to purchase a ticket. If a person arrives 2 minute	it es	
	before the picture starts and it takes exactly 1.5 minutes to reach the correct se	at BTL1	Remembering
	after purchasing the ticket. What he expect to be seated for the start of the picture	?	
14.	Describe the formula for W_s and W_q for the M/M/1/N queueing system.	BTL4	Analyzing
15.	For $(M/M/C)$: $(N/FIFO)$ model, Write the formula for (a) average number of	BTL5	Evaluating
16	Consider an $M/M/C$ queueing system. Find the probability that an arrivin	nα	
10.	customer is forced to join the queue.	BTL1	Remembering
17.	Draw the transition diagram for $M/M/1$ queueing model.	BTL1	Remembering
18.	If there are 2 servers in an infinite capacity Poisson queue system with $\lambda = 10 p$	er DTI 1	Domoral aria
	<i>hour</i> and $\mu = 15$ <i>per hour</i> , Examine the percentage of idle time for each server?	BILI	Keinembering
19.	A self-service store employs one cashier at its counter. Nine customers arrive of an average every 5 <i>minutes</i> while the cashier can serve 10 customers in 5 <i>minutes</i>	on	
	Assuming Poisson distribution for arrival rate and exponential distribution f	or BTL2	Understanding
	service rate, Find the average time a customer spends in the system.		
20.	In a 3 server infinite capacity Poisson queue model if $\frac{\lambda}{\lambda} = \frac{2}{2}$ Coloulate P_{1}	DTI 2	Creating
	In a 5 server minine capacity roisson queue model if $\frac{1}{\mu C} = \frac{1}{3}$, Calculate P_0 .	DILO	Creating

	PART – B : 13 MARK QUESTIONS		
1.	Arrivals at a telephone booth are considered to be Poisson with an average time of		
	12 min. between one arrival and the next. The length of a phone call is assumed to		
	be distributed exponentially with mean 4 min.		
	a) Find the average number of persons waiting in the system		
	b) What is the probability that a person arriving at the booth will have to wait in		
	the queue?		
	c) What is the probability that it will take him more than 10 min altogether to		
	wait for the phone and complete his call?		
	d) Estimate the fraction of the day when the phone will be in use		
	e) The telephone department will install a second booth, when convinced that an	BTL -2	Understanding
	arrival has to wait on the average for atleast 3 min. for phone .By how much the		C
	flow of arrivals should increase in order to justify a second booth?		
	f)What is the average length of the queue that forms from time to time?		
2	Customers arrive at a one-man barber shop according to a Poisson with a mean		
	inter arrival time of 20 min Customers spend an average of 15 min in the barber's		
	chair		
	1) What is the expected number of customers in the barber shop ?In the Queue?		
	2) What is the probability that a customer will not have to wait for a hair cut?	BTL-3	Applying
	3) How much can a customer expect to spend in the barbershop?	DIE 5	rippijing
	4) What are the average time customers spend in the queue?		
	5) What is the probability that the waiting time in the system is greater than 30		
	6) What is the probability that there are more than 3 customers in the system?		
3	There are three typists in an office. Each typist can type an average of 6 Letters per		
	hour If letters arrive for being typed at the rate of 15 letters per hour,		
	a) What fraction of the time all the typists will be busy ?		
	b) What is the average number of letters waiting to be typed?	BIL -6	Creating
	d) What is the analysicity that a latter will take longer than 20 min, waiting to be		
	tring 2		
1	A bank has two tallers working on savings accounts. The first taller handles		
-	withdrawals only. The second teller handles denosits only. It has been found that		
	the service time distributions for both deposits and withdrawals are exponential		
	with mean time of 3 min per customer. Depositors are found to arrive in Poisson		
	fashion throughout the day with mean arrival rate of 16 per hour Withdrawers also	BTL -4	Analyzing
	arrive in a Poisson fashion with mean arrival rate 14 per hour. What would be the	DIL	7 mary 2mg
	effect on the average waiting time for the customers if each teller handles both		
	withdrawals and deposits? What would be the effect, if this could only be		
	accomplished by increasing the service time to 3.5 min?		
5	A 2 – person barber shop has 5 chair to accommodate waiting customers.Potential		
	customers ,who arrive when all 5 chairs are full, leave without entering barber		A 1 '
	shop. Customers arrive at the average rate of 4 per hour and spend an average of	BIL-3	Applying
	12 min in the barber's chair .Compute P_0 , P_1 , P_7 , $E(N_q)$ and $E(W)$		
6	(a) In a given M / M / 1 queueing system, the average arrivals is 4 customers per		
	minute, $\rho = 0.7$. Find the		
	1) mean number of customers L $_{\rm s}$ in the system	י ודק	Understanding
	2) mean number of customers L_q in the queue	DIL-2	Understanding
	3) probability that the server is idle		
	4) mean waiting time W s in the system.		
	(b) A petrol pump station has 4 pumps. The service times follow the exponential	DTI 1	Domomharing
	distribution with a mean of 6 min and cars arrive for service in a Poisson process	DIL-I	Kemenibernig

	at the rate of 30 cars per hour.		
	(a) What is the probability that an arrival would have to wait in line?		
	(b) Find the average waiting time, average time spent in the system and the		
	(c) For what percentage of time would a nump be idle on an average?		
7	Customers arrive at a wetch repair shop according to a Poisson process at a rote of		
/	customers arrive at a watch repair shop according to a Poisson process at a rate of one per every 10 minutes, and the service time is exponential random variable with		
	8 minutes		
	a) Find the average number of customers L_{α} in the shop	BTL -4	Analyzing
	b) Find the average number of customers L_{α} in the shop :	DIL	i mary zing
	c)Find the average time a customer spends in the system in the shop W_s		
	d)What is the probability that the server is idle ?		
8.	A car servicing station has 2 bays where service can be offered simultaneously.		
	Because of space limitation, only 4 cars are accepted for servicing. The arrival		
	pattern is Poisson with 12 cars per day. The service time in both bays is	חדד 1	Demonstration
	exponentially distributed with $\mu = 8$ cars per day per bay. Write the average	BIL-I	Remembering
	number of cars in the service station , the average number of cars waiting for		
	service time a car spends in the system		
9.	On average 96 patients per (24 hour) day require the service of an emergency		
	clinic. Also an average a patient requires 10 minutes of active attention. Assume		
	that the facility can handle only one emergency at a time. Suppose that it costs the		
	clinic Rs. 100 per patient treated to obtain an average service time of 10 minutes,	BTL -4	Analyzing
	and that each minute of decrease in this average time would cost Rs .10 per patient		
	treated .How much would have to be budgeted by the clinic to decrease the suggestion of the suggestion $1.1/2$ patients to 1/2 patients?		
10	average size of the queue from 1-1/3 patients to /2 patient?		
10.	A supermarket has two girls attending to sales at the counters. If the service time for each customer is exponential with mean 4 min and if neople arrive in Poisson		
	fashion at the rate of 10 per hour		
	a) What is the probability that a customer has to wait for service?	BTL -2	Understanding
	b) What is the expected percentage of idle time for each girl?	212 -	0
	c) If the customer has to wait in the queue, what is the expected length of the		
	waiting time?		
11.	A tele phone exchange has two long distance operators. The telephone company		
	finds that during peak load, long distance calls arrive in a Poisson fashion at an		
	average rate of 15 per hour. The length of service of these calls approximately		
	exponentially distributed with mean length of 5 minutes.		TT 1 1
	(1) What is the probability that a subscriber will have to wait for his long	BTL-2	Understanding
	distance calls during the peack hours of the day?		
	(2) If the subcribers will wait and are serviced in turn, what is the expected		
	waiting time?		
12.	A TV repairman finds that the time spend on his jobs has an exponential		
	distribution with mean 30 minutes. If he repairs sets in the order in which they		
	came in, and if the arrival of sets is approximately Poisson with an average rate of	BTL -1	Remembering
	10 per8 – hour day. What is the repairman's expected idle time in each day? How		
	many jobs are ahead of the average set just brought in?		
13.	The railway marshalling yard is sufficient only for trains (there being 11 lines, one		
	of which is earmarked for the shunting engine to reverse itself from the crest of the		
	hump to the rear of the train). Trains arrive at the rate of 25 trains per day, inter –	BTL -5	Evaluating
	arrival time and service time follow exponential with an average of 30 minutes.		
14	Estimate the probability that the yard is empty. average queue length.		
14.	Derive p_0, L_s, L_q, W_s, W_q for $(M / M / 1) : (\infty / FIFO)$ queueing model	BTL -1	Remembering

Part C : 15 Mark Questions				
1.	A repairman is to be hired to repair machines which breakdown at the average rate of 3 per hour the breakdown follow Poisson distribution. Non –productive time of machine is considered to cost Rs 16/hour. Two repair men have been interviewed. One is slow but cheap while the other is fast and expensive. The slow repairman charges Rs.8 per hour and he services at the rate of 4 per hour The fast repairman demands Rs .10 per hour and services at the average rate 6 per hour. Which repairman should be hired?	BTL -4	Analyzing	
2.	A telephone company is planning to install telephone booths in a new airport It has established the policy that a person should not have to wait more than 10 % of the times he tries to use a phone. The demand for use is estimated to be Poisson with an average of 30 per hour. The average phone call has an exponential distribution with a mean time of 5 min. how many phone should be installed?	BTL -4	Analyzing	
3.	A petrol pump station has 2 pumps. The service times follow the exponential distribution with a mean of 4minutes and cars arrive for service in a Poisson process at the rate of 10 cars per hour. Find the probability that a customer has to wait for service. What proportion of time the pumps remain idle?	BTL -3	Applying	
4.	At a port there are 6 unloading berths and 4 unloading crews. When all the berths are full, arriving ships are diverted to an overflow facility 20 kms.down the river. Tankers arrive according to a Poisson process with a mean of 1 for every 2 hours. It takes for an unloading crew, on the average, 10 <i>hours</i> to unload a tanker, the unloading time follows an exponential distribution Develop and Determine (i)how many tankers are at the port on the average? (ii)how long does a tanker spend at the port on the average? (iii)what is the average arrival rate at the overflow facility?	BTL -6	Creating	
UNI Einit	UNIT V ADVANCED QUEUEING MODELS 9L+3T			
queu	Finite source models – M/G/1 queue – Pollaczek Kninchine formula – M/D/1 and M/E _K /1 as special cases – Series queues – Open Jackson networks.			
	Part A(2 mark questions)			
1.	Express Pollaczek- Khintchine formula.	BTL2	Understanding	
2.	Define effective arrival rate with respect to an (M \mid M \mid 1): (GD / N/ ∞) queuing model.	BTL1	Remembering	
3.	For an M/G/1 model if λ =5 and μ =6 min and σ =1/20, find the length of the queue.	BTL2	Understanding	
4.	A one man barber shop taken 25 mins to complete a hair cut. If customers arrive in a Poisson fashion at an average rate of 1 per 40 minutes find the average length of the queue.	e BTL1	Remembering	
5.	Define a tandem queue.	BTL1	Remembering	
6.	Describe series queue .	BTL2	Understanding	
/.	Define a two-stage series queue.	BTL2	Understanding	
8. 0	Define Series Queue with blocking.	BILI	Remembering	
7.	Parts arrives the transfer line at the rate of 1 part every 2 mins. The processing rates of M1 and M2 are 1 per min. and 2 per min. respectively. Find the average number of parts in M1.	BTL3	Applying	
10.	Define an open Jackson network.	BTL1	Remembering	
11.	Write down the characteristics of an open Jackson network.	BTL3	Applying	
12.	In an M/D/1 queueing system, an arrival rate of customer is 1/6 per minute and the server takes exactly 4 minutes to serve a customer. Calculate the mean number of customers in the system	f BTL4	Analyzing	
13.	The arrival of trucks to a factory for unloading is Poisson with arrival rate of 3 trucks per hour. The unloading time is constant with exactly 4 customers per hour. What is	BTL4	Analyzing	

	the expected number of trucks in queue		
14.	What do you mean by E_k in the $M/E_k/1$ queueing model?	BTL1	Remembering
15.	State any two examples for series queues.	BTL1	Remembering
16.	State Jackson's theorem for an open network.	BTL5	Evaluating
17.	Compose classification of queuing networks.	BTL3	Applying
18.	Distinguish between open and closed networks.	BTL6	Creating
19.	What do you mean by bottleneck of a network?	BTL1	Remembering
20.	Consider a series facility with two sequential stations with respective service rates		
	3/min and 4/min. The arrival rate is 2/min. What is the average service time of the	BTL2	Understanding
	system, if the system could be approximated by a two stage tandom queue?		
	PART – B (16-MARK QUESTIONS)		
1.	State and Derive Pollaczek - Khinchin formula.	BTL6	Creating
2.	In a book shop there are two sections, one for text books and the other for note books		
	. Customers froot side arrived at the text book section at a Poissson rate of 4 per hour		
	and at the notebook section at a Poison rate of 3per hour. The service rates of T.B and		
	N.B sections respectively 8 and 10 per hour. customer upon completion of service at		
	T.B section is equally likely to go to the N.B section or to leave the book shop, where		
	as a customer upon completion of service at N.B section will go to the T.B section	BTL2	Understanding
	with probability 1/3 and will leave the book shop otherwise. Find the joint steady		
	state ptrobability that there are 4 customers in the 1.B section and 2 customers 1 nthe		
	N.B section. Find also the average number of customers in the book snop and the		
	sales man in each section		
3	The open Jackson network the following information are given:		
5.			
	Station C _i μ_i r_i $i=1$ $i=2$ $i=3$		
	1 1 10 1 0 0.1 0.4		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
		BTL1	Remembering
	Find (i) the joint probability for the number of customers in 1^{st} , 2^{nd} and		
	3 rd stations are 2,3,4 respectively.		
	(ii) the expected number of customer in each station.		
	(iii) the expected total number of customers in the system		
	(iv) the expected total waiting time in the system.		
4.	(a) In a computer programs for execution arrive according to Poisson law with a		
	mean of 5 per minute. Assuming the system is busy, Find L_q , L_s , W_q , W_s if the	BTL1	Remembering
	service time is uniform between 8 and 12 sec.		
	(b)A one-man barber shop takes exactly 25 minutes to complete one hair-cut. If		
	customers arrive at the barber shop in a Poisson fashion at an average rate of one		Understanding
	every 40 minutes, Find the average time a customer spends in the shop. Also, Find	DIL2	Understanding
	the average time a customer must wait for service?		
5.	(a) In a college canteen, it was observed that there is only one waiter who takes		
	exactly 4 minutes to serve a cup of coffee once the order has been placed with him. If	BTL1	Remembering
	students arrive in the canteen at an average rate of 10 per hour, how much time one is		8
	expected to spend waiting for his turn to place the order.		
	(0) Find the average calling rate for the services of the crane and what is the average delay in getting service? In a because machine show the systematic rate is 750		
	utilized Time study observations gave the everage slinging time as 10.5 minutes	RTI 2	Annlyina
	with a standard deviation of 8.8 minutes. If the average service time is out to 8.0	DILJ	Apprying
	minutes with a standard deviation of 6.0 minutes, how much reduction will occur on		
L			

	average in the delay of getting served?		
6.	There are two service stations S1 and S2 in a line with unlimited buffer space in between. Customers arrives S1 at a rate of 1 per every 2 min. The service time rates of S1 and S2 are 1 and 2 per min. respectively. Find (i) the average number of customers at S1 and S2 (ii) The average waiting times at S1 and S2 (iii) the total waiting time in the system.	BTL3	Applying
7.	 (a)A repair facility is shared by a large number of machines for repair. The facility has two sequential stations with respective rates of service 2 per hour and 3 per hour. The cumulative failure rate of all the machines is 1 per hour. Assuming that the system behavior may be approximated by a two-station tandem queue Find (i) the average number of customers in both stations, (ii) the average repair time. (iii) the probability that both service stations are idle. 	BTL2	Understanding
	(b)For $(M/E_2/1)$: (FIFO/ ∞/∞) queueing model with $\lambda = \frac{6}{5}$ per hour and $\mu = \frac{3}{2}$ per hour, find the average waiting time of a customer. Also find the average time he spends in the system	BTL4	Analyzing
8.	(a) In a charity clinic there are two doctors, one assistant doctor D1 and his senior doctor D2. The Junior doctor tests and writes the case sheet and then sends to the senior for diagnosis and Prescription of medicine. Only one patient is allowed to enter the clinic at a time due to capacity of space. A patient who has finished with D1 has to wait till the patient with D2 has finished. If Patients arrive according to Poisson with rate 1 per hour and service times are independent and Follow exponential with parameters 3 and 2, Find (i) the probability of a customer entering the Clinic, (ii) the average number of customers in the clinic, (iii) the average time spent by a patient Who entered the clinic.	BTL2	Understanding
	(b) Consider a queuing system where arrivals according to a Poisson distribution with mean $5/hr$. Find expected waiting time in the system if the service time distribution is Uniform from t = 5 min to t = 15 minutes	BTL5	Evaluating
9.	Find Ls, Lq, Ws andWq. Automatic car wash facility operates with only one Bay. Cars arrive according to a Poisson process, with mean of 4 cars per hour and may wait in the facility's parking lot if the bay is busy. (i)If the service time for all cars is constant and equal to 10 min (ii) Uniform distribution between 8 and 12 minutes (iii) Normal distribution with mean 12 minutes and SD 3minutes (iv) Follows discretedistribution 4,8 & 15 minutes with corresponding probability 0.2,0.6&0.2	BTL5	Evaluating
10.	(a) In a departmental store, there are two sections namely grocery section and perishable section. Customers from outside arrive the G-section according to a Poisson process at a mean rate of 10 per hour and they reach the p-section at a mean rate of 2 per hour. The service times at both the sections are exponentially distributed with parameters 15 and 12 respectively. On finishing the job in G-section, a customer is equally likely to go to the P-section will go to the G- section with probability 0.25 and leave the store otherwise. Assuming that there is only one salesman in each section, find (i) the probability that there are 3 customers in the G-section and 2 customers in the P-section, (ii) the average waiting time of a customer in the store.	BTL4	Analyzing
	(b) If a patient who goes to a single doctor clinic for a general check uphas to go through 4 phases. The doctor takes on the average 4 minutes for each phase of the check up and the time taken for each phase is exponentially distributed. If the arrivals of the patients at the clinic are approximately Poisson at the average rate of 3 per hour, what is the average time spent by a patient (i) in the examination (ii) waiting in the clinic?	BTL6	Creating

11.	(a) In super market during peak hours customers arrive according to a Poisson process at a mean rate of 40 per hour. A customer on the average takes 45 min to choose the food products and other articles that the customersneeds. These times are exponentially distributed. The billing times are also exponentially distributed with a mean 4 min. For each counter (i) Find the minimum number of counters required for billing during the peak hours. (ii) If the number of counters is one more than the minimum, how many will be in the queue? And how many will be in the supermarket?	BTL2	Understanding
	(b) In a network of 3 service station 1,2, 3 customer arrive at 1,2,3 from outside in accordance with Poisson process having rate 5, 10, 15 res. The service time at the stations are exponential with respect rate 10, 50, 100, A customer completing service at station -1 is equally likely to (i) go to station 2 (ii) go to station 3 or (iii) leave the system. A customer departing from service at station 2 always goes to station 3. A departure from service at station 3 is equally likely to go station 2 or leave the system. (a) Find the average number customer in the system consisting of all the three stations? (b) Examine the average time a customer spend in the system?		
12.	Consider the system of two servers where customers from out side the system arrive at server 1 at a Poisson rate 4 and at server 2 at a Poisson rate 5. The service rate in 1 and 2 are respectively 8 and 10. A customer upon completion of service at server 1 is equally likely to go to server 2 or to leave the system where as departure from sever 2 will go 25% of the time to server1 and will depart the system otherwise. Determine the limiting probabilities, average number of customers and average waiting time of a customer in the system.	BTL4	Analyzing
13.	Customers arrive at a service center consisting of 2 service points S1 and S2 at a Poisson rate of 35/hour and form a queue at the entrance. On studying the situation at the center, they decide to go to either S1 or S2 .The decision making takes on the average 30 seconds in an exponential fashion. Nearly 55% of the customers go to S1, that consists of 3 parallel servers and the rest go to S2, that consist of 7 parallel servers. The service times at S1, are exponential with a mean of 6 minutes and those at S2 with a mean of 20 minutes. About 2% of customers, on finishing service at S1 go to S2 and about 1% of customers, on finishing service at S2 go to S1. Explain & Find the average queue sizes in front of each node and the total average time a customer spends in the service center.	BTL6	Creating
14.	In a two-station service facility, queues are not allowed. Customers arrive at the facility at an average rate of 4 per hour; the server at each station serves at the rate of 5 customers per hour. If arrivals are Poisson and service times are exponential, find the probability that an arriving customer enter the system (a) effective arrival rate (b) Average (expected) number of customers in the system. (c) Expected time of a customer spends in the system.	BTL2	Understanding
PART-C(15 Marks questions)			
1	Consider a single server. Poisson input queue with a mean arrival rate of 10/hr. Currently the server works according to an exponential distribution with a mean service time of 5 minutes. Management has a training course after which service time will follow non-exponential distribution and the mean service time will increase to 5.5 minutes, but the standard deviation will decrease from five minutes (exponential case) to 4 minutes. Should the server undergo training?	BTL-3	Applying
2	In a car manufacturing plant the loading crane takes exactly 10 minutes to load a car into a wagon and again come back position to load another car. If the arrivals of the car is a Poisson stream at an average of one every 20 minutes. Calculate the	BTL-4	Analyzing

	following		
	(1) Average number of cars in the system		
	(2) Average number of cars in the queue		
	(3) The Average waiting time of cars in the system		
	(4) The Average waiting time of cars in the queue		
3	An average of 120 students arrives each hour (inter arrival times are exponential) at		
	the controller's office to get their hall tickets. To complete the process a candidate		
	must pass through counters. Each counter consists of a single server, service times at	BTI 5	Evaluating
	each counter are exponential with the following mean times: counter1,20 seconds;	BIL-3	
	conuter2, 15 seconds and counter3, 12 seconds. On the average evaluate how many		
	students will be present in the controller's office?		
4	Consider two servers. An average of 8 customers per hour from outside at server1		
	and an average of 17 customers arrive at server2. Inter arrival times are exponential		
	server1 can serve at an exponential rate of 20 customers per hour and server2 can		
	serve at an exponential rate of 30 customers per hour. After completing service at	BTL-6	Creating
	station1, half the customers leave the system and half go to server2. After completing		
	service at station 2 ³ / ₄ of the customers complete the server and ¹ / ₄ return to		
	server1.Find the expected number of customers at each server. Find the average time		
	a customer spends in the system.		

