SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF CIVIL ENGINEERING

QUESTION BANK

VII SEMESTER

1903710- HYDROLOGY AND WATER RESOURCES ENGINEERING

B.E. CIVIL ENGINEERING

Regulations-2019

Academic Year: 2022–2023

Dr. A. LEEMA ROSE
Associate Professor
Department of Civil Engineering

SRM VALLIAMMAI ENGINEERING COLLEGE

DEPARTMENT OF CIVIL ENGINEERING B.E. CIVIL ENGINEERING

1903710 HYDROLOGY AND WATER RESOURCES ENGINEERING

Question Bank

SEMESTER: 07 REGULATION-2019 YEAR: B.E /IV

UNIT I PRECIPITATION AND ABSTRACTIONS

Hydrological cycle- Meteorological measurements – Requirements, types and forms of precipitation - Rain gauges-Spatial analysis of rainfall data using Thiessen and Isohyetal methods-Interception - Evaporation. Horton's equation, pan evaporation measurements and evaporation suppression - Infiltration-Horton's equation - double ring infiltrometer, infiltration indices

Q. No	Questions Questions	BT Level	Competence
1.	Define Hydrolog <mark>y.</mark>	BT-1	Remember
2.	What is the objective of the hydrological study?	BT-1	Remember
3.	What is the importance of hydrology?	BT-1	Remember
4.	List the various phases of a hydrological cycle?	BT-1	Remember
5.	Define Precipitation?	BT-1	Remember
6.	How precipitation is expressed?	BT-1	Remember
7.	State basic conditions which are required for the precipitation to occur.	BT-1	Remember
8.	Define transpiration?	BT-1	Remember
9.	What is runoff?	BT-1	Remember
10.	Enlist the various forms of precipitation.	BT-2	Understand
11.	What are all the types of precipitation?	BT-2	Understand
12.	How the precipitation can be measured?	BT-2	Understand
13.	What are all the demerits of Non-recording type rain gauge?	BT-2	Understand
14.	Enlist the three types of recording type rain gauge?	BT-2	Understand
15.	What do you understand by Isohyet?	BT-2	Understand
16.	Write the Horton's Equation.	BT-2	Understand
17.	What are all the methods available to find the average depth of precipitation over an area?	BT-3	Application
18.	What do you understand from infiltration indices?	BT-3	Application
19.	What is the use of Double mass curve?	BT-3	Application
20.	Write short notes on rain gauge density	BT-3	Application

21.	Define infiltration?	BT-3	Application
22.	Define evaporation?	BT-3	Application
23.	What is normal Annual rainfall?	BT-3	Application
24.	List the merits of Isohyetal method.	BT-3	Application
25.	How Orographic precipitation occurs?	BT-3	Application

Q.No			BT Level	Competence		
1.	Explain "Hydrological cy	cle" with nea	it sketch.	Rec	BT-3	Application
2.	The isohyets due to a singure and the area of tabulated as below.		BT-3	Application		
	Isohyets (cm	1)	Area (km	n^2)	N.	
	Station-12.0		30		.0	
	12.0-10.0		140			
	10.0-8.0		80			
	8.0-6.0	51	180			
	6.0-4.0	~	20			P 1
	Estimate the mean precip		storm.		DT 2	Amiliantina
3.	List the different types		<mark>ion a</mark> nd expla	in the factors	BT-3	Application
4.	Estimate the PET of an a in which wheat is grown 30° N with mean monthly	rea for the se . The area is	in North India	-	BT-4	Analyse
	Month Nov.	Dec.	Jan.	Feb.		
	Temp. 16.5 (°C)	13.0	11.0	14.5		
	Assume empirical coeff day time hours of the ye Feb respectively. Use the	ar 7.19, 7.15,	7.3, 7.03 for N	-		

5.	Results of a	n infil	tromete	er test	on a s	oil are	given	below.	Dete	rmine	BT-4	Analyse
	the Horton'				y equ	_					D1-4	Analyse
	Time since	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2		
	start in (h)											
	Infiltration	5.6	3.2	2.1	1.50	1.20	1.10	1.0	1.	.0		
	capacity in cm/h											
6.	The rain ga	uge st	ation 2	K was	in ope	erative	for a	part of a	a mo	nth	DT 4	A 1
	during stor										BT-4	Analyse
	surrounding	g statio	ons A,	В, а	nd C	was	75, 55	5, and	85 n	nm		
	respectively			_								
	and X are				'00 m	m resp	ectivel	y. Estir	nate	the		
	storm rainfa							_				
7.	The rain fall	l recor	ded at	the vai	ious 1	ain gau	ige sta	tions are	e as		BT-4	Analyse
	follows.											-
	Ra	in gaus	ge stati	on nur	nber	Pred	cipitati	on in m	m			
		<i></i>	1				3:					
			2				38					
			3				4					
			4				4:	5				
			5				4′	7				
			6				50	O				
			7				52	2				
			8				5:	5				
	Determi											
8.	Determine	-	m num	ber of	rain g	gauges	in catc	hment a	irea fi	rom		
	following d				_						BT-3	Application
			sting ra	_	-		404					11
					the g	auges a	are 101	0, 980,9	900,8	70,		
	Permiss		700 mn									
9.	Explain the				on and	1 factor	affect	ing its r	oroces	SS	BT-3	Application
10.	Describe the	_										
10.	over an are		1000	actori		5 4110 41	reruge	depth o		1411	BT-4	Analyse
11.	For a drain		sis of 6	00 km	² , isoh	yets dr	awn fo	or a stor	m gav	ve	DT 4	A 1
	the following	_			,	•			U		BT-4	Analyse
	Isohyets											
	(cm)	40	35	30		25	20	15	10			
	Catchme											
	nt area		35	90		150	210	420	600	,		
	(km2) Estimate th	- e ava :		l .	initati		310	430	600	,		
12.	The infiltrati								of tim	ne are		
12.	indicated be											Analyse
	exponential:			- Tuuti	101	111		capu				
	Time (hrs)	0	0.25	0.50	0.75	1.00	1.25	1.50 1	.75	2.00		
	Infiltration	10	5 5.65		2.18		1.25		1.0	1.0		
	capacity	10.	2 3.03	3.20	2.18	1.30	1.23	1.10	1.0	1.0		
	(cm/hr)											

13.	Describe the working principle of a non-recording type rain gauge	BT-3	Application
	with neat sketch, Mentioning its advantages and disadvantages.		
14.	What are the factors affecting the infiltration capacity of soil and	BT-3	Application
	discuss briefly the effect of any four?		
15.	Explain the different methods of determining the average rainfall	BT-3	Application
	over a catchment due to a storm. Discuss the relative merits and		
	demerits of the various methods.		
16.	What are the various types of precipitation and how do you	BT-3	Application
	measure rain fall?		
17.	Write down the Horton's equation for the determination of rate of	BT-3	Application
	filtration.		

Q.No	Questions	BT Level	Competence
1.	Discuss the application of hydrology in practice	BT-4	Analyse
2.	Explain the process of evapotranspiration and its measurement.	BT-4	Analyse
3.	Explain any two Automatic Rain gauges.	BT-4	Analyse
4.	What are the precautions to be taken in selection a site for the location of a rain gauge? Explain.	BT-4	Analyse
5.	As the rainfall supply continues, the rate of infiltration decreases, why?	BT-5	Evaluate

UNIT II RUNOFF

Watershed, catchment and basin - Catchment characteristics - factors affecting runoff - Run off estimation using empirical - Strange"s table and SCS methods - Stage discharge relationships- flow measurements-RING Hydrograph – Unit Hydrograph – IUH

Q.No	Questions	BT Level	Competence
1.	What is interflow?	BT-1	Remember
2.	What is base flow?	BT-1	Remember
3.	Define Effective Rainfall.	BT-1	Remember
4.	List the climatic factors which affect runoff.	BT-1	Remember

5.	Define Direct Runoff.	BT-1	Remember
6.	List the methods of estimation of rainfall.	BT-1	Remember
7.	Distinguish between runoff and stream flow.	BT-1	Remember
8.	What do you understand by ground water flow?	BT-1	Remember
9.	Define Runoff.	BT-1	Remember
10.	List the physiographic factors which affect runoff.	BT-1	Remember
11.	Define Annual hydrograph.	BT-2	Understand
12.	What are the methods to determine unit hydrograph?	BT-2	Understand
13.	What are all the applications of unit hydrograph?	BT-2	Understand
14.	Enumerate the types of synthetic hydrographs.	BT-2	Understand
15.	List the factors affecting hydrograph.	BT-2	Understand
16.	What are the limitations of unit hydrograph theory?	BT-2	Understand
17.	List the types of hydrograph.	BT-2	Understand
18.	Define subsurface runoff.	BT-2	Understand
19.	What is isochrones?	BT-3	Application
20.	What do you understand by surface runoff?	BT-3	Application
21.	Define concentration time.	BT-3	Application
22.	What is drainage density?	BT-3	Application
23.	Define Base lag time.	BT-3	Application
24.	Define S curve technique.	BT-3	Application
25.	Enumerate the main components of a hydrograph of discharge against time.	BT-3	Application

Q.No	Questions	BT Level	Competence
1.	Explain in detail about the runoff process.	BT-5	Evaluate
2.	List the factors affecting runoff and elaborate in detail	BT-5	Evaluate

Rainfall dat km ² . Produ Draw the gr	ice the	follo												1	Analyse
Time from the start of	-6	0	6	12	18	24	30	36	42	48	54	60	66		
Observed flow	7	5	13	26	21	16	12	9	7	5	5	4	4		
Annual run Analyse the linear correl	data t	o estir	nate the	75%	and 50%	dependa	ıble annı	ıal yield	of the	catchme	nt and (4	Analyse
Analyse the	data t	o estir equatio	nate the on to est	75% a imate a	and 50% annual rui Annual ru	dependa noff volu	ıble annı	al yield a given a	l of the cannual ra	catchme ainfall vannual	nt and (alue.	b) to de	velop a	4	Analyse
Analyse the linear correl Year	data t	o estir equatio	nate the on to est nnual fall (cm)	75% a imate a	and 50% annual ru Annual ru (cm)	dependa noff volu	able annuame for a	ual yield a given a ar	of the cannual ra	catchme ainfall vannual all (cm)	nt and (alue.	b) to denual rune	velop a	1	Analyse
Analyse the linear correl	data t	o estir equatio	nate the on to est	75% a imate a	and 50% annual rui Annual ru	dependa noff volu	able annuable	al yield a given a ar	Ar rainfa	catchme ainfall vannual	nt and (alue.	b) to de	velop a	4	Analyse
Analyse the linear correl Year 1975	data t	o estir equatio	nate the on to est annual fall (cm)	75% a imate a	and 50% annual ru Annual ru (cm) 54	dependa noff volu	Type Annual Notes Indian Notes	a given a	An rainfa	catchme ainfall vannual all (cm)	nt and (alue.	nual rund (cm)	velop a	4	Analyse
Analyse the linear correl Year 1975 1976	data t	o estir equatio	nate the on to est nual fall (cm) 118 98 112 97	75% a imate a	and 50% annual ru Annual ru (cm) 54 45	dependa noff volu	Yea	ual yield a given a ar	An rainfa	catchme ainfall vannual all (cm)	nt and (alue.	nual runo (cm) 17 32	velop a	4	Analyse
Analyse the linear correl Year 1975 1976 1977	data t	o estir equatio	nate the on to est nnual fall (cm) 118 98 112 97 84	75% a imate a	Annual ru (cm) 54 45 51 41 21	dependa noff volu	Yea 198 198	a given a give	Ar rainfa	nnual all (cm) 75	nt and (alue.	nual run (cm) 17 32 15	velop a	4	Analyse
Analyse the linear correl Year 1975 1976 1977 1978	data t	o estir equatio	nate the on to est nnual fall (cm) 118 98 112 97 84 91	75% a imate a	Annual ru (cm) 54 45 51	dependa noff volu	Yea 198 198 198 198 199 199	a given a give	An rainfa	catchme ainfall vannual all (cm) 75 107 75 93 129 153	nt and (alue.	nual rund (cm) 17 32 15 28 48 76	velop a	4	Analyse
Analyse the linear correl Year 1975 1976 1977 1978 1979 1980 1981	data t	o estir equatio	nate the on to est number of the standard fall (cm) 118 98 112 97 84 91 138	75% a imate a	Annual ru (cm) 54 45 51 41 21 32 66	dependa noff volu	Yea 198 198 198 198 199 199	al yield a given a a a a a a a a a a a a a a a a a a a	Ar rainfa	catchme ainfall vannual all (cm) 75 107 75 93 129 153 92	nt and (alue.	nual rune (cm) 17 32 15 28 48 76 27	velop a	1	Analyse
Analyse the linear correl Year 1975 1976 1977 1978 1979 1980 1981 1982	data t	o estir equatio	nate the on to est nnual fall (cm) 118 98 112 97 84 91 138 89	75% a imate a	Annual ru (cm) 54 45 51 41 21 32 66 25	dependa noff volu	Yea 198 198 198 198 199 199 199	a given a give	Ai rainfa	catchme ainfall vannual all (cm) 75 107 75 93 129 153 92 84	nt and (alue.	nual rune (cm) 17 32 15 28 48 76 27	velop a	4	Analyse
Analyse the linear correlation of the linear	data t	o estir equatio	nate the on to est nnual fall (cm) 118 98 112 97 84 91 138 89 104	75% a imate a	Annual ru (cm) 54 45 51 41 21 32 66 25 42	dependa noff volu	Yea 198 198 198 199 199 199 199	a given a give	Ar rainfa	catchme ainfall vannual all (cm) 75 107 75 93 129 153 92 84 121	nt and (alue.	nual rune (cm) 17 32 15 28 48 76 27 18 52	velop a	4	Analyse
Analyse the linear correl Year 1975 1976 1977 1978 1979 1980 1981 1982	data t	o estir equatio	nate the on to est nnual fall (cm) 118 98 112 97 84 91 138 89	75% a imate a	Annual ru (cm) 54 45 51 41 21 32 66 25	dependa noff volu	Yea 198 198 198 198 199 199 199	a given a give	Ar rainfa	catchme ainfall vannual all (cm) 75 107 75 93 129 153 92 84	nt and (alue.	nual rune (cm) 17 32 15 28 48 76 27	velop a	1	Analyse

	given belov	v. Estilliate	uie monun	iy and annu	ai TuilOII V	or th	e catemmen	i area 1300) 11a.			
	Mont	th	June		July	Aug	5	Sep		Oct		
	Month rainfall (•	90		160	145	j	22		240		
		lowing 4 Da		fall. The AN		1 st was of c		Use stand		noff volume N equations.	BT-4	Analyse
				ne if the CN			over can h	a classified	Lac 30% or	oen forest an	d BT-3	Application
	70% of podirect runo	or quality _l ff volume d	pasture. As ue to a rair	ssuming AM nfall of 75m	MC at aver im in one d	age conditi ay.	on and the	soil to be	black soil.	Estimate th	ie	Application
•	hydrograph						given belo	ow. Determ	ine the ord	linates of un	BT-3	Application
	Time hr	0	1	2	3	4	5	6	7	8		
	SHO (m ³ /s)	10	30	40	60	80	70	55	40	10		
	Base flow (m ³ /s)	10	10	10	10	10	10	10	10	10		
0.	For a catch rainfall exc			the dischar	ge in stream	m is given l	below. Calc	culate unit l	nydrograph	ordinates an	d BT-4	Analyse
	Date	Oct.15	Oct.15	Oct.15	Oct.15	Oct.16	Oct.16	Oct.16	Oct.16	Oct.17		
	Time	0000	0600	1200	1800	0000	0600	1200	1800	0000		
	SHO (m ³ /s)	15	90	705	227	148	94	61	35	15		
	Base flow	15	10	5	7	8	9	11	13	15		

11.	Explain ground water runoff in detail.	BT-4	Analyse
12.	Discuss the several assumptions underlying the UH method in hydrological analysis.	BT-4	Analyse
13.	Explain the climatic factors which affect the runoff.	BT-4	Analyse
14.	Explain in detail about the method of superposition.	BT-5	Evaluate
15.	What are the factors affecting hydrograph? Explain.	BT-5	Evaluate
16.	What is a hydrograph? Draw a single peaked hydrograph and explain its components.	BT-5	Evaluate
17.	Explain climatic factors which affect runoff.	BT-5	Evaluate

Q.No	9	1	Questions			BT Level	Competence
1.	The land use a follows. Soil: Not a bla and 40% is ground use: Hard surface a Waste land 5% Orchard (with Cultivated (Te Antecedent raseason is dorm I. Compute the wate II. What wo 5 days were soil to be soil	BT-4	Analyse				
2.		s 40km ² ; the du	ıration of <mark>rai</mark> ı	nfall is 3 hrs.		BT-4	Analyse

	11	8	80			
	12	11	70			
	13	14	60			
	14	17	59			
	15	20	56			
	16	23	57			
3.	Explain in detail abo	od.	BT-5	Evaluate		
4.	The following charachers unit hydrograp km ² , the length of the string which is neare Cp=0.576 and Ct=1.		Analyse			
5.	What is a dimensi constructing a synthe			it useful in	BT-5	Evaluate

UNIT III FLOOD AND DROUGHT

Natural Disasters-Flood Estimation- Frequency analysis- Flood control- Definitions of droughts-Meteorological, hydrological and agricultural droughts- IMD method-NDVI analysis- Drought Prone Area Programme (DPAP)

Q.No	Questions	BT	Competence
		Level	
1.	State the two attributes of the flood.	BT-1	Remember
2.	What is Maximum Probable flood?	BT-1	Remember
3.	What do you understand by the term Design flood?	BT-1	Remember
4.	List the methods of estimation of flood.	BT-1	Remember
5.	What is frequency of flood?	BT-1	Remember
6.	Define recurrence interval of flood.	BT-1	Remember
7.	A flood has return period of 23 years. What is probability exceedance of the flood?	BT-2	Understand
8.	Define standard Project flood.	BT-2	Understand
9.	According to Gumbel's extreme value distribution, how the probability of occurrence of a flood peak of magnitude greater than or equal to Q is expressed?	BT-2	Understand
10.	What are the uses of flood flow frequency analysis?	BT-2	Understand
11.	What is the use of frequency analysis?	BT-2	Understand
12.	Define flood.	BT-2	Understand
13.	State any two formulas for to calculate flood discharge.	BT-2	Understand

14.	Write short notes on flood control measures.	BT-2	Understand
15.	A flood of a certain magnitude has return period of 25 years. What is the probability of exceedance?	BT-2	Understand
16.	What are the uses of flood flow frequency analysis?	BT-2	Understand
17.	What are the routing methods?	BT-1	Remember
18.	What is flood routing?	BT-1	Remember
19.	What are the basic equations used for flood routing by hydrograph method?	BT-1	Remember
20.	What is attenuation?	BT-3	Application
21.	Define storage coefficient with reference to the channel routing.	BT-3	Application
22.	List the different methods of reservoir routing.	BT-3	Application
23.	List the structural flood control methods.	BT-3	Application
24.	What is prism storage?	BT-1	Remember
25.	Define lag.	BT-1	Remember

Q.No		Questions											Competence
1.	Explain in detail about the various flood control measures and different types of droughts.											BT-5	Evaluate
2.	Describ Explain							nethod	of re	servoii	routing.	BT-5	Evaluate
3.	The inflow discharge during a flood in that channel has been given below. Take $k = 12$ hours, $x = 0.2$; $\lambda t = 6$ hours. Outflow discharge is 20 m ³ /s. Determine the routed hydrograph and plot it. Also calculate the reduction in peak and lag time for peak.									BT-4	Analyse		
	Time	0	6	1 2	18	24	30	36	42	48	54		
	Inflow m ³ /s	15	26	5 5	68	57	44	37	29	21	18		
4.	List ou one of			ctural	metho	ds of f	lood c	ontrol	explai	n in de	tail any	BT-3	Application
5.	Elaborate on drought-prone area programme and agro-climatic planning.									BT-3	Application		
6.	How do DPAP programmes help in the development of dry land agriculture in India?									BT-3	Application		
7.	Explain in detail about NDVI analysis.										BT-3	Application	
8.					_				-		years. flood of		

	and the design of the second s	DT 4	A 1
	magnitude equal to or greater than the given magnitude occurring at	BT-4	Analyse
	least once in 10 successive years, two times in 10 successive years and		
	once in 10 successive years.		
9.	List out the structural methods of flood control explain in detail any one of the method.	BT-3	Application
10.	List the societal impacts of drought and also explain the Factors Aggravating Drought Impacts	BT-3	Application
11.	Find out the peak flood discharge for a return period of 600 years, if the corresponding peak flood discharge for return periods 100 years and 200 years are 225 m³/s and 400 m³/s. Use gambels method. Also find the return period of 900m3/s peak discharge.	BT-4	Analyse
12.	Elaborate in detail about methods of estimation of flood.	BT-4	Analyse
13.	Explain various methods of determining flood discharge in a stream.	BT-3	Application
14.	Explain the step by step procedure of log Pearson type III distribution used in flood frequency analysis.	BT-3	Application
15.	Write the types of flooding. Explain any two in detail.	BT-3	Application
16.	How do you determine the magnitude of flood of specific return period using gumbels method?	BT-3	Application
17.	Describe the procedure for estimating a T-year flood using gumbels method.	BT-3	Application

					stions				BT	
Q.No			Level	Competence						
1.	Differentiate between									Application
		Iydraulic r				ing	(5 Ma	′	BT-3	Application
		Channel rou					(5 Ma			
		rism stora					(5 Ma	,		
2.		ximum anı			iver for 2	9 years ar	e given b	elow.	BT-4	Analyse
		lot the free						10.		
	ii) I				flood hav	ing return	period o	f 30 years,		
		15 years a				.	2 .			
	iii)	What is re	currence	interval of	of a flood	of a 300	m^3/s .			
		1			1	1	T = -			
	Year	Flood	Year	Flood	Year	Flood	Year	Flood		
		m3/s		m3/s	2.17	m3/s		m3/s		
	1955	375	1966	440	1977	365	1988	267		and the same of th
	1956	199	1967	180	1978	270	1989	25 2		3.1
	1957	232	1968	219	1979	585	1990	475		J1904
	1958	419	1969	492	1980	435	1991	36 0		4.0
	1959	245	1970	237	1981	239	1992	290		77
	1960	411	1971	141	1982	264	1993	450		0.11
	1961	166	1972	257	1983	258	1994	555		
	1962	232	1973	308	1984	198				
	1963	206	1974	149	1985	523				
	1964	233	1975	500	1986	339				
	1965	238	1976	540	1987	889				

3.	A flood of a certain magnitude has a return period of 40 years. Determine the probability exceedance and probability of the flood of magnitude equal to or greater than the given magnitude occurring at least once in 10 successive years, two times in 10 successive years and once in 10 successive years.	BT-4	Analyse
4.	How IMD monitors agricultural droughts and explain in detail?	BT-3	Application
5.	Explain about recurrence interval of flood in detail.	BT-3	Application

UNIT IV RESERVOIRS

Classification of reservoirs, General principles of design, site selection, spillways, elevation – area - capacity - storage estimation, sedimentation –Effect of sedimentation on dams- life of reservoirs.

Q.No	Questions	BT Level	Competence
1.	What is the most important physical characteristics of reservoir?	BT-1	Remember
2.	What are criteria for selection of site for reservoir?	BT-1	Remember
3.	What is the difference between weir and barrage?	BT-1	Remember
4.	Why is leakage under dam undesirable?	BT-1	Remember
5.	Which condition is most Favorable at the site of the dam and reservoir?	BT-1	Remember
6.	Sketch the flow duration curve.	BT-1	Remember
7.	What are the types of dam?	BT-1	Remember
8.	What is reservoir planning?	BT-1	Remember
9.	How do you fix a capacity of reservoir?	BT-1	Remember
10.	What are the three major inputs in reservoir characterization?	BT-1	Remember
11.	What is reservoir Characterization?	BT-1	Remember
12.	What is spillway and its types?	BT-1	Remember
13.	Classify the various zones of storage in a reservoir.	BT-1	Remember
14.	Write down the steps for Water Resources planning.	BT-2	Understand
15.	Which is uncontrolled spillway?	BT-2	Understand
16.	What is reservoir capacity?	BT-2	Understand
17.	Enumerate the factors to be considered in selection of site for reservoir.	BT-2	Understand
18.	How the storage capacity of a reservoir is fixed?	BT-2	Understand
19.	What are the types of flood control reservoirs?	BT-2	Understand
20.	Compare storage and retarding reservoir	BT-2	Understand

21.	Why Spillway?	BT-2	Understand
22.	What is difference between Notch and Weir?	BT-3	Application
23.	Explain the term storage capacity of the reservoir	BT-3	Application
24.	Define Flood Walls.	BT-3	Application
25.	Compare storage and retarding reservoir	BT-3	Application

Q.No	Questions	BT Level	Competence
1.	Explain in detail about classification of reservoirs.	BT-4	Analyse
2.	Describe about reservoir sedimentation and deposition.	BT-4	Analyse
3.	Write short note on single and multipurpose reservoir with its advantages and disadvantages.	BT-3	Application
4.	Define storage capacity of the reservoir. List out and explain various storage zones of reservoir with neat sketch?	BT-3	Application
5.	Explain in detail about physical characteristics of reservoir.	BT-3	Application
6.	Enumerate the different types of spillway	BT-3	Application
7.	Outline the general principles of design in reservoir.	BT-3	Application
8.	How will you find reservoir capacity using mass curve?	BT-3	Application
9.	Elaborate in detail about reservoir sedimentation control.	BT-3	Application
10.	Show the processes of reservoir operation in detail.	BT-3	Application
11.	Describe in detail about components of dams with neat sketch	BT-4	Analyse
12.	Enumerate the procedure for site selection for reservoir.	BT-4	Analyse
13.	Explain the term "Life of reservoir "in detail.	BT-4	Analyse
14.	How sedimentation reduces the reservoir capacity?	BT-4	Analyse
15.	Describe the various steps involved in any one method of reservoir routing.	BT-4	Analyse
16.	What is the basic principle in the Muskingum method of flood routing? Describe a procedure for estimating the values of the Muskingum coefficients K and x for a stream reach.	BT-4	Analyse
17.	List the different methods of reservoir routing and explain any three in detail.	BT-3	Application

Q.No	Questions	BT Level	Competence
1.	How GIS associated in determination of site selection for a reservoir?	BT-5	Evaluate
2.	Is used to measure dynamic loads in dams? Suggest your comments.	BT-5	Evaluate
3.	Explain the planning stages adopted in site selection of reservoir.	BT-5	Evaluate

4.	Illustrate in detail about the storage capacity reservoir from mass curve	BT-5	Evaluate
5.	Explain various storage zones of reservoir with neat sketch.	BT-5	Evaluate

UNIT V GROUNDWATER AND MANAGEMENT

 $Origin-\ Classification\ and\ types\ -\ properties\ of\ aquifers-\ governing\ equations-\ steady\ and\ unsteady\ flow\ -\ artificial\ recharge\ -\ RWH\ in\ rural\ and\ urban\ areas$

Q.No	Questions	BT Level	Competence
1.	What is ground water?	BT-1	Remember
2.	Name the sources of ground water	BT-1	Remember
3.	Sketch the diagram of division of sub-surface water.	BT-1	Remember
4.	State Darcy's law and its limitation.	BT-1	Remember
5.	Define aquifer	BT-1	Remember
6.	Define hydraulic conductivity of an aquifer and state its units	BT-1	Remember
7.	What is intrinsic permeability and state its units?	BT-1	Remember
8.	What is drawdown?	BT-1	Remember
9.	Distinguish between specific capacities of a well on the specific yield of an aquifer.	BT-1	Remember
10.	What is rainwater harvesting?	BT-2	Understand
11.	What do you understand by pumping test?	BT-2	Understand
12.	Define drawdown	BT-2	Understand
13.	Write the governing equation for groundwater flow	BT-2	Understand
14.	Enumerate the term " Artificial Recharge	BT-2	Understand
15.	Distinguish between aquitard and aquiclude	BT-2	Understand
16.	Define storage coefficient	BT-2	Understand
17.	Write any two properties of aquifer.	BT-2	Understand
18.	Show the equation for steady state flow	BT-2	Understand
19.	What are the advantages of groundwater?	BT-2	Understand
20.	Write about Vadose zone	BT-2	Understand
21.	List the classification of saturated formation.	BT-2	Understand
22.	What do you infer from recuperation test?	BT-3	Application
23.	Obtain the equation for unsteady flow.	BT-3	Application

24.	Outline the need of groundwater management.	BT-3	Application
25.	Why rainwater harvesting is necessary?	BT-3	Application

Q.No	Questions	BT Level	Competence
1.	Briefly elaborate on the formation constants which characterize an aquifer.	BT-3	Application
2.	Write in detail about leaky artesian aquifer.	BT-3	Application
3.	A field test for permeability consists in observing the required for a tracer to travel between two observation wells. A tracer was found to take 10 hour travel between two wells 50 m apart when the difference in the water surface elevation in them was 0.5 m. The	BT-3	Application
	mean particle size of aquifer is 2 mm and the porosity of the medium is 0.3. If kinematic viscosity is 0.01cm ² /s. Estimate the co efficient of permeability and intrinsic permeability of the aquifer.		to.
4.	In a field test time of 6 hours was required for a tracer to travel between two observation wells 42 m apart. If the difference in water table elevation in these wells is 0.85 m and porosity of the aquifer is 20%. Calculate the coefficient of permeability of aquifer.	BT-3	Application
5.	Explain the classification of saturated formation	BT-3	Application
6.	Explain in detail about the Dupuit's theory	BT-4	Analyse
7.	Describe the method of determining the aquifer parameters using the pumping test data.	BT-4	Analyse
8.	Elaborate on the importance of GW and its historical background.	BT-3	Application
9.	Derive the ground water flow equations.	BT-3	Application
10.	A 30 cm diameter well completely penetrates an unconfined aquifer of saturated depth 40 m. After a long period of pumping at a steady rate of 1500 lpm, the drawdown in two observation wells are located at 25 m and 75 m from the pumping well were found to be 3.5 m and 2 m respectively. Determine the transmissibility of the aquifer.	BT-4	Analyse
11.	Explain in detail the Components of a rooftop rainwater harvesting system	BT-4	Analyse
12.	A 20 cm diameter tube well taps an artesian aquifer. Find the yield for a drawdown of 3m at the well. The length of the strainer is 30 m and the coefficient of permeability of aquifer is 35m per day. Assume the radius of influence as 300 m. If all other conditions remain same, find the percentage change in yield under the following cases. i. The diameter of the well is 40 cm. ii. The drawdown is 6m iii. The permeability is 17.25 m/day.	BT-4	Analyse
13.	Draw a neat sketch and show the various types of aquifers, confining units, wells and interfaces in them along with their equivalent terminology.	BT-5	Evaluate
14.	Enumerate the major reasons for GW level fluctuations.	BT-5	Evaluate

15.	Describe the method of determining the aquifer parameters using the	BT-3	Application
	Pumping test data.		
16.	On the basis of occurrence and field situation, how aquifers are classified in	BT-3	Application
	general? With relevant sketches explain in detail the features of such		
	aquifers.		
17.	How transmissivity and storage coefficient affect well performance?	BT-3	Application

Q.No	Questions	BT Level	Competence
1.	Sometimes the aquifers may be stratified with different permeability in each stratum. Consider a situation in which the flow is parallel to	BT-4	Analyse
	the stratification. Derive an expression for the transmissibility of such aquifer formation.		
2.	What is the role of GW in hydrologic cycle? Provide the water	BT-4	Analyse
	balance equation and highlight the GW related components in it.		
3.	How can isotope hydrology help in the GW age determination?	BT-5	Evaluate
4.	What are purposes of and methods for artificial GW recharge (AGWR)?	BT-5	Evaluate
5.	List the Factors affecting the Groundwater and explain any two in detail	BT-5	Evaluate