## SRM VALLIAMMAI ENGINEERING COLLEGE

#### (An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

#### DEPARTMENT OF CIVIL ENGINEERING

#### **QUESTION BANK**



#### **III SEMESTER**

#### **1917301–EARTHQUAKE ANALYSIS AND DESIGN OF STRUCTURES**

#### M.E. STRUCTURAL ENGINEERING

#### **Regulations – 2019**

Academic Year 2022 – 2023

Prepared by

Dr. A. Leema Rose, Associate Professor

**Department of Civil Engineering** 



SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203 DEPARTMENT OF CIVIL ENGINEERING



#### **QUESTION BANK**

#### SUBJECT: 1917301-EARTHQUAKE ANALYSIS AND DESIGN OF STRUCTURES

#### SEM / YEAR: III/II

#### **UNIT I – EARTHQUAKE GROUND MOTION**

Engineering Seismology (Definitions, Introduction to Seismic hazard, Earthquake Phenomenon), Seismotectonics and Seismic Zoning of India, Earthquake Monitoring and Seismic Instrumentation, Characteristics of Strong Earthquake Motion, Estimation of Earthquake Parameters.

| <u>PART – A</u> |                                                                         |             |            |  |
|-----------------|-------------------------------------------------------------------------|-------------|------------|--|
| Q.No            | Questions                                                               | BT<br>Level | Competence |  |
| 1.              | Write about folds in tectonics                                          | BT-1        | Remember   |  |
| 2.              | Define seismology. SRM                                                  | BT-1        | Remember   |  |
| 3.              | How will you develop an isoseismal map?                                 | BT-1        | Remember   |  |
| 4.              | Write the major types of plates in engineering seismology.              | BT-1        | Remember   |  |
| 5.              | Describe transform boundaries.                                          | BT-1        | Remember   |  |
| 6.              | List the types of faults.                                               | BT-1        | Remember   |  |
| 7.              | List out some disastrous earthquakes occurred in past history in India. | BT-1        | Remember   |  |
| 8.              | What are the earthquake parameters?                                     | BT-1        | Remember   |  |
| 9.              | Enlist the seismic instruments.                                         | BT-1        | Remember   |  |
| 10.             | What is seismo tectonics?                                               | BT-1        | Remember   |  |
| 11.             | Enumerate about zoning of earthquake                                    | BT-2        | Understand |  |
| 12.             | Compare convergent and divergent boundaries.                            | BT-2        | Understand |  |
| 13.             | Outline about body waves and surface waves.                             | BT-2        | Understand |  |
| 14.             | Compare and contrast focus and epicenter.                               | BT-2        | Understand |  |
| 15.             | Describe about the characteristics of earthquake.                       | BT-2        | Understand |  |
| 16.             | Differentiate between P-waves and S-waves.                              | BT-2        | Understand |  |
| 17.             | Contrast Mercalli intensity scale and Richter scale.                    | BT-2        | Understand |  |
| 18.             | Generalize the term soil amplification.                                 | BT-2        | Understand |  |

| 19. | Generalize the term seismogram.                 | BT-2 | Understand  |
|-----|-------------------------------------------------|------|-------------|
| 20. | Explain elastic rebound theory.                 | BT-2 | Understand  |
| 21. | Illustrate about seismic hazards                | BT-3 | Application |
| 22. | Illustrate on microzonation.                    | BT-3 | Application |
| 23. | Illustrate the factors affecting ground motion. | BT-3 | Application |
| 24. | Compose on isoseismal line.                     | BT-3 | Application |
| 25. | Compose about seismograph.                      | BT-3 | Application |

#### PART - B

| 1.  | Name the major plates of the earth and elaborate any three                                                           | PT 3 | Application |
|-----|----------------------------------------------------------------------------------------------------------------------|------|-------------|
|     | in detail.                                                                                                           | D1-3 |             |
| 2.  | i. Define focus and epicenter of an earthquake. (5)                                                                  |      |             |
|     | ii. Name the kinds of body waves and explain it with neat                                                            | BT-3 | Application |
|     | Sketch. (8)                                                                                                          |      |             |
| 3.  | Define Ritcher scale and MMI scale and explain it in detail.                                                         | BT-3 | Application |
| 4.  | Describe plate tectonic theory with a neat sketch.                                                                   | BT-3 | Application |
| 5.  | Explain in detail about Elastic rebound theory.                                                                      | BT-3 | Application |
| 6.  | Define faults. Also show how they are associated with earthquake.                                                    | BT-4 | Analyzing   |
| 7.  | Classify seismic zoning of India as per IS 1893:2002.                                                                | BT-4 | Analyzing   |
| 8.  | Explain past earthquake occurrence in India.                                                                         | BT-4 | Analyzing   |
| 9.  | Write in detail about strong earthquake motion.                                                                      | BT-4 | Analyzing   |
| 10. | i. Differentiate magnitude and intensity.(7)ii. How will you measure magnitude and intensity? Explainthe methods.(6) | BT-4 | Analyzing   |
| 11. | Discuss about the classification of earthquake.                                                                      | BT-4 | Analyzing   |
| 12. | Illustrate the principle of seismograph and seismogram with sketch.                                                  | BT-4 | Analyzing   |
| 13. | How seismic waves are induced? Explain the different types of seismic waves.                                         | BT-4 | Analyzing   |
| 14. | Explain about seismic instrumentation and monitoring.                                                                | BT-3 | Application |
| 15. | Explain the types of geological faults.                                                                              | BT-3 | Application |
| 16. | List out the causes of earthquake and explain it briefly.                                                            | BT-3 | Application |

| 17. | List out the design principles of earthquake resistant | DT 2 | Application |
|-----|--------------------------------------------------------|------|-------------|
|     | structure as per IS 1893-2002.                         | D1-3 | Application |

| 1. | Explain in detail about the recent advancements in instrument of earthquake.        | BT-5 | Evaluating |
|----|-------------------------------------------------------------------------------------|------|------------|
| 2. | Discuss case study on any one of the earthquake that has occurred in the Tamilnadu. | BT-5 | Evaluating |
| 3. | Explain the recent zone classification in India.                                    | BT-5 | Evaluating |
| 4. | Prepare a case study about ocean observation system regarding earthquake            | BT-5 | Evaluating |
| 5. | Discuss about the internal structure of the earth.                                  | BT-5 | Evaluating |

#### **UNIT II - EFFECTS OF EARTHQUAKE ON STRUCTURES**

Dynamics of Structures (SDOFS&MDOFS), Response Spectra - Evaluation of Earthquake Forces as per codal provisions - Effect of Earthquake on Masonry and RCC Structures -Lessons Learnt From Past Earthquakes

| <u>PART – A</u> |                                                                             |             |            |  |
|-----------------|-----------------------------------------------------------------------------|-------------|------------|--|
| Q.No            | Questions                                                                   | BT<br>Level | Competence |  |
| 1.              | Outline about codal provisions regarding earthquake.                        | BT-1        | Remember   |  |
| 2.              | Formulate simple Harmonic motion                                            | BT-1        | Remember   |  |
| 3.              | Define Degrees of freedom                                                   | BT-1        | Remember   |  |
| 4.              | Opinion about transient vibration and earthquake excitation.                | BT-1        | Remember   |  |
| 5.              | Brief fundamental frequency and fundamental mode.                           | BT-1        | Remember   |  |
| 6.              | Define the term base shear.                                                 | BT-1        | Remember   |  |
| 7.              | Define response spectra.                                                    | BT-1        | Remember   |  |
| 8.              | Define logarithmic decrement method.                                        | BT-1        | Remember   |  |
| 9.              | Compose the equation of motion for a damped two degree of freedom system.   | BT-2        | Understand |  |
| 10.             | Compose the characteristic equation for free vibration of un-damped system. | BT-2        | Understand |  |
| 11.             | Write about dynamics of structures.                                         | BT-2        | Understand |  |
| 12.             | Enlist the different types of degrees of freedom                            | BT-2        | Understand |  |

| 13. | Explain about slenderness ratio                               | BT-2 | Understand     |
|-----|---------------------------------------------------------------|------|----------------|
| 14. | Compare statics and dynamics                                  | BT-2 | Understand     |
| 15. | Outline D-Alembert's principle.                               | BT-2 | Understand     |
| 16. | Compare static and dynamic loading.                           | BT-2 | Understand     |
| 17. | Discuss the types of damping.                                 | BT-2 | Understand     |
| 18. | Explain the term storey drift.                                | BT-2 | Understand     |
| 19. | A harmonic motion has a time period of 0.2s and amplitude     | BT-3 | Application    |
|     | of 0.4cm. Solve for the maximum velocity and acceleration.    |      | representation |
| 20. | Illustrate a note on the lessons learnt from past earthquake. | BT-3 | Application    |
| 21. | Analyse horizontal and vertical seismic coefficient.          | BT-3 | Application    |
| 22. | Explain two degrees of freedom system.                        | BT-3 | Application    |
| 23. | Investigate about the major damages that would occur in the   | BT-3 | Application    |
|     | RC structures during earthquake.                              | DIS  | rippiloution   |
| 24. | Justify, howyou will evaluate the distribution of design base | BT-3 | Application    |
|     | shear along the height of the building. /                     | DIJ  | rippileation   |
| 25. | A cantilever beam 3m long supports a mass of 500kg at its     |      |                |
|     | upper end. Evaluate the natural period and natural            | BT-3 | Application    |
|     | frequency.                                                    |      |                |

# PART-B

| 1. | Describe and elaborate D'Alemberts Principle.                                                                                                                                                                                                                                                                                                                                                                                                                                          | BT-4 | Analyse |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
| 2. | Find the natural frequency and mode of vibration for the system shown.                                                                                                                                                                                                                                                                                                                                                                                                                 | BT-4 | Analyse |
| 3. | Write the plan configuration problems that affect the performance of RC buildings during earthquake.                                                                                                                                                                                                                                                                                                                                                                                   | BT-4 | Analyse |
| 4. | A four storey reinforced concrete frame building as shown<br>in fig: is situated at Roorkee. The height between the floors<br>is 3 m and total height of building is 12 m. The dead load<br>and live load is lumped at respective floor. The soil below<br>the foundation is assumed to be hard rock. Assume building<br>is intended to be used as a hospital. Findthe total base shear<br>as per IS1893 (PART1): 2002. Distribute the base shear<br>along the height of the building. | BT-4 | Analyse |

|     | M4 = 3000 3 m                                                                                                                                                                                                                                                                                                                                           |      |             |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|
|     | M3 = 3000 3 m                                                                                                                                                                                                                                                                                                                                           |      |             |
|     | M2 = 3000 3 m                                                                                                                                                                                                                                                                                                                                           |      |             |
|     | M1 = 3000 3 m                                                                                                                                                                                                                                                                                                                                           |      |             |
|     | <u> </u>                                                                                                                                                                                                                                                                                                                                                |      |             |
| 5.  | Explain briefly the effect of earthquake on different types of structures.                                                                                                                                                                                                                                                                              | BT-3 | Application |
| 6.  | Discuss the mathematical modeling of an SDOF system.                                                                                                                                                                                                                                                                                                    | BT-3 | Application |
| 7.  | Discuss about the vertical irregularities that affect the performance of RC buildings during earthquake.                                                                                                                                                                                                                                                | BT-3 | Application |
| 8.  | Construct the step by step procedure for seismic analysis of RC buildings as per IS 1893:2002.                                                                                                                                                                                                                                                          | BT-3 | Application |
| 9.  | Solve for the natural frequency and mode shape for the MDOF system. EI = $4.5 \times 10^6 \text{ N-m}^2$ for all columns.                                                                                                                                                                                                                               | BT-4 | Analyse     |
| 10. | Examine the equation for multi degree of freedom for a two-storey shear building                                                                                                                                                                                                                                                                        | BT-3 | Application |
| 11. | A three storied symmetrical RC school building situated at<br>Bhuj with following data:<br>Plan dimension : 7 m<br>Storey height : 3.5 m<br>Total weight of beams in a storey : 130 kN<br>Total weight of slabs in a storey : 250 kN<br>Total weight of columns in a storey : 50 kN<br>Total weight of walls in a storey : 530 kN<br>Live load : 130 kN | BT-3 | Application |

|     | Weight of terrace floor: 655 kNThe structure is resting on hard rock. Solve for the total base                                                                                                                                                                                                                                                                             |              |             |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|
|     | shear and lateral loads at each floor level for 5% of damping                                                                                                                                                                                                                                                                                                              |              |             |
|     | using seismic coefficient method.                                                                                                                                                                                                                                                                                                                                          |              |             |
| 12. | A mass of 2 kg is suspended by a spring having a stiffness<br>at 700 N/m. The mass is displaced downward from its<br>equilibrium position by a distance of 0.02 m. Analyse the<br>equation of motion, normal frequency, the response of the<br>system and total energy.                                                                                                    | BT-3         | Application |
| 13. | A damper offers resistance 0.08 N at a constant velocity                                                                                                                                                                                                                                                                                                                   |              |             |
|     | 0.06m/s, the damper is used with a spring of stiffness equal to 12 N/m. Analyse the damping ratio and frequency of the                                                                                                                                                                                                                                                     | BT-3         | Application |
|     | system when the mass of the system is 0.3 kg.                                                                                                                                                                                                                                                                                                                              |              |             |
| 14. | Evaluate the natural frequencies and mode of vibration of<br>the given system.<br>I = I, l = I, l A mass of 200 kN is suspended by a spring having stiffness<br>at 0.7 kN/m. The mass is displaced downward from its<br>equilibrium position by a distance of 0.02 m. Analyse the<br>equation of motion, normal frequency, the response of the<br>system and total energy. | BT-4<br>BT-4 | Analyse     |
| 16. | Describe the solution of equation of motion.                                                                                                                                                                                                                                                                                                                               | BT-3         | Application |
| 17. | Derive the equation of motion of a two degree of freedom system for free vibration.                                                                                                                                                                                                                                                                                        | BT-3         | Application |
| 18. | Determine the natural frequency and mode shapes of the following: The storey masses are M1=5, M2=4, M3=3 and storey stiffness are $k1 = k2 = k3 = 2$ .                                                                                                                                                                                                                     | BT-4         | Analyse     |

PART - C

| 1. | Explain the lesson learnt from past earthquake history  | BT-5 | Evaluating |
|----|---------------------------------------------------------|------|------------|
| 2. | Predict the natural frequency and mode shapes of a MDOF | BT-4 | Analyse    |

|    | system. The mass and the stiffness matrix of a MDOF                                                                                                           |             |             |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
|    | system is given by                                                                                                                                            |             |             |
|    | $[M] = m \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \ [K] = K \begin{bmatrix} 2 & -1 & 0 \\ -1 & 3 & -2 \\ 0 & -2 & 2 \end{bmatrix}.$ |             |             |
| 3. | Write a step by step procedure to analyze a frame by equivalent static lateral load method.                                                                   | BT-4        | Analyse     |
| 4. | A special reinforced concrete moment resisting frame                                                                                                          |             |             |
|    | building with infill panels is situated in Delhi. The height                                                                                                  |             |             |
|    | and base dimension is 12m and 24m. Evaluate the design,                                                                                                       | BT-4        | Analyse     |
|    | horizontal seismic coefficient and vertical seismic                                                                                                           |             |             |
|    | coefficient for a damping ratio of 2 %.                                                                                                                       |             |             |
| 5. | Define and discuss the following:                                                                                                                             |             |             |
|    | I.Critical damping                                                                                                                                            | <b>РТ</b> 2 | Application |
|    | II.Coulomb damping SRM                                                                                                                                        | D1-3        | Application |
|    | III.Damped circular frequency                                                                                                                                 |             |             |
| •  |                                                                                                                                                               |             |             |

#### UNIT III - EARTHQUAKE RESISTANT DESIGN OF MASONRY STRUCTURES

Structural Systems - Types of Buildings - Causes of damage - Planning Considerations -Philosophy and Principle of Earthquake Resistant Design - Guidelines for Earthquake Resistant Design - Earthquake Resistant Masonry Buildings - Design consideration -Guidelines.

| <u>PART – A</u> |                                                                 |             |            |
|-----------------|-----------------------------------------------------------------|-------------|------------|
| Q.No            | Questions                                                       | BT<br>Level | Competence |
| 1.              | Write the design consideration for Earthquake resistant design. | BT-1        | Remember   |
| 2.              | Define diaphragm discontinuity.                                 | BT-1        | Remember   |
| 3.              | Write about flexible diaphragm.                                 | BT-1        | Remember   |
| 4.              | Define rigid diaphragm.                                         | BT-1        | Remember   |
| 5.              | What is impounding of buildings?                                | BT-1        | Remember   |
| 6.              | Define diaphragm discontinuity.                                 | BT-1        | Remember   |
| 7.              | Explain the concept of floating column.                         | BT-1        | Remember   |

| 8.  | What kind of damage occurs in staircase due to earthquake?                              | BT-1 | Remember    |
|-----|-----------------------------------------------------------------------------------------|------|-------------|
| 9.  | List out any four important data about Jabalpur earthquake.                             | BT-1 | Remember    |
| 10. | Explain about the bands.                                                                | BT-2 | Understand  |
| 11. | Outline the role of lintel bands in masonry buildings.                                  | BT-2 | Understand  |
| 12. | Compare flexible and rigid diaphragm.                                                   | BT-2 | Understand  |
| 13. | Brief about Killari earthquake.                                                         | BT-2 | Understand  |
| 14. | Outline the basis for the categories of masonry buildings as<br>per IS 4326? Name them. | BT-2 | Understand  |
| 15. | Write about principle of earthquake resistant design                                    | BT-2 | Understand  |
| 16. | Explain the importance of orientation of building in earthquake resistant design        | BT-2 | Understand  |
| 17. | Illustrate strengthening of masonry wall.                                               | BT-3 | Application |
| 18. | Does grouting increase the earthquake resistance capacity? Justify your answer.         | BT-3 | Application |
| 19. | Justify how to calculate the base shear in masonry buildings?                           | BT-3 | Application |
| 20. | Enumerate the importance of slenderness ratio in masonry column                         | BT-3 | Application |
| 21. | Analyse the stress strain curve for brickwork in compression.                           | BT-3 | Application |
| 22. | Justify, what will happen if the rigidity modulus affects the masonry structure.        | BT-3 | Application |
| 23. | Prioritize structural and non-structural damages in masonry building.                   | BT-3 | Application |
| 24. | Compose the formula for modal mass.                                                     | BT-3 | Application |
| 25. | Compose the principle for the design of infill walls.                                   | BT-3 | Application |

#### <u> PART - B</u>

| 1. | Explain the effect of slenderness ratio in masonry wall                          | BT-3 | Application |
|----|----------------------------------------------------------------------------------|------|-------------|
| 2. | Classify the different types of masonry buildings according to IS 4326:1993      | BT-3 | Application |
| 3. | Explain the behaviour of unreinforced masonry walls.                             | BT-3 | Application |
| 4. | Compare and contrast the behaviour of reinforced and unreinforced masonry walls. | BT-3 | Application |
| 5. | Brief about the behaviour of infill walls.                                       | BT-3 | Application |
| 6. | How to improve the seismic capacity of masonry building?                         | BT-4 | Analyse     |
| 7. | Write the various factors in seismic analysis and explain in detail.             | BT-4 | Analyse     |
| 8. | Explain in detail about seismic design spectrum.                                 | BT-4 | Analyse     |

| 9.  | Describe the performance of masonry buildings during earthquake.                                                                | BT-3 | Application |
|-----|---------------------------------------------------------------------------------------------------------------------------------|------|-------------|
| 10. | List the methods for strengthening of masonry buildings                                                                         | BT-3 | Application |
| 11. | Write the effects of earthquake on prestressed and steel buildings when compared to masonry buildings.                          | BT-3 | Application |
| 12. | Explain about the types of construction, types of damages<br>and non damages in Bihar -Nepal Earthquake in masonry<br>buildings | BT-4 | Analyse     |
| 13. | Examine the plan configuration problems that affect the performance of masonry buildings during earthquake.                     | BT-3 | Application |
| 14. | Analyze the limitations of equivalent lateral force and response spectrum analysis procedures.                                  | BT-3 | Application |
| 15. | Explain the damages in Masonry buildings.                                                                                       | BT-3 | Application |
| 16. | Explain the strengthening methods in detail with neat sketches.                                                                 | BT-3 | Application |
| 17. | Classify the damages and non-damages occurred in masonry buildings during an earthquake with examples.                          | BT-3 | Application |

| 1. | Write the earthquake resistant design procedure of a masonry building                                        | BT-3 | Application |
|----|--------------------------------------------------------------------------------------------------------------|------|-------------|
| 2. | Distinguish between rigid and flexible diaphragm with neat sketches                                          | BT-3 | Application |
| 3. | Prepare a case study on effects of earthquake on masonry buildings due to Bhuj earthquake.                   | BT-3 | Application |
| 4. | Study the damages of various Indian earthquake on buildings and give suggestions to improve the performance. | BT-3 | Application |
| 5. | Write down the various earthquake resistant features that can be introduced in masonry buildings.            | BT-3 | Application |

|                 | UNIT IV - EARTHQUAKE RESISTANT DESIGN OF RC STRUCTURES                                        |       |            |  |
|-----------------|-----------------------------------------------------------------------------------------------|-------|------------|--|
| Earthq          | Earthquake Resistant Design of R.C.C. Buildings - Material properties - Lateral load analysis |       |            |  |
| – Capa          | – Capacity based Design and detailing – Rigid Frames – Shear walls.                           |       |            |  |
| <u>PART – A</u> |                                                                                               |       |            |  |
| O No            | No. Ouestions                                                                                 |       | Competence |  |
| Q.110           | Questions                                                                                     | Level |            |  |
| 1.              | List the different types of irregularities.                                                   | BT-1  | Remember   |  |
|                 |                                                                                               |       |            |  |

| 2.  | Define ductility.                                                                   | BT-1 | Remember    |
|-----|-------------------------------------------------------------------------------------|------|-------------|
| 3.  | List the factors to be considered for design of a tall building.                    | BT-1 | Remember    |
| 4.  | Show the failure mechanism of unfilled frame.                                       | BT-1 | Remember    |
| 5.  | Define modal participation factor.                                                  | BT-1 | Remember    |
| 6.  | Give the different types of shear wall                                              | BT-1 | Remember    |
| 7.  | Define irregularities.                                                              | BT-1 | Remember    |
| 8.  | Enlist the references IS codes in earthquake resistant design.                      | BT-1 | Remember    |
| 9.  | Explain assessment of ductility.                                                    | BT-1 | Remember    |
| 10. | What do you infer from capacity based design?                                       | BT-2 | Understand  |
| 11. | Differentiate frame and shear wall.                                                 | BT-2 | Understand  |
| 12. | How mass irregularities differ from plane irregularities?                           | BT-2 | Understand  |
| 13. | Distinguish between flexure beam model and shear beam model.                        | BT-2 | Understand  |
| 14. | Examine the factors affecting ductility.                                            | BT-2 | Understand  |
| 15. | Compare RCC & Masonry earthquake resistant design.                                  | BT-2 | Understand  |
| 16. | Summarize the principle base shear.                                                 | BT-2 | Understand  |
| 17. | Explain assessment of ductility.                                                    | BT-2 | Understand  |
| 18. | Write the design steps of core wall.                                                | BT-2 | Understand  |
| 19. | Elaborate the detailed report on material properties of earthquake resistant design | BT-3 | Application |
| 20. | Explain strong column and weak beam                                                 | BT-3 | Application |
| 21. | Illustrate the vertical distribution of base shear.                                 | BT-3 | Application |
| 22. | Derive the expression for base shear.                                               | BT-3 | Application |
| 23. | Analyze shear beam model.                                                           | BT-3 | Application |
| 24. | Formulate the expression for time period as per codal provision IS 1893.            | BT-3 | Application |
| 25. | Assess the shear wall to resist lateral load.                                       | BT-3 | Application |

#### PART - B

| 1. | Describe how core wall resists shear in high rise RC building.             | BT-3 | Application |
|----|----------------------------------------------------------------------------|------|-------------|
| 2. | List the step by step procedure for capacity based design of RC buildings. | BT-3 | Application |
| 3. | Describe the construction of floating box.                                 | BT-3 | Application |

| 4.  | Summarize the concept of rigid diaphragm action.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BT-3 | Application |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|
| 5.  | Discuss briefly about the analysis of infilled frames.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BT-3 | Application |
| 6.  | Examine the philosophy of earthquake resistant design of RC buildings.                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BT-3 | Application |
| 7.  | Design a rectangular beam for 8m span to support a DL of 10kN/m and a LL of 12kNm inclusive of its own weight.<br>Moment due to earthquake load is 1000kNm and shear force is 80kN. Use M20 grade concrete and Fe415 steel.                                                                                                                                                                                                                                                                                                       | BT-4 | Analyse     |
| 8.  | Explain the principles of earthquake resistant design of RC members.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BT-3 | Application |
| 9.  | Evaluate the best strengthening techniques involved in RC building.                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BT-4 | Analyse     |
| 10. | Brief the step by step procedure to analyze a frame by equivalent static lateral load method.                                                                                                                                                                                                                                                                                                                                                                                                                                     | BT-4 | Analyse     |
| 11. | A four storey reinforced concrete frame building is situated<br>at Roorkee. The height between the floors is 3 m and total<br>height of building is 12 m. The dead load and normal live<br>load is lumped at respective floor. The soil below the<br>foundation is assumed to be hard rock. Assume building is<br>intended to be used as a hospital. Determine the total base<br>shear as per IS 1893 (Part 1):2002 and compare with the<br>earlier IS: 1893 codes. Formulate the base shear along the<br>height of the building. | BT-4 | Analyse     |
| 12. | Explain the different types of shear wall with neat sketch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BT-3 | Application |
| 13. | Design the exterior column of a multistorey building with<br>size 400x500mm, axial load from analysis is 601.9 kN and<br>moment from analysis is 176.6 kNm ,elaborate the ductile<br>detailing.                                                                                                                                                                                                                                                                                                                                   | BT-4 | Analyse     |
| 14. | Design a shear wall for 14 stored reinforced building with<br>reinforced concrete building as per the design requirement<br>of IS 13920.Assume relevant data if any needed.                                                                                                                                                                                                                                                                                                                                                       | BT-4 | Analyse     |
| 15. | List out the codal provisions for architectural considerations<br>and structural design considerations as per IS 4326:1993.                                                                                                                                                                                                                                                                                                                                                                                                       | BT-4 | Analyse     |
| 16. | Classify the different types of shear wall with neat sketches                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BT-4 | Analyse     |

| 17. | Describe the importance of ductility in earthquake resistant | BT-4 | Analyse |
|-----|--------------------------------------------------------------|------|---------|
| 1   | design.                                                      |      | Analyse |

| 1. | Explain about the design procedure of shear wall in detail.                                       | BT-3 | Application |
|----|---------------------------------------------------------------------------------------------------|------|-------------|
| 2. | Explain capacity based design and detailing for RC building with example.                         | BT-3 | Application |
| 3. | Examine types of shear wall and what do you prefer for high rise building? Explain it.            | BT-3 | Application |
| 4. | Discuss a R.C.C building frame procedure as per IS 1893:2002.                                     | BT-3 | Application |
| 5. | Why and where special confining reinforcement is required<br>in an earthquake resistant building? | BT-3 | Application |

|        | UNIT V - VIBRATION CONTROL TECHNIQUES                            | 5           |                |  |
|--------|------------------------------------------------------------------|-------------|----------------|--|
| Vibrat | ion Control - Tuned Mass Dampers – Principles and appli          | cation, Ba  | sic Concept of |  |
| Seismi | c Base Isolation – various Systems- Case Studies.                |             |                |  |
|        | PART – A                                                         |             |                |  |
| Q.No   | Questions                                                        | BT<br>Level | Competence     |  |
| 1.     | Write the important structures where base isolator needed?       | BT-1        | Remember       |  |
| 2.     | What do you mean by base isolation?                              | BT-1        | Remember       |  |
| 3.     | List out need for base isolation.                                | BT-1        | Remember       |  |
| 4.     | State the mechanism for base isolation.                          | BT-1        | Remember       |  |
| 5.     | Name the parts of a typical isolator.                            | BT-1        | Remember       |  |
| 6.     | Why base isolation is effective?                                 | BT-1        | Remember       |  |
| 7.     | Write about isolation and its effectiveness.                     | BT-1        | Remember       |  |
| 8.     | Write about friction damper.                                     | BT-1        | Remember       |  |
| 9.     | Give the principle of base isolation                             | BT-1        | Remember       |  |
| 10.    | Describe the response of base isolation in a structure.          | BT-1        | Remember       |  |
| 11.    | Discuss about tuned mass dampers.                                | BT-2        | Understand     |  |
| 12.    | Explain the use of metallic dampers.                             | BT-2        | Understand     |  |
| 13.    | Illustrate the criteria to be met by building for effective base | BT-2        | Understand     |  |

|     | isolation.                                                                        |      |             |
|-----|-----------------------------------------------------------------------------------|------|-------------|
| 14. | Draw the cross section of base isolator                                           | BT-2 | Understand  |
| 15. | Classify the type of dampers.                                                     | BT-2 | Understand  |
| 16. | Examine viscous fluid dampers.                                                    | BT-2 | Understand  |
| 17. | What do you understand about metallic dampers?                                    | BT-3 | Application |
| 18. | Enlist the application of vibration control system                                | BT-3 | Application |
| 19. | How base isolators resist earthquake forces?                                      | BT-3 | Application |
| 20. | Sketch the typical base isolator.                                                 | BT-3 | Application |
| 21. | Write about the important structures in which base isolation has to be installed. | BT-3 | Application |
| 22. | Show the types of base isolation system.                                          | BT-3 | Application |
| 23. | Evaluate the performance of base isolation in India with example.                 | BT-3 | Application |
| 24. | Generalize the practical application of dampers.                                  | BT-3 | Application |
| 25. | Elaborate the uses of tuned mass dampers                                          | BT-3 | Application |

# PART-B

|     | SRM                                                                                                                                   |      |             |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|------|-------------|
| 1.  | Describe in detail about the concept of base isolation.                                                                               | BT-3 | Application |
| 2.  | With a neat sketch, Quote the functions of tuned mass damper.                                                                         | BT-3 | Application |
| 3.  | Identity how viscous fluid dampers resist vibration.                                                                                  | BT-3 | Application |
| 4.  | Write the new techniques in aseismic design.                                                                                          | BT-3 | Application |
| 5.  | Discuss the elements and types of base isolation system with neat sketch.                                                             | BT-4 | Analyse     |
| 6.  | Describe the response of building to base isolation and<br>Summarize the criteria that should be met for effective base<br>isolation. | BT-4 | Analyse     |
| 7.  | Write detailed comment on seismic dampers.                                                                                            | BT-4 | Analyse     |
| 8.  | Distinguish between metallic dampers and friction dampers.                                                                            | BT-3 | Application |
| 9.  | Discuss a case study on installation of base isolators in Bhuj<br>hospital, Gujarat.                                                  | BT-3 | Application |
| 10. | Explain the application of base isolation in different countries.                                                                     | BT-3 | Application |
| 11. | Examine how vibration control techniques be applied for important structures? Give an example.                                        | BT-3 | Application |

| 12. | List out the different types of seismic dampers.Explain each of them.               | BT-3 | Application |
|-----|-------------------------------------------------------------------------------------|------|-------------|
| 13. | Illustrate the use of dampers and base isolation in various structures.             | BT-3 | Application |
| 14. | With an example explain how base isolators works.                                   | BT-3 | Application |
| 15. | List the types of dampers and explain any two in detail with neat sketches.         | BT-3 | Application |
| 16. | Explain the important points in mitigating the effects of earthquake on structures. | BT-3 | Application |
| 17. | Explain the applications of base isolation.                                         | BT-3 | Application |

| 1. | Demonstrate case study on application of seismic dampers.                                                          | BT-3 | Application |
|----|--------------------------------------------------------------------------------------------------------------------|------|-------------|
| 2. | Discuss the construction procedure for base isolation techniques.                                                  | BT-3 | Application |
| 3. | Compose a case study on working principle of base isolator<br>in Gujarat hospitals during 2005.                    | BT-3 | Application |
| 4. | Analyse the application of tuned mass damper in a high rise residential building.                                  | BT-3 | Application |
| 5. | Why base isolation is effective in earthquake resistant design? Explain the effectiveness in multistory buildings. | BT-3 | Application |