(An Autonomous Institution)

SRM NAGAR, KATTANKULATHUR - 603 203

DEPARTMENT OF CHEMISTRY

QUESTION BANK

SRMVEC-Dept of Chemistry

I SEMESTER 1921104 – Engineering Chemistry Regulation 2019 Academic Year 2021-22

Prepared by

S. No	Unit	Торіс	Staff
1	Ι	WATER AND ITS TREATMENT	Dr. L. Devaraj Stephen Mr. V. Arivalagan
2	II	SURFACE CHEMISTRY AND CATALYSIS	Dr. N. Jayaprakash Dr. P. Maheswari
3	III	ELECTROCHEMISTRY, CORROSION AND PROTECTIVE COATINGS	Ms. M. Meera Dr. M. Soundarrajan
4	IV	ENGINEERING MATERIALS	Dr. J. Krishnamurthi Dr. S.G. Gunasekaran
5	V	NANOCHEMISTRY	Dr. S. G. Gunasekaran Dr. P. Maheswari

SRM Nagar, Kattankulathur – 603 203 DEPARTMENT OF CHEMISTRY

UNIT I – WATER AND ITS TREATMENT

UNIT I – WATER AND ITS TREATMENT						
Q. No	PART-A (2 Marks)	BTL	Competence			
1.	What is hardness? How is it classified?	1	Remembering			
2.	What are the units of hardness of water?	2	Understanding			
3.	Distinguish hard water and soft water?	2	Understanding			
4.	What is priming and foaming? How can they be prevented?	3	Applying			
5.	Name the salts responsible for scale and sludge.	1	Remembering			
6.	Define softening or conditioning of water?	1	Remembering			
7.	How is calgon conditioning better than phosphate conditioning?	4	Analyzing			
8.	Explain the term scales and sludges.	2	Understanding			
9.	Mention the requisites of potable water.	5	Evaluating			
10.	Investigate the reason for boiler corrosion.	6	Creating			
11.	Explain the term boiler feed water.	3	Applying			
12.	Define desalination.	1	Remembering			
13.	Compare internal conditioning with external conditioning.	4	Analyzing			
14.	Name any two salts that cause temporary hardness.	1	Remembering			
15.	What is reverse osmosis (RO)?	1	Remembering			
16.	Define the term break point chlorination.	2	Understanding			
17.	How is blow down operation applied to remove hard water?	3	Applying			
18.	Defend caustic embrittlement. How is it prevented?	4	Analyzing			
19.	Critique carbonate and non-carbonate hardness? Give examples.	5	Evaluating			
20.	Formulate is it necessary to chlorinate drinking water supply beyond break point?	6	Creating			

Q. No		PART-B (16 Marks)	BTL	Competence
1.	(i)	How do you identify the hard and soft water? Explain the types of hard water.	2	Understanding
	(ii)	What are boiler troubles or Disadvantages of using hard water in the boiler? Suggest steps to minimize the boiler troubles.	1	Remembering
2.	(i)	Differentiate scales and sludges.	2	Understanding
	(ii)	Discuss how the water is disinfected by Chlorine?	4	Analyzing
3.	(i)	Criticize how caustic embrittlement can be prevented and define the same.	5	Evaluating
	(ii)	Outline the various stages of domestic water treatment in sequence.	5	Evaluating
4.	(i)	What is boiler feed water? What are its requirements and explain its drawbacks?	1	Remembering
	(ii)	Explain with chemical reaction of the demineralization or ion exchange process.	1	Remembering
5.	(i)	How is hard water converted into soft water using ion exchange process?	3	Applying
	(ii)	Explain carbonate and non-carbonate hardness of water with examples?	2	Understanding

SRM Nagar, Kattankulathur – 603 203

6.	(i)	What is calgon? Explain calgon conditioning briefly.	4	Analyzing
	(ii)	How is internal treatment of boiler water carried out using colloidal, phosphate and sodium aluminate conditioning method?	4	Analyzing
7.	(i)	Compare the external and internal treatment of boilers.	2	Understanding
	(ii)	Write the merits and demerits of external treatment of water.	2	Understanding
8.	(i)	What is desalination? With a neat diagram describe the Reverse Osmosis method for the desalination of brackish water.	1	Remembering
	(ii)	How will you regenerate the exhausted ion exchange resins?	3	Applying
9.	(i)	Explain the principle and process of break-point chlorination.	4	Analyzing
	(ii)	Describe Sodium aluminate and calgon conditioning.	1	Remembering
10.	(i)	How is calgon conditioning is superior to phosphate conditioning?	4	Analyzing
	(ii)	Explain the disadvantages of scale formation?	1	Remembering
11.	(i)	What are the essential requirements of boiler feed water?	4	Analyzing
	(ii)	What are the factors which causes boiler corrosion? How can it be minimized?	1	Remembering
12.	(i)	Give an account of Internal treatment of boiler water.	2	Understanding
	(ii)	Draw a suitable diagram and describe the Ion exchange process for the softening of boiler water.	1	Remembering
13.	(i)	Define the term Desalination with a neat diagram describe Desalination by Reverse osmosis method.	3	Applying
	(ii)	Illustrate how you will protect boiler from corrosion.	3	Applying
14.	(i)	Discuss the causes and prevention of priming and foaming.	2	Understanding
	(ii)	Explain how sterilization of water carried out using chlorine? Write the mechanism.	3	Applying

Q. No	PART-C	BTL	Competence
1.	Evaluate with a suitable diagram and describe the Ion exchange process for the softening of boiler water.	5	Evaluating
2.	What is break point chlorination? State its significance.	1	Remembering
3.	What are the problems one would face when hard water is used in boiler industries?	4	Analyzing
4.	What is desalination? Name the different methods of desalination. Explain any one in detail.	2	Understanding

SRM Nagar, Kattankulathur – 603 203 DEPARTMENT OF CHEMISTRY

UNIT II - SURFACE CHEMISTRY AND CATALYSIS

Q. No	PART-A (2 Marks)	BTL	Competence
1.	Define adsorption.	1	Remembering
2.	Mention a few important characteristics of adsorption.	3	Applying
3.	What is physical adsorption? Give an example.	1	Remembering
4.	What is chemisorption?	2	Understanding
5.	Differentiate catalytic promoters and catalytic poisoner.	4	Analyzing
6.	What is meant by negative adsorption?	2	Understanding
7.	Define adsorption isotherm.	1	Remembering
8.	Give the conditions in which Freundlich's adsorption isotherm fails.	2	Understanding
9.	Define the terms adsorbent and adsorbate with suitable example.	1	Remembering
10.	Mention the types of catalysis with an example.	3	Applying
11.	Define catalyst.	1	Remembering
12.	What are catalytic promoters?	2	Understanding
13.	What is meant by catalytic poisoning?	2	Understanding
14.	How an acid – base catalysis is carried out?	3	Applying
15.	State the reason why the temperature of human body has to be maintained at 37°C.	5	Evaluating
16.	Explain the term negative adsorption.	2	Understanding
17.	With an example illustrate homogeneous catalysis.	3	Applying
18.	What is auto catalysis? Give an example.	1	Remembering
19.	Why is a reaction speeded up in the presence of a catalyst?	5	Evaluating
20.	List any four characteristics of enzyme catalysis.	4	Analyzing

Q. No		PART-B (16 Marks)	BTL	Competence
1.	(i)	Differentiate physisorption and chemisorption.	4	Analyzing
	(ii)	Discuss various factors which affect the adsorption of a gas on a solid adsorbent.	1	Remembering
2.	(i)	Examine catalytic promoters and catalytic poisoning.	4	Analyzing
	(ii)	Derive Freundlich's adsorption isotherm and state its limitations.	3	Applying
3.	(i)	State the postulates and derive Langmuir adsorption isotherm and discuss its pressure conditions and limitations.	3	Applying
	(ii)	Discuss the adsorption of solutes from solutions.	2	Understanding
4.	(i)	Explain the applications of adsorption in pollution abatement of air and waste water.	2	Understanding
	(ii)	List out the characteristics of catalysis and give four applications of absorption.	1	Remembering
5.	(i)	Explain contact theory of catalysis.	2	Understanding

SRM Nagar, Kattankulathur – 603 203

	(ii)	Explain about positive and negative adsorption.	2	Understanding
6.	(i)	Derive the rate of a unimolecular reaction in a heterogeneous catalysis.	3	Applying
	(ii)	Explain auto catalysis with suitable examples.	2	Understanding
7.	(i)	Derive Michaelis– Menten equation for enzyme catalysis.	3	Applying
	(ii)	Evaluate on catalytic converters.	5	Evaluating
8.	(i)	Explain physical adsorption and chemical adsorption with suitable examples.	2	Understanding
	(ii)	What are unimolecular reactions? Explain its kinetics.	1	Remembering
9.	(i)	Explain by deriving, when Langmuir adsorption isotherm becomes identical with Freundlich's adsorption isotherm.	3	Applying
	(ii)	Outline the role of activated carbon in pollution abatement of water.	4	Analyzing
10.	(i)	Illustrate the role of adsorbents in ion exchange adsorption. Bring out the applications of activated carbon.	3	Applying
	(ii)	Discuss the factors that influence adsorption of solutes from solution.	1	Remembering
11.	(i)	Describe the heterogeneous catalytic reaction with a suitable example.	1	Remembering
	(ii)	Explain the Freundlich's adsorption isotherm at various pressures.	3	Applying
12.	(i)	With suitable examples explain homogeneous and heterogeneous catalysis.	2	Understanding
	(ii)	Investigate the criteria on auto catalysis.	5	Evaluating
13.	(i)	Explain the following (i) Acid base catalysis (ii) Enzyme catalysis.	2	Understanding
	(ii)	Explain the factors affecting the adsorption of a gas on a solid.	2	Understanding
14.	(i)	Discuss the kinetics of enzyme catalyzed reaction.	3	Applying
	(ii)	How does a three way catalytic converter work?	3	Applying

Q. No	PART-C	BTL	Competence
1	Categorize the different factors of adsorption of gases on solids.	5	Evaluating
2	Compose Langmuir adsorption isotherm at various pressures.	6	Creating
3	Investigate the kinetics of enzyme catalyzed reaction by deriving Michealis – Menten equation.	5	Evaluating
4	Compose the categories of Catalysis.	6	Creating

SRM Nagar, Kattankulathur – 603 203 DEPARTMENT OF CHEMISTRY

UNIT III – ELECTROCHEMISTRY, CORROSION AND PROTECTIVE COATING				
Q. No	PART-A (2 Marks)	BTL	Competence	
1.	Define Electrochemical cell?	1	Remembering	
2.	Describe Standard Electrode Potential?	2	Understanding	
3.	What are the factors affecting the emf of the cell?	3	Applying	
4.	Can we use nickel spatula to stir a solution of copper sulphate?	4	Analyzing	
5.	Calculate the reduction potential of lead electrode in contact with a solution of $0.018M \text{ Pb}^{2+}$ ions (standard reduction potential = - 0.13V).	1	Remembering	
6.	What is the significance of electrochemical series?	3	Applying	
7.	Illustrate the terms anode and cathode.	3	Applying	
8.	What is corrosion? Give an example.	1	Remembering	
9.	What is Pilling-Bedworth rule? Discuss its importance.	1	Remembering	
10.	Blunt edges are preferred over sharp edges. Interpret.	2	Understanding	
11.	Differentiate Dry corrosion and Wet corrosion.	4	Analyzing	
12.	Bolt and nut made of same metal is preferred in practice. Why?	4	Analyzing	
13.	What is water line corrosion? Give example.	1	Remembering	
14.	Explain pitting corrosion.	1	Understanding	
15.	Discuss cathodic protection. Mention its two applications.	1	Remembering	
16.	How is galvanic corrosion prevented?-Dept of Chemistry	2	Understanding	
17.	What is paint? Mention its constituents.	1	Remembering	
18.	Describe electroplating (or) Give the principle of electro deposition.	1	Remembering	
19.	Compose the Nernst equation for the cell, $Zn_{(s)}/Zn_{(aq)} Mg(aq)/Mg(s)$	6	Creating	
20.	Classify the advantages of electro less plating over electroplating.	4	Analyzing	

Q. No	PART-B (16 Marks)	BTL	Competence
1.	(i) Derive Nernst equation and give its signif (Applications).	Ficance 3	Applying
	(ii) Calculate the standard electrode potential of zinc e dipped in 0.1 M ZnSO ₄ at 25° C (Zn/Zn ²⁺ = 0.76 V)	lectrode 3	Applying
2.	(i) Compare electrolytic cell and electrochemical cell.	4	Analyzing
	(ii) Discuss the measurement of single electrode potentia	al. 2	Understanding
3.	(i) Consider the cell reaction $Zn+Fe^{2+}$ (0.005) $\rightarrow Zn^{2+}$ (+ Fe. Given that the standard emf of the cell is 0.323 298K. Construct the cell and calculate emf of cell.	V at 3	Applying
	(ii) Calculate the reduction potential of Cu^{2+} (0.5M) / Cu^{2+} (0.5M) / Cu^{2+} (0.5M) / Cu^{2+} (Cu ²⁺ /Cu) = 0.337 V	0	Creating
4.	(i) Compose the measurement of single electrode poten and its application	tial 6	Creating
	(ii) What is electrochemical series? Give its applications	4	Analyzing

SRM Nagar, Kattankulathur – 603 203

5.	(i)	Analyze dry (or) chemical corrosion with suitable examples and diagrams.	2	Understanding
	(ii)	State the differences between electrochemical corrosion and chemical corrosion.	2	Understanding
6.	(i)	Discuss wet (or) electrochemical corrosion with suitable examples and diagrams. (OR) Describe the mechanism of electrochemical corrosion.	3	Applying
	(ii)	Explain differential aeration corrosion and galvanic corrosion with suitable illustrations.	1	Remembering
7.	(i)	What are the factors which influence the rate of corrosion?	1	Remembering
	(ii)	Explain the sacrificial anode and impressed current cathodic techniques for the prevention of corrosion.	2	Understanding
8.	(i)	How will you control corrosion by material selection and design aspects?	2	Understanding
	(ii)	What is chemical corrosion? Explain the mechanism.	5	Evaluating
9.	(i)	What are paints? Give its constituents and functions with examples.	1	Remembering
	(ii)	Explain the process of electro deposition taking a suitable example (or) How is electroplating of copper carried out?	3	Applying
10.	(i)	How is galvanic corrosion occur.	2	Understanding
	(ii)	Differentiate electroplating and electroless plating.	2	Understanding
11.	(i)	Explain the terms, cell potential and single electrode potential and describe the method of determination of electrode potential	1	Remembering
	(ii)	How electrode potential can be obtained from Nernst Equation.	3	Applying
12.	(i)	Define EMF Series. Explain its significance.	2	Understanding
	(ii)	Discuss the importance of design and material selection in controlling corrosion.	2	Understanding
13.	(i)	Illustrate Electroless plating and explain the plating of Ni by this process.	4	Analyzing
	(ii)	Explain how corrosion is controlled by sacrificial anode.	3	Applying
14.	(i)	Describe the mechanism of differential aeration corrosion taking pitting as example.	4	Analyzing
	(ii)	Discuss the factors which influence electrochemical corrosion.	3	Applying

Q. No	PART-C	BTL	Competence
1	Derive the Nernst equation and Measure the emf of the cell at 25° C. The standard emf of the following cell is 1.54 V. $Zn(s)/Zn^{2+}$ (0.2M)//Ag+(0.002M)/Ag(s)	5	Evaluating
2	Formulate the mechanism of wet corrosion fori) Hydrogen evolution type corrosionii) Hydroxide formation type corrosion	6	Creating
3	Assess the basic constituents and the functions of paint.	5	Evaluating
4	i) Construct a plating bath for coating nickel on an object by electroless plating method.ii) Construct a Electro Plating of Cu	6	Creating

SRM Nagar, Kattankulathur – 603 203 DEPARTMENT OF CHEMISTRY

UNIT IV – ENGINEERING MATERIALS

UNIT IV – ENGINEERING MATERIALS				
Q. No	PART-A (2 Marks)	BTL	Competence	
1.	What are the raw materials used for preparing Portland cement?	1	Remembering	
2.	Using excess amount of lime during cement manufacturing is not good. Discuss.	4	Analyzing	
3.	Evaluate the steps involved in the manufacturing of Portland cement.	5	Evaluating	
4.	Analyze the main components of water proof cement.	4	Analyzing	
5.	What are the advantages of sorel cement flooring?	1	Remembering	
6.	Mention the uses of white cement.	1	Remembering	
7.	What is a glass and give its general formula	3	Applying	
8.	List the raw materials used for manufacturing of glass.	2	Understanding	
9.	What is a laminated glass?	1	Remembering	
10.	Give the chemical composition of flint glass.	3	Applying	
11.	Outline the manufacturing of safety glass with two uses.	5	Evaluating	
12.	Formulate the methods involved in preparing polymers.	6	Creating	
13.	Why are plastics indispensible in everyday life?	4	Analyzing	
14.	Find and write the monomers used in Kevlar and PEEK.	3	Applying	
15.	Differentiate between addition and condensation polymer.	4	Analyzing	
16.	Teflon is an addition polymer but it behaves like a thermosetting polymer. Give reasons.	5	Evaluating	
17.	Enumerate the disproportionation reaction in free radical mechanism.	6	Creating	
18.	Give any four applications of polymer in medicine and surgery.	2	Understanding	
19.	Define polymer with an example.	1	Remembering	
20.	How thermo plastics differ from thermosetting plastics?	2	Understanding	

Q. No		PART-B (16 Marks)	BTL	Competence
1.	(i)	What is cement? Give the various classification of cement.	2	Understanding
	(ii)	Organize a neat flow diagram to show various steps involved in the dry process of Portland cement manufacture by rotary kiln technology. Also write the chemical reactions involved in it.	4	Analyzing
2.	(i)	Sketch the various steps involved in manufacture of cement by wet process with sequential reactions.	3	Applying
	(ii)	Write the chemistry of setting and hardening of cement.	2	Understanding
3.	(i)	Formulate various reactions of water with cement constituents which take place during setting and hardening.	6	Creating
	(ii)	Prepare a detailed account on special cements with its various applications.	3	Applying
4.	(i)	Write notes on (i) water proof cement (ii) white cement (iii) sorel cement	3	Applying
	(ii)	What is a glass? Discuss the manufacture of glass.	1	Remembering
5.	(i)	How is glass prepared by pot-furnace method?	1	Remembering

SRM Nagar, Kattankulathur – 603 203 DEPARTMENT OF CHEMISTRY

	(ii)	Write a brief account of types of glass with its composition and uses.	2	Understanding
6.	(i)	Analyze in detail about laminated, safety and flint glass.	4	Analyzing
	(ii)	Discuss in detail about different types of polymerization.	1	Remembering
7.	(i)	Elaborately explain addition, condensation and copolymerization.	2	Understanding
	(ii)	How are polymers prepared by high temperature and low temperature method?	2	Understanding
8.	(i)	Illustrate free radical mechanism of polymer.	4	Analyzing
	(ii)	Give the applications of polymers in medicine and surgery.	2	Understanding
9.	(i)	Outline the cationic and anionic mechanism for polymer preparation.	4	Analyzing
	(ii)	Analyze the methods by which condensation polymerization is conducted.	4	Analyzing
10.	(i)	Write elaborately on Bulk, Solution, Emulsion and Suspension polymerization?	1	Understanding
	(ii)	Develop the methods by which addition polymerization can be carried out?	6	Creating
11.	(i)	Formulate the mechanism of preparing polymers using both positive and negative ions.	5	Evaluating
12.	(i)	Write in detail about the preparation, properties and uses of Kevlar, Teflon and PEEK.	3	Applying
	(ii)	Summarize elaborately on conducting polymers.	6	Creating
13	(i)	Evaluate any 4 engineering polymers.	5	Evaluating
	(ii)	What are plastics? Discuss in detail about different types of plastics.	1	Understanding
14	(i)	What are biopolymers? Find the various applications of biopolymers in the field of medicine and surgery.	2	Remembering
	(ii)	Evaluate the following: (i). Intrinsically conducting polymer (ii). Extrinsically conducting polymer (iii). Doped conducting polymer (iv). Coordination conducting polymer	5	Evaluating

Q. No	PART-C	BTL	Competence
1.	Evaluate the processes involving the manufacturing of cement.	5	Evaluating
2.	Compile the manufacturing of glass with various types and its uses.	6	Creating
3.	Explore various conducting polymers which act as engineering materials with respect to its functional properties.	5	Evaluating
4.	Polymers play a major role as materials in many engineering applications. Justify?	6	Creating

SRM Nagar, Kattankulathur – 603 203 DEPARTMENT OF CHEMISTRY

UNIT V - NANOCHEMISTRY

UNII V - NANOCHEMISTRY					
Q. No	PART-A (2 Marks)	BTL	Competence		
1.	What are nanomaterials?	1	Remembering		
2.	Illustrate the size dependent property of nanoparticles?	3	Applying		
3.	Explore the important differences between nanoparticles and bulk materials?	4	Analyzing		
4.	Discuss any four nanomaterials.	2	Understanding		
5.	Demonstrate the some characteristic properties of nanomaterials?	3	Applying		
6.	Criticize the different methods of preparing nanomaterials?	4	Analyzing		
7.	State nanoclusters?	1	Remembering		
8.	Explain nanorods? Mention their specific applications.	1	Remembering		
9.	Define nanowires.	1	Remembering		
10.	Summarize few applications of nanomaterials.	2	Understanding		
11.	Defend the applications of nanotechnology in engineering.	1	Remembering		
12.	What are carbon nanotubes?	1	Remembering		
13.	Analyze the different types of CNTs.	4	Analyzing		
14.	Clarify laser ablation method.	2	Understanding		
15.	Evaluate chemical vapor deposition (CVD) method.	5	Evaluating		
16.	Formulate electro-deposition method.	6	Creating		
17.	Investigate the applications of nanorods and nanowires.	6	Creating		
18.	Support how nanoparticles are prepared by precipitation method.	5	Evaluating		
19.	Report the applications of nanomaterials in pollution control.	2	Understanding		
20.	Enumerate hydrothermal and solvothermal synthesis of nanoparticles.	3	Applying		

Q. No		PART-B (16 Marks)	BTL	Competence
1.	(i)	Distinguish molecules, nanoparticles and bulk materials.	2	Understanding
	(ii)	Discuss the size dependent properties of nanomaterials.	2	Understanding
2.	(i)	Classify the various properties of nanomaterials.	1	Remembering
	(ii)	Write a note on top–down and bottom–up approach for nanomaterial preparation with examples.	2	Understanding
3.	(i)	Briefly explain carbon nanotubes and its properties?	1	Remembering
	(ii)	Sketch chemical vapour deposition (CVD) method for the synthesis of nanomaterials.	3	Applying
4.	(i)	Discuss the vibration properties of CNTs with suitable diagram.	2	Understanding
	(ii)	Examine the hydrothermal synthesis of nanoparticles.	1	Remembering
5.	(i)	Compare hydrothermal and solvothermal synthesis of nanomaterials with suitable examples.	4	Analyzing
	(ii)	Interpret the synthesis of nanoparticles by any three methods.	3	Applying
6.	(i)	Discuss precipitation process with example in preparing nanoparticles.	2	Understanding
	(ii)	Enumerate solvothermal process for the preparation of	4	Analyzing

SRM Nagar, Kattankulathur – 603 203

		nanoparticles.		
7.	(i)	Formulate the synthesis of carbon nanotubes.	6	Creating
	(ii)	Report various applications of carbon nanotubes.	2	Understanding
8.	(i)	Elucidate the electodeposition method for the synthesis of nanomaterial.	4	Analyzing
	(ii)	Tell about the laser ablation method of preparing nanoparticles.	1	Remembering
9.	(i)	State the synthesis, properties and applications of carbon nanorods.	1	Remembering
	(ii)	Analyze nanoclusters and nanowires? Explain their properties and applications.	4	Analyzing
10.	(i)	Discuss the various types of synthesis involved in the preparation of nanomaterials.	1	Remembering
	(ii)	Describe the solvothermal and laser ablation methods of synthesis of nanomaterials.	1	Remembering
11.	(i)	Explore in detail about bottom-up & top-down approach in nanomaterial synthesis.	4	Analyzing
	(ii)	Quote the electrical properties of CNTs.	1	Remembering
12.	(i)	Relate nanorods, nanotubes, nanowires.	5	Evaluating
	(ii)	Compare molecules and nanomaterials with bulk materials.	4	Analyzing
13.	(i)	Demonstrate medicinal and industrial application of nanomaterials.	3	Applying
	(ii)	Select the applications of nanomaterials in electronics and biomaterials.	5	Evaluating
14.	(i)	Explain nanoparticles and nanorods in detail.	3	Applying
	(ii)	Investigate the various applications of nanomaterials with suitable examples.	6	Creating

Q. No	PART-C	BTL	Competence
1.	Formulate the various applications of nanomaterials with suitable examples	6	Creating
2.	Clarify the synthesis in the preparation of nanomaterials	5	Evaluating
3.	Design the laser ablation and chemical vapour deposition (CVD) method of preparing nanomaterials	6	Creating
4.	Evaluate the applications of nanotechnology in various industries.	5	Evaluating