SRM VALLIAMMAI ENGEINEERING COLLEGE

(An Autonomous Institution)

(S.R.M.NAGAR, KATTANKULATHUR-603 203)

DEPARTMENT OF MATHEMATICS

QUESTION BANK

IV SEMESTER B.TECH- ARTIFICIAL INTELLIGENCE & DATA SCIENCES 1918406 – NUMERICAL LINEAR ALGEBRA

Regulation – 2019 Academic Year 2021- 2022

Prepared by

Dr. G. Sasikala, Assistant Professor/ Mathematics

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203. **DEPARTMENT OF MATHEMATICS**

QUESTION BANK

SUBJECT : 1918406 - NUMERICAL LINEAR ALGEBRA

SEMESTER / YEAR : IV/ II (AI&DS)

UNIT I - VECTOR SPACES

Vector Spaces- Subspaces-Linear combinations and linear system of equations-Linear independence and linear dependence-Bases and Dimensions.

	PART- A		
Q.No.	Question	Bloom's Taxonomy Level	Domain
1.	Define Vector Space	BTL-1	Remembering
2.	Define Subspace of a vector space	BTL-1	Remembering
3.	What are the possible subspace of R^2	BTL-1	Remembering
4.	In a Vector Space V(F) if $\alpha v=0$ then either $\alpha=0$ or $v=0$ prove.	BTL-2	Understanding
–	Is $\{(1,4,-6), (1,5,8), (2,1,1), (0,1,0)\}$ is a linearly independent subset of \mathbb{R}^3 ? Justify your answer	BTL-2	Understanding
6.	State Replacement Theorem	BTL-3	Applying
7.	In a vector Space V(F), prove that $0v=0$, for all $v \in V$	BTL-3	Applying
	Write the vectors $v = (1, -2, 5)$ as a linear combination of the vectors $x = (1,1,1), y = (1,2,3)$ and $z = (2,-1,1)$	BTL-2	Understanding
9.	What is the Dimension of $M_{2x2}(R)$?	BTL-3	Applying
	Determine whether the set W={ $(a_1,a_2,a_3) \in \mathbb{R}^3 : a_1 + 2a_2 - 3a_3 = 1$ } is a subspace of \mathbb{R}^3 under the operations of addition and scalar multiplication.	BTL-2	Understanding
11	Determine whether $w = (4, -7,3)$ can be written as a linear combination of $v_1 = (1,2,0)$ and $v_2 = (3,1,1)$ in R^3	BTL-2	Understanding
	For which value of k will the vector $u = (1, -2, k)$ in \mathbb{R}^3 be a linear combination of the vectors $v = (3,0,-2)$ and $w = (2,-1,5)$?	BTL-3	Applying
13.	Define finite dimensional vector Space	BTL-2	Understanding
14.	Point out whether the set $W_1 = \{(a_1, a_2, a_3) \in R^3 : a_1 - 4a_2 - a_3 = 0\}$ is a subspace of R^3 under the operations of addition and scalar multiplication defined on R^3	BTL-4	Analyzing
15.	If W is a Subspace of the Vector Space V(F) prove that W must contain 0 vector in V	BTL-4	Analyzing
16.	Point out whether $w=(3,4,1)$ can be written as a linear combination of $v_1=(1,-2,1)$ and $v_2=(-2,-1,1)$ in \mathbb{R}^3	BTL-4	Analyzing

17.	What are the possible subspaces of R ³	BTL-4	Analyzing
18.	Show that the vectors $\{(1,1,0), (1,0,1) \text{ and } (0,1,1)\}$ genarate F^3	BTL-3	Applying
19.	If $v_1, v_2 \in V(F)$ and $\alpha_1, \alpha_2 \in F$.show that the set $\{v_1, v_2, \alpha_1 v_{1+}, \alpha_2 v_2\}$ is linearly dependent	BTL-4	Analyzing
20.	Test whether $S = \{(2,1,0), (1,1,0), (4,2,0)\}$ in R^3 is a basis of R^3 over R	BTL-5	Evaluating
	PART-B		
1.	Determine whether the following set is linearly dependent or linearly independent $\begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 2 & 1 \\ 2 & -2 \end{pmatrix}$ generate $M_{2\times 2}(R)$	BTL-3	Applying
2.	If x, y and z are vectors in a vector space V such that $x + z = y + z$, then prove that $x = y$ i) The vector 0 (identity) is unique ii) The additive identity for any $x \in V$ is unique	BTL-5	Evaluating
3.	Show that the set $S=\{(1,3,-4,2),(2,2,-4,0),(1,-3,2,-4),(-1,0,1,0)\}$ is linearly dependent of the other vectors	BTL-4	Analyzing
4.	Determine whether the following subset of vector space $\mathbb{R}^3(\mathbb{R})$ is a subspace $\mathbb{W}_1 = \{((a_1, a_2, a_3): 2a_1 - 7a_2 + a_3 = 0\}$	BTL-5	Evaluating
5.	Illustrate that set of all diagonal matrices of order $n \times n$ is a subspace of the vecto space $M_{n\times n}(F)$, where $M_{n\times n}$ is the set of all square matrices over the field F		Analyzing
6.	Evaluate that $W_1 = \{(a_1, a_2, a_n) \in F^n; a_1 + a_2 + + a_n = 0\}$ is a subspace of F^n and $W_2 = \{(a_1, a_2, a_n) \in F^n; a_1 + a_2 + + a_n = 1\}$ is not a subspace	BTL-2	Understanding
7.	((, , , , , , , , , , , , , , , , , ,	BTL-5	Evaluating
8.	Determine the following sets { $1-2x-2x^2$, $-2+3x-x^2$, $1-x+6x^2$ } are bases for $P_2(R)$	BTL-3	Applying
9.	Analyze that the matrices $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ generate $M_{2\times 2}(R)$	BTL-2	Understanding
10.	Identify whether the set $\{x^3 + \frac{2x^2}{x^2}, -x^2 + 3x + 1, x^3 - x^2 + 2x - 1\}$ in $P_3(R)$ is linearly independent or not	BTL-3	Applying
11.			Applying
12.		BTL-3	Applying
13.	Determine whether the set of vectors $\{(1,0,0,-1),(0,1,0,-1),(0,0,1,-1),(0,0,0,1)\}$ is a basis for \mathbb{R}^4	BTL-3	Applying
14.	system $x+y-z=0,-2x-y+2z=0,-x+z=0$.	s BTL-3	Applying
	PART-B		
1	Determine whether the vectors $v_1=(1,-2,3), v_2=(5,6,-1), v_3=(3,2,1)$ form a linearly dependent or linearly independent set in \mathbb{R}^3 .	BTL-4	Analyzing
2	Prove that the upper triangular matrices form a subspace of $M_{mxn}(F)$.	BTL-4	Analyzing
3	Decide whether or not the set $S = \{x^3 + 3x - 2, 2x^2 + 5x - 3, -x^2 - 4x + 4\}$ is a basis for $P_2(R)$		Understanding
4	Determine whether the set of vectors $X_{1=}(1,1,2)$, $X_{2=}(1,0,1)$, and $X_{3=}(2,1,3)$ span \mathbb{R}^3	BTL-3	Applying
Linear	II LINEAR TRANSFORMATION AND DIAGONALIZATION r transformations –Null space-Range- Matrix representation of a linear transformation-rs –Diagonalization	Eigen valu	es and Eigen
	PART –A		
Q.No	Question	Bloom's Taxonomy Level	Domain
			_

1.	Define linear transformation of a function	BTL-3	Applying
2.	If $T: V \to W$ be a linear transformation then prove that $T(-v) = -v$ for $v \in V$	BTL-3	Applying
3.	If $T: V \to W$ be a linear transformation then prove that $T(x - y) = x - y$ for all $x, y \in V$	BTL-3	Applying
	Prove that the transformation T is linear if and only if $T(cx + y) = cT(x) + T(y)$	BTL-3	Applying
5	Illustrate that the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(a_1, a_2) = (2a_1 + a_2, a_2)$ is linear	BTL-2	Understanding
0.	Evaluate that the transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x, y, z) = (x, 0, 0)$ a linear transformation.	BTL-5	Evaluating
7	Describe explicitly the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $T(2,3) = (4,5)$ and $T(1,0) = (0,0)$	BTL-1	Remembering
8.	Illustrate that the transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x,y) = (x+1,2y,x+y)$ is not linear	BTL-2	Understanding
	Is there a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that $T(1,0,3) = (1,1)$ and $T(-2,0,-6) = (2,1)$?	BTL-5	Evaluating
10.	Define null space.	BTL-1	Remembering
11.	Define matrix representation of T relative to the usual basis {e _i }	BTL-1	Remembering
12. F	Find the matrix [T] _e whose linear operator is $T(x,y) = (5x + y, 3x - 2y)$	BTL-2	Understanding
	Find a basis for the null space of the matrix $A = \begin{pmatrix} 5 & 2 \\ 1 & 0 \end{pmatrix}$	BTL-2	Understanding
	Define diagonalizable of a matrix with linear operator T.	BTL-1	Remembering
15.	Find the matrix representation of usual basis $\{e_i\}$ to the linear operator $T(x, y, z) = (2y + z, x - 4y, 3x)$	BTL-2	Understanding
	Define Eigen value and Eigen vector of linear operator T.	BTL-1	Remembering
17.	State Cayley-Hamilton Theorem	BTL1	Remembering
	Find the Eigenvalue of the matrix $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$	BTL2	Understanding
	Find the matrix A whose minimum polynomial is $t^3 - 5t^2 + 6t + 8$.	BTL-2	Understanding
20. 8	State the dimension theorem for matrices.	BTL-1	Remembering
	PART –B		
1. a)	For each of the following linear operators T on a vector space V and ordered basis β , compute $[T]_{\beta}$, and determine whether β is a basis consisting of eigen vectors of T. $V=R^2$, $T\binom{a}{b}=\binom{10a-6b}{17a-10b}$, $\beta=\{\binom{1}{2},\binom{2}{3}\}$	BTL-3	Applying
1.b)	Let $T: P_2(R) \to P_3(R)$ be defied by $T[f(x)] = 2f'(x) + \int_0^x 3f(t)dt$. Prove that T is linear, find the bases for $N(T)$ and $R(T)$. Compute the nullity and rank of T. Determine whether T is one-to-one or onto.	BTL-2	Understanding
2.b)	Let $T: P_2(R) \to P_3(R)$ be defined by $T[f(x)] = xf(x) + f'(x)$ is linear. Find the bases for both $N(T)$, $R(T)$, nullity of T, rank of T and determine whether T is one –to-one or onto	BTL-2	Understanding
3.	Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $T(x, y, z) = (x + 2y - z, y + z, x + y - 2z)$. Evaluate a basis and dimension of null space N(T) and range space	BTL-5	Evaluating
	R(T) and range space $R(T)$. Also verify dimension theorem		
4.	R(T) and range space R(T). Also verify dimension theorem Find a linear map $T: \mathbb{R}^3 \to \mathbb{R}^4$ whose image is generated by (1,2,0,-4) and (2,0,-1,-3)	BTL-2	Understanding

			1
	Compute nullity rank T. Verify dimension theorem also verify whether T is one –		
	to-one or onto where $T: P_2(R) \to P_3(R)$ defined by $T[f(x)] = xf(x) + f'(x)$		
	For each of the following linear operators T on a vector space V and ordered basis	D	
6.	β , compute $[T]_{\beta}$, and determine whether β is a basis consisting of eigen vectors of	BTL-3	Applying
	T. $V=P_1(R)$, $T(a+bx)=(6a-6b)+(12a-11b)x$ and $\beta=\{3+4x,2+3x\}$		
	Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $T(x,y) = (x+3y,0,2x-4y)$. Compute the		
7.	matrix of the transformation with respect to the standard bases of R^2 and R^3 . Find	BTL-4	Analyzing
	N(T) and R(T). Is T one –to-one? IsT onto. Justify your answer.		
	Let T be the linear operator on \mathbb{R}^3 defined by $T(x, y, z) = (2x - 7y - 4z, 3x +$		
8.	$y + 4z$, $6x - 8y + z$) (i) Find the matrix of T in the basis { $f_1=(1,1,1)$, $f_2=(1,1,0)$	BTL-2	Understanding
	$f_3=(1,0,0)$ and (ii) Verify $[T]_f[T]_v = [T(v)]_f$ for any vector $v \in \mathbb{R}^3$		
	For the given matrix Evaluate all Eigen values and a basis of each Eigen space .		
9.	$\begin{pmatrix} 1 & -3 & 3 \end{pmatrix}$	BTL-5	Evaluating
'.	$A = \begin{pmatrix} 3 & -5 & 3 \end{pmatrix}$	DILI-J	Diamaning
	Let $\alpha = \{\begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$ Let $\alpha = \{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\}$ Give T(A)=A ^T Compute [T] _g .		
10.	Let $\alpha = \{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\}$	рті з	A
10.	$\beta = \{1, x, x^2\}$ and $\gamma = \{1\}$, Define $T: M_{2x2}(F) \to M_{2x2}(F)$ by $T(A) = A^T$. Compute $[T]_{\alpha}$.	BTL-3	Applying
11.	Let $T: p_2(R) \to p_2(R)$ be defined as $T(f(x)) = f(x) + (x+1)f'(x)$ Find eigen	BTL-5	Evaluating
	values and corresponding eigen vectors of T with respect to standard basis of $p_2(R)$.		
12.	Let V be the space of 2X 2 matrices over R and let $M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Let T be linear	BTL-2	I Indonetondina
12.	operator defined by T(A)=MA .Find the trace of T.	DIL-2	Understanding
	Let V and W be vector spaces over F, and suppose that $\{v_1, v_2, \dots, v_n\}$ is a basis		
13.	for V, For w_1, w_2, \dots, w_n in W Prove that there exists exactly one linear	BTL-3	Applying
15.	transformation $T: V \to W$ such that $T(v_i) = w_i$ for $i=1,2,n$	DIL-3	rippiying
	Consider the basis $S = \{v_1, v_2, v_3\}$ for R^3 where $v_1 = (1, 1, 1)$, $v_2 = (1, 1, 0)$ and $v_3 = (1, 0, 0)$.		
	Let T:R ³ \rightarrow R ² be the linear transformation such that $T(v_1)=(1,0)$, $T(v_2)=(2,-1)$ and		
14.	$\Gamma(v_3)=(4,3)$. Find the formula for $\Gamma(x_1,x_2,x_3)$, then use this formula to compute	BTL-4	Analyzing
	$\Gamma(\sqrt{3})=(4,3)$. Find the formula for $\Gamma(x_1,x_2,x_3)$, then use this formula to compute $\Gamma(2,-3,5)$		
	PART-C		<u> </u>
	Let T be a linear operator $T(a, b, c) = (-4a + 3b - 6c, 6a - 7b + 12c, 6a - 6b + 12c, 6a - 6b)$		
1	11c), β be the ordered basis then find $[T]_{\beta}$ which is a diagonal matrix	BTL-2	Understanding
2	Let $A = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$ Point out all eigen values of A and corresponding eigen vectors	BTL-3	Applying
	find an invertible matrix P such that P ⁻¹ AP is diagonal.	DIL-J	1 ipprying
	/ 3 1 1\	BTL-2	Understanding
3	Find an invertible matrix (2 4 2)		
	\-1 -1 1/		
4	Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by $T(x, y, z) = (2x - y, 3z)$ verify whether T is linear	BTL-3	Applying
	or not. Find N(T) and R(T) and hence verify the dimension theorem	DIL-3	Applying

UNIT III -INNER PRODUCT SPACE

Inner product and norms - Gram Schmidt Orthonormalization process - Orthogonal Complement - Least square approximation.

PART -A

Q.No.	Questions	Bloom's Taxonomy Level	Domain
1.	Define inner Product Space and give its axioms.	BTL-1	Remembering
2.	Define orthogonal	BTL-1	Remembering
3.	Find the norm of $v = (3,4) \in \mathbb{R}^2$ with respect to the usual product.	BTL-2	Understanding
4.	In $c([0,1])$ let $f(t) = t$, $g(t) = e^t$ Evaluate $\langle f, g \rangle$.	BTL-5	Evaluating
5.	If x, y and z are vector of inner product space such that $\langle x, y \rangle = \langle x, z \rangle$ then prove that $y = z$.	BTL-3	Applying
6.	Normalize $u = (2,1,-1)$ in Euclidean space R^2 .	BTL-2	Understanding
7.	Prove that the norm in a inner product space satisfies $ v \ge 0$ and $ v = 0$ if and only if $v = 0$.	BTL-3	Applying
8.	Find the norm of $v = (1,2) \in R^2$ with respect to the inner product $\langle u, v \rangle = x_1y_1 - 2x_1y_2 - 2x_2y_1$.	BTL-2	Understanding
9.	Define unit vector	BTL-1	Remembering
10.	Let $S = \{(1,0,i)(1,2,1)\}$ in c^3 Pointout S^{\perp}	BTL-4	Analyzing
11.	Let W= span ($\{i,0,1\}$) in c^3 find the orthonormal bases of w and w^{\perp}	BTL-2	Understanding
12.	What is an adjoint of linear operator.	BTL-3	Applying
13.	Let T be a linear operator on v,β is an orthonormal basis then prove that $[T^*]_{\beta} = [T]_{\beta}$	BTL-3	Applying
14.	Let S and T be linear operators on V then prove that $(S + T)^* = S^* + T^*$	BTL-3	Applying
15.	Let $V=R^2$, $T(a,b)=(2a+b,a-3b)$ $x=(3,5)$ find T^* at the given vector in V, when T is a Linear operator.	BTL-2	Understanding
16.	Let V be a vector space of polynomials with inner product defined by $\langle f(x), g(x) \rangle = \int_0^1 f(x)g(x)dx$. If $f(x) = x^2 + x - 4$, $g(x) = x-1$, then find $\langle f, g \rangle$	BTL-3	Applying
17.	Let $g: v \to f$ be the linear transformation, find a vector y such that $g(x) = \langle x, y \rangle$ for all $x \in v$ such that $V = R^3 g(a_1, a_2, a_3) = a_1 - 2a_2 + 4a_3$	BTL-2	Understanding
18.	Show that $I^*=I$ for every $u,v \in v$	BTL-3	Applying
19.	Define orthonormal.	BTL-1	Remembering
20.	Let P ₂ have the inner product $\langle p, q \rangle = \int_{-1}^{1} p(x)q(x)dx$. Find the angle between p and q, where p=x and q=x ² with respect to the inner product on P ₂	BTL-3	Applying
	PART-B		
1.	 Let V be an inner product space. Prove that (a) x ± y ² = x ² ± 2R < x, y > + y ² for all x, y ∈ V, where R < x, y > denotes the real part of the complex number < x, y >. (b) x - y ² ≤ x - y for all x, y ∈ V. 	BTL-3	Applying
2.	Let V be an inner product space, for x, y, $z \in V$ and $C \in F$, checkwhether the following are true. (i) $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$ (ii) $\langle x, cy \rangle = \bar{c} \langle x, y \rangle$ (iii) $\langle x, 0 \rangle = \langle 0, x \rangle = 0$ (iv) $\langle x, x \rangle = 0$ if and only if $x = 0$.	BTL-4	Analyzing

			1
	$(v) < x, y > = < x, z > $ for all $x \in V$ then $y = z$		
3.	In $C([0,1])$, let $f(t) = t$ and $g(t) = e^t$. Compute $f, g >$, $ f $, $ g $ and $ f + g $. Then verify both the Cauchy-Schwarz inequality and the triangle inequality.	BTL-4	Analyzing
4.	Let P_2 be a family of polynomials of degree 2 atmost. Define an inner product on P_2 As $\langle f(x), g(x) \rangle = \int_0^1 f(x)g(x)dx$. Let $\{1, x, x^2\}$ be a basis of the inner product space P_2 . Find out an orthonormal basis from this basis.	BTL-5	Evaluating
5.	Evaluate by the Gram Schmidt Process to the given subset $S = \{(1, -2, -1, 3), (3,6,3, -1), (1,4,2,8)\}$ and $x = (-1,2,1,1)$ of the inner product space $V = R^4$ to obtain an orthogonal basis for span(S). Then normalize the vectors in this basis to obtain an orthonormal basis β for span(S), and compute the Fourier coefficients of the given vector relative to β .	BTL-5	Evaluating
6.	Apply the Gram-Schmidt process to the vectors u_1 =(1,0,1) , u_2 =(1,0,-1), u_3 =(0,3,4) to obtain an orthonormal basis for $R^3(R)$ with standard inner product.	BTL-4	Analyzing
7.	Evaluate by applying the Gram Schmidt Process to the given subset with the inner product $\langle f(x), g(x) \rangle = \int_0^1 f(t)g(t)dt$, $S = \{1, x, x^2\}$, and $h(x) = 1 + x$ of the inner product space $V = P_2(R)$ to obtain an orthogonal basis for span(S). Then normalize the vectors in this basis to obtain an orthonormal basis β for span(S), and compute the Fourier coefficients of the given vector relative to β .	BTL-2	Understanding
8.	Let V=C($\{-1,1\}$) with the inner product $\langle f,g \rangle = \int_{-1}^{1} f(t)g(t)dt$, and let W be the subspace $P_2(R)$, viewed as a space of functions. Use the orthonormal basis obtained to compute the "best" (closet) second degree polynomial approximation of the function h(t)= e^t on the interval [-1,1]	BTL-2	Understanding
9.	Compute $< x,y > $ for $x = (1-i,2+3i)$ and $y = (2+i,3-2i)$	BTL-3	Applying
10.	For each of the sets of data that follows, use the least squares approximation to find the best fits with both (i) a linear function and (ii) a quadratic function. Compute the error E in both cases. {(-3, 9), (-2, 6), (0, 2), (1, 1)}	BTL-2	Understanding
11.	Consider the system $x + 2y + z = 4$; $x - y + 2z = -11$; $x + 5y = 19$; find the minimal solution	BTL-2	Understanding
12.	For each of the following inner product spaces V and linear operators Ton V, evaluate T* at the given vector in V. $V = R^2$, $T(a,b) + (2a + b,a - 3b)$, $x = (3,5)$	BTL-5	Evaluating
13.	Let V be an inner product space, and let T and U be linear operators on V. then verify(a) $(T+U)^*=T^*+U^*$; (b) $(cT)^*=\bar{c}\ T^*$ for any $c\in F$; (c) $(TU)^*=U^*T^*$; (d) $T^{**}=T$; $I^*=I$	BTL-4	Analyzing
14.	For each of the sets of data that follows, use the least squares approximation to find the best fits with both (i) a linear function and (ii) a quadratic function. Compute the error E in both cases. {(-2, 4), (-1, 3), (0, 1), (1, -1), (2, -3)}	BTL-4	Analyzing
	Part-C		
1.	Let $x = (2, 1+i, i)$ and $y = (2-i, 2, 1+2i)$ be vectors in C^3 . Compute $\langle x, y \rangle . x $, $ y $ and $ x + y $. Then verify both the Cauchy Schwarz inequality and the triangle inequality.	BTL-1	Remembering

2.	Find the minimal solution of to the following system of linear equations $x+2y+z=4$, $x-y+2z=-11,x+5y=19$	BTL-3	Applying
3.	Let A and B be $n \times n$ matrices. Then prove that (a) $(A + B)^* = A^* + B^*$ (b) $(cA)^* = \bar{c}A^*$ for all $c \in F(c)$ (AB)* = B*A*(d) A** = A (e) I* = I	BTL-3	Applying
4.	For each of the following inner product spaces V and linear operators T on V, evaluate T* at the given vector in V. $V = P_1(R)$ with $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt$. $T(f) = f' + 3f$, $f(t) = 4 - 2t$	BTL-5	Evaluating

UNIT IV-NUMERICAL SOLUTION OF LINEAR SYSTEM OF EQUATIONS

Solution of linear system of equations – Direct method: Gauss elimination method – Pivoting – Gauss-Jordan method - LU decomposition method – Cholesky decomposition method - Iterative methods: Gauss-Jacobi and Gauss-Seidel.

D	٨	$\mathbf{D}^{\mathbf{q}}$	r	٨
Р	А	к	-	А

Q.No	Question	Bloom's Taxonomy Level	Domain
1.	State the order and condition for Convergence of Iteration method.	BTL -2	Understanding
2.	State the principle used in Gauss Jordon method.	BTL -2	Understanding
3.	Solve the following equations by Gauss Jordan method x+y=2,2x+3y=5	BTL -3	Applying
4.	Solve by Gauss Elimination method $2x + 3y = 5$ and $3x-y=2$	BTL -2	Understanding
5.	Distinguish the advantages of iterative methods over direct method of solving a system of linear algebraic equations.	BTL -4	Analyzing
6.	Solve by Gauss Elimination method $2x + y = 3$ and $7x-3y=4$.	BTL -3	Applying
7.	Compare Gauss Elimination, Gauss Jordan method.	BTL -4	Analyzing
8.	State the condition for the convergence of Gauss Seidel iteration method for solving a system of linear equation.	BTL -2	Understanding
9.	Compare Gauss seidel method, Gauss Jacobi method.	BTL -4	Analyzing
10.	Which of the iterative methods is used for solving linear system of equations it converges fast? Why?	BTL -1	Remembering
11.	Compare Gauss seidel method, Gauss Elimination method.	BTL -4	Analyzing
12.	Explain Power method to find the dominant Eigen value of a square matrix A	BTL -2	Understanding
13.	How will you find the smallest Eigen value of a matrix A.	BTL -4	Analyzing
	Find the dominant Eigen value of $A = \begin{pmatrix} 2 & 3 \\ 5 & 4 \end{pmatrix}$ by power method up to 1 decimal place accuracy. Start with $X^{(0)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	BTL -3	Applying

15.	Write the necessary conditions for Cholesky decomposition of a matrix.	BTL -1	Remembering
16.	Find the Cholesky decomposition of $\begin{pmatrix} 4 & 2 \\ 2 & 10 \end{pmatrix}$	BTL -2	Understanding
17.	Define Real Symmetric Matrix.	BTL -2	Understanding
18.	Define LU decomposition mehod	BTL -1	Remembering
19.	Solve by Gauss Elimination method $4x - 3y = 11$ and $3x + 2y = 4$.	BTL -2	Understanding
20.	Solve by Gauss jordan method $2x + y = 3$ and $7x-3y=4$.	BTL -2	Understanding
	Part-B		l
1	Solve by Gauss Elimination method $3x + y - z = 3$; $2x - 8y + z = -5$; $x - 2y + 9z = 8$	BTL -3	Applying
2	Solve by Gauss Jordan method $10x + y + z = 12$; $x+10y + z = 12$; $x + y + 10z = 12$	BTL -3	Applying
3	Solve by Gauss Jacobi method $14x - 5y = 5.5$; $2x + 7y = 19.3$.	BTL -3	Applying
4.	Apply Gauss Seidel method to solve system of equations $10x - 5y - 2z = 3; 4x - 10y + 3z = -3; x + 6y + 10z = -3$	BTL -3	Applying
5.	Solve by Gauss Elimination method $2x + 4y + z = 3$; $3x + 2y - 2z = -2$; $x - y + z = 6$	BTL-2	Understanding
6.	Solve by Gauss Jacobi method $8x - 3y + 2z = 2$; $4x + 11y - z = 33$; $6x + 3y + 12z = 35$.	BTL-2	Remembering
7.	Find the Cholesky decomposition of the matrix $\begin{bmatrix} 4 & 2i & 2 \\ -2i & 10 & 1-i \\ 2 & 1+i & 9 \end{bmatrix}$	BTL -2	Understanding
8.	Solve by Gauss Jordan method $10 x + y + z = 12$; $2x + 10y + z = 13$; $x + y + 5z = 7$.	BTL -3	Applying
9.	Solve by Gauss Elimination method $x + 5y + z = 14$; $2x + y + 3z = 13$; $3x+y+4z=17$	BTL -3	Applying
10.	Apply Gauss seidel method to solve system of equations $x - 2y + 5z = 12$; $5x + 2y - z = 6$; $2x + 6y - 3z = 5$ (Do up to 6 iterations)	BTL -3	Applying
11.	Solve by Gauss Elimination method $6x - y + z = 13$; $x + y + z = 9$; $10x + y - z = 19$	BTL -3	Applying
12.	By Gauss seidel method to solve system of equations $x + y + 54z = 110$; $27x + 6y - z = 85$; $6x + 15y - 2z = 72$.	BTL -4	Analyzing
13.	Solve by Gauss Elimination method $3x + 4y+5z = 18$; 2x - y + 8z = 13; $5x - 2y + 7z = 20$	BTL -3	Applying
14.	Solve by using Gauss-Seidal method	BTL -5	Evaluating

	8x - 3y + 2z = 20, $4x + 11y - z = 33$, $6x + 3y + 12z = 35$.		
	Part-C		
1	Solve by Gauss Jordan method $10 x + y + z = 12$; $2x + 10y + z = 13$; $x + y + 5z = 7$	BTL -2	Understanding
2	Solve by Gauss Elimination method $3x - y + 2z = 12$; $x+2y+3z=11$; $2x-2y-z=2$	BTL -2	Understanding
3	Solve the system of equations using Cholesky decomposition $4x_1 - x_2 - x_3 = 3$; $-x_1 + 4x_2 - x_3 = -0.5$; $-x_1 - 3x_2 + 5x_3 = 0$	BTL -5	
4	Solve the linear system $6x + 18y + 3z = 3 2x + 12y + = 19 4x + 15y + 3z = 0$ by LU decomposition method	BTL -2	Understanding

UNIT V -NUMERICAL SOLUTION OF EIGEN VALUE PROBLEMS AND GENERALISED INVERSES

Eigen value Problems: Power method – Jacobi's rotation method – Conjugate gradient method – QR decomposition - Singular value decomposition

	"When		
Q.No	Question	Bloom's Taxonomy Level	Domain
1.	Define Eigen value.	BTL -2	Understanding
2.	Find the sum and product of all Eigen values of $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$	BTL -5	Evaluating
3.	Find the sum and product of all Eigen values of $\begin{bmatrix} 1 & 2 & -2 \\ 1 & 0 & 3 \\ -2 & -1 & -3 \end{bmatrix}$	BTL -5	Evaluating
4.	Define singular matrix with an example.	BTL -2	Understanding
5.	Find the all Eigen values of $\begin{bmatrix} 2 & 3 \\ 5 & 1 \end{bmatrix}$	BTL -5	Evaluating
6	If the sum of two eigenvalues and trace of a 3x3 matrix A are equal find the value of A .	BTL -2	Understanding
7.	Define Jacobi rotation method	BTL -2	Understanding
8.	Let $A = \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix} = A_1$. Compute A_2 using QR algorithm.	BTL -5	Evaluating
9.	Find eigen values of the matrix $A = \begin{bmatrix} 3 & 5 \\ -2 & -4 \end{bmatrix}$.	BTL -3	Applying
10.	Define the generalized Eigen vector, chain of rank m, for a square matrix.	BTL -2	Understanding
11.	Find the eigen values of $\begin{bmatrix} 15 & 1 \\ 0 & 1 \end{bmatrix}$	BTL -5	Evaluating
12.	Find the determinant value of A if $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$	BTL4	Analyzing
1 1 2	Give the nature of quadratic form without reducing into canonical form $x_1^2 - 2 x_1 x_2 + x_2^2 + x_3^2$	BTL -4	Analyzing

14.	Find the eigen values of $\begin{bmatrix} -1 & 1 \\ 9 & 1 \end{bmatrix}$	BTL-4	Analyzing
	Write short note on Singular value decomposition of complex matrix A.	BTL-1	Remembering
16.	State Singular value decomposition theorem	BTL-1	Remembering
17.	If A is a nonsingular matrix, then what is A ⁺ ?	BTL -2	Understanding
18.	Define conjucate gradient method	BTL -2	Understanding
19.	Write the numerical example of a conjucate gradient method	BTL-1	Remembering
	Find the generalized inverse of $\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$	BTL-3	Applying
	Part-B		
1	Find the dominant eigen value and vector of $A = \begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ using Power method.	BTL-4	Analyzing
2	Find the largest Eigen value and Eigen vector of $\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$ using Power method.	BTL-4	Analyzing
3	Find the QR factorization of A = $\begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & 1 \end{bmatrix}$ SRM	BTL-4	Analyzing
4	Evaluate the singular value decomposition of $\begin{bmatrix} 5 & 5 \\ -1 & 7 \end{bmatrix}$	BTL-5	Evaluating
5	Evaluate the dominant Eigen value and vector of $A = \begin{pmatrix} 3 & 2 & 4 \\ -1 & 4 & 10 \\ 1 & 3 & -1 \end{pmatrix}$ using Power method.	BTL-5	Evaluating
6	Find the QR factorization of $A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$	BTL-4	Analyzing
7	Consider the decomposition of $A = \begin{bmatrix} 12 & -51 & 4 \\ 6 & 167 & -68 \\ -4 & 24 & -41 \end{bmatrix}$	BTL-4	Analyzing
8	Find the singular value decomposition of $A = \begin{bmatrix} 2 & -1 \\ -2 & 1 \\ 4 & -2 \end{bmatrix}$	BTL-4	Analyzing
9	Using Power method, Identify all the eigen values of $A = \begin{pmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{pmatrix}$	BTL-3	Applying
10	Get the singular value decomposition of $\begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix}$	BTL-3	Applying
11	Calculate the eigen values and eigenvectors of the matrix with an accuracy of ϵ = 10-1 where	BTL-3	Applying

	$A = \begin{pmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{pmatrix}$ by jacobi's rotation method			
12	Find the conjugate gradient method of $5x+y=2$ and $x+2y=2$	BTL-3	Applying	
13	Determine the largest eigenvalue and the corresponding eigenvectors of the matrix $\begin{pmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{pmatrix}$	BTL-3	Applying	
1.4	Find the dominant Eigen value of $A = \begin{pmatrix} 2 & 3 \\ 5 & 4 \end{pmatrix}$ by power method up to 1 decimal place accuracy. Start with $X^{(0)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	BTL -3	Applying	
Part-C				
1	Evaluate the dominant Eigen value and vector of $A = \begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}$ using Power method.	BTL-5	Evaluating	
2	Obtain A+of A= $\begin{bmatrix} 2 & -1 \\ -1 & 1 \\ 4 & -3 \end{bmatrix}$ the generalized inverse.	BTL-3	Applying	
3	Determine the largest eigen value and the corresponding eigenvectors of the matrix $\begin{pmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{pmatrix}$ by using Power method.	BTL-3	Applying	
4	Find the singular value decomposition of $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$	BTL-3	Applying	