SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF CIVILENGINEERING M.E-STRUCTURAL ENGINEERING QUESTION BANK

Prepared by

Mr. SATTAINATHAN SHARMA.A, Assistant Professor/ CIVIL

Prepared by

SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF CIVIL ENGINEERING

QUESTION BANK

SUBJECT : 1917304 – DESIGN OF SUB STRUCTURES

SEM / YEAR: III/II

UNIT-1 SHALLOW FOUNDATIONS

Soil investigation – Basic requirements of foundation – Types and selection of foundations. Bearing capacity of soil - plate load test – Design of reinforced concrete isolated, strip, combined and strap footings – mat foundation.

PART - A						
Q.No	Questions	BT Level	Competence			
1.	Distinguish the terms Foundation and Substructure	BT-2	Understanding			
2.	Define site reconnaissance.	BT-1	Remembering			
3.	Compare the various methods of site exploration	BT-2	Understanding			
4.	Define Significant depth of exploration.	BT-1	Remembering			
5.	What do you mean bybore log report and list the information given in a bore log report?	BT-1	Remembering			
6.	What are the various stages of sub surface exploration?	BT-1	Remembering			
7.	Name different types of mat foundation.	BT-1	Remembering			
8.	Distinguish between disturbed & un-disturbed samples.	BT-2	Understanding			
9.	Recall "Tilt" of a foundation.	BT-1	Remembering			
10.	List the various parameters affecting the sampling disturbance.	BT-1	Remembering			
11.	Identify In what way the local shear failure differs from General shear failure.	BT-1	Remembering			
12.	Sketch the contact pressure distribution diagram below rigid footing and flexible footing on sand and clay.	BT-2	Understanding			
13.	Where the Raft or Mat Foundation would be used?	BT-1	Remembering			
14.	Associate the reasons for providing inside and outside clearance in sampling tubes.	BT-2	Understanding			
15.	Explain about strap beam and when it is preferred?	BT-2	Understanding			
16.	Recommend the circumstances where strap footing is adopted.	BT-1	Remembering			
17.	Apply the concept of combined footing and its necessity.	BT-3	Applying			

Prepared by

18.	What are the objective of	BT-1	Remembering		
19.	Differentiate inside clear	BT-2	Understanding		
20.	Differentiate Area ratio a	and recovery ratio.		BT-2	Understanding
21.	List different types of bo	ring.		BT-1	Remembering
22.	Brief about various bear	ng capacity failures.		BT-2	Understanding
23.	Enlist the methods of and	alyzing raft foundation.		BT-1	Remembering
24.	What do you mean by bu	oyancy raft foundation	?	BT-1	Remembering
25.	Enlist the various types of	of shallow foundation.		BT-1	Remembering
		PART	- B		1
1.	Plate load test were con- sizes and the following r	ducted in a $C - \emptyset$ soil, esults water obtained	on plate of two different	BT-4	Analyzing
	Load (kN)	Size of plate	Settlement		
	50	0.3 m x 0.3 m	25 mm		
	110	0.6 m x 0.6 m	25 mm		
	Find the size of square for same specified settlement	poting required to carry t of 25 mm.	a load of 1000 kN at the	2	
2.	Explain the plate load te design of foundation.	est in detail and enumer	rate its importance in the	BT-3	Applying
3.	Analyze and design a str load of 700 kN and 800 500 mm and is spaced a of the column C_1 is on th is 175 kN/m ² .	BT-4	Analyzing		
4.	The results of two plate	oad tests for a settlement	nt of 25.4 mm are given	BT-4	Analyzing
	Plate D 0.3 0.6 A square column founda with an allowable settle foundation.	iameterLoadm3m4m4ion is to be designed tement of 25.4 mm. Designed t	d(kN) 31 55 o carry a load of 800 kN etermine the size of the		
5.	a) Explain differentb) Discuss about the	BT-3	Applying		
6.	Two columns carrying 5 have to provided with a capacity of 160 kg/cm ^{2.7} 25 grade concrete and Fe	00 kN and 650 kN space a foundation on soil ha The footing must be res e 415 grade steel. desigr	ed 3.75 m apart and they aving a net safe bearing stricted to 2.25 m. Use M a combined footing.	BT-4	Analyzing

7.	Analyze the strap footing 600 kN and 800 kN resp and us spaced at a dist column C_1 is on the prop kN/m ² . Use M20 and Fe Proportion a rectangular	BT-4 BT-4	Analyzing Analyzing		
	Allowable soil pressure f DL + LL = 2251 LOAD DL LL Distance between the col Projection of footing bey	For DL + reduced LL = 1 $\frac{\text{Column A}}{540\text{kN}}$ $\frac{400\text{kN}}{400\text{kN}}$ $\frac{1}{1000\text{km}}$ $\frac{1}{10000\text{km}}$ $\frac{1}{1000\text{km}}$ $\frac{1}{100$	50kN/m ² Column B 690kN 810kN		;g
9.	A building consists of 12 rows of four each. The c load carried by four co exterior column is 550 900 kN each. The allow foundation.	BT-6	Creating		
10.	A circular column of 4 650kN and an axial live Design a circular footing	BT-6	Creating		
11.	Evaluate the capacity o carrying a load of 500 kM is 300mm X 300 mm an column C1 is on the prop kN/m ² . Use the M20 con	BT-5	Evaluating		
12.	Proportion a rectangular The exterior column of s interior column of size allowable soil pressure is	BT-4	Analyzing		
13.	Design a RC footing for which supports a charac Assume SBC of soil as level. Assume M20 conc	BT-6	Creating		
14.	With near sketch, relate way shear and punching	the critical sections for shear for an isolated foo	or bending moment, one ting.	BT-2	Understanding
15.	Design a reinforced cond 300 mm × 500 mm sup safe bearing capacity of concrete and Fe 415 HY	crete footing for a rectan oporting an axial factore the soil at site is 185 k SD Bars.	gular column of section ed load of 1500 kN. The N/m ² . Adopt M20 grade	BT-6	Creating

16.	Design a reinforced concrete circular footing for a circular column of 300 mm diameter supporting a factored axial load of 750 kN. Adopt safe bearing capacity of the soil as 200 kN/m ² and use M20 grade concrete and Fe 415 HYSD Bars.	BT-6 BT-6	Creating
17.	concrete columns 300 mm × 300mm size spaced 4 m apart and each supporting a factored axial load of 750 kN. Assume the ultimate safe bearing capacity of the soil at site as 225 kN/m ² . Adopt M20 grade concrete and Fe 415 HYSD Bars.	210	
	PART – C		
1.	Explain the effects of water table on foundation. Take a case study and illustrate with the example.	BT-3	Applying
2.	 Write design procedure of a) Strap Footing b) Combined footing c) Raft Foundation 	BT-3	Applying
3.	A multistoreyed building of overall size $12 \text{ m} \times 12 \text{ m}$ has 16 reinforced concrete columns of size 300 mm × 300 mm spaced at intervals of 4 m on each side forming a square grid. Each column transmits a service load of 500 kN at the base. The safe bearing capacity of the soil at the site is 100 kN/m ² . Adopting M20 grade concrete and Fe415 HYSD reinforcements, design a raft foundation comprising the interconnecting beam between the columns and the inverted slab and sketch the details of reinforcements in the structural elements of the raft. The design should conform to the specifications of Indian Standard Codes IS 456-2000 and IS 2950-1981.	BT-6	Creating
4.	Tabulate the general design criteria to be considered regarding the selection of foundation based on soil condition?	BT-2	Understanding
5.	Design a mat foundation for system of columns shown in figure. All the columns are 500 mm x 500 mm. They carry loads as indicated in figure.	BT-6	Creating

UNIT-2 PILE FOUNDATIONS					
Introduction – Types of pile foundations – load carrying capacity - pile load test – structural design of straight piles –configuration of piles- different shapes of piles cap – structural design of pile cap.					
PART - A					
Q.No	Questions	BT	Competence		
1.	Discuss the merits and demerits of pile foundation.	BT-1	Remembering		

2.	What is tension piles and where it is used?	BT-1	Remembering
3.	State the methods of pile driving	BT-2	Understanding
4.	Explain the Protection of pile during driving.	BT-2	Understanding
5.	Write down the necessity for lateral pile load test.	BT-2	Understanding
6.	Differentiate shallow foundation and deep foundation.	BT-2	Understanding
7.	Distinguish friction pile and batter pile.	BT-2	Understanding
8.	Demonstrate the precautions that should be carried to avoid heaving of soil while driving the pile?	BT-3	Applying
9.	Differentiate between driven and bored pile.	BT-2	Understanding
10.	Discuss the types of piles based on their function.	BT-3	Applying
11.	Are pile foundation checked for settlement? Justify your answer	BT-1	Remembering
12.	What is a pile cap? Specify the function of a pile cap.	BT-1	Remembering
13.	Write the principle of a pile group effect and how will you estimate the capacity of a pile group in clay?	BT-3	Applying
14.	Define Negative skin friction (or) down drag	BT-1	Remembering
15.	Define Pile group efficiency and list the factors affecting pile group	BT-1	Remembering
16		DT 2	
16.	Brief about under reamed pile.	В1-3	Applying
17.	What are the conditions where a pile foundation is more suitable than a shallow foundation?	BT-1	Remembering
18.	Sketch different shapes of pile caps.	BT-2	Understanding
19.	Compare the efficiency of Felds's rule and Converse-Labarre formula.	BT-2	Understanding
20.	Sketch a typical Pile cap and its reinforcement details.	BT-2	Understanding
21.	Explain the procedure used to get the group efficiency by feld's rule?	BT-2	Understanding
22.	Interpret the result of driving a displacement pile into a loose sand and plastic clay?	BT-1	Remembering
23.	Enlist the design parameters of Pile cap.	BT-1	Remembering
24.	Criticize the seismic considerations in pile foundation than that of in shallow foundation	BT-1	Remembering
25.	Recommend some important parameters in the design of pile caps.	BT-1	Remembering
	PART - B		l
1.	Distinguish Pile Foundation from Shallow Foundation.	BT-2	Understanding
2.	Explain in details about the various types of pile foundation with neat	BT-3	Applying
	sketch and write their functions.		
3.	a) Give the necessity of pile foundationb) Factors influencing the selection of pile	BT-3	Applying

4.	Brief about	BT-3	Applying
	a) Different types of pile driversb) Methods of pile driving		
5.	How is the pile hammers classified? Explain them.	BT-3	Applying
6.	A square pile group of a piles passes through a recently filled up a material of 4.5m depth. The diameter of the pile is 30 cm and pile spacing is 90 cm centre to centre. If the unconfined compressive strength of the cohesive material is 60 kN/m ² and unit weight is 15 kN/m ² , compute the negative skin friction of the pile group.	BT-1	Remembering
7.	A square group of 25 piles extends between depth of 2m and 12m in a deposit of 20m thick stiff clay overlying rock. The piles are 0.5m in a diameter and spaced at 1m centre to centre in the group. The undraned shear strength of the clay at the pile base level is 180kPa and the average value of the undrained shear strength over the depth of the pile is 110kPa. The adhesion coefficient (α) is 0.45. Estimate the capacity of the pile group considering an over all factor of safety equal to 3 against shear failure. NC corresponding to $\phi_u = 0$ is 9.	BT-4	Analyzing
8.	Design a pile group to carry 2500kN at a place where the soil is uniform clay to a depth of 15m, underdrain by hard rock. The unconfined compressive strength (average) of the clay is 120 kN/m ² . Adopt a factor of safety of 2.5 against failure.	BT-6	Creating
9.	A group of 16 piles was driven into soft clay extending to a large depth. The dia& length of the piles were 50cm & 9m. if the unconfined compression strength of 30kN/m ² and pile spacing 1m, c/c. bearing resistance may be neglected for the piles. Determine the ultimate load capacity of the group Adhesion factor is 0.6.	BT-2	Understanding
10.	Design a square pile group to carry 400kN in clay with an unconfined compressive strength of 60 kN/m ² . The piles are 30cm diameter and 6m long. Adhesion factor may be taken as 0.6.	BT-6	Creating
11.	In a (4 X 4) pile group, the pile diameter is 0.45 m centre to centre spacing of the square group is 1.5 m. If cohesion is 50 kN/m ² , Defend whether the failure would occur with the pile acting individually, or as a group? Neglect bearing at the tip of the pile. All piles are 10 m long. Take $m = 0.7$ for shear mobilization around each pile.	BT-5	Evaluating
12.	Design a pile cap for a column of size 500 mm X 500 mm carrying a load of 2200 kN, supported by four piles. The size of the piles may be taken as 250 mm X 250 mm. The c/c distance between the piles is 1.10m. Use the M30 concrete and Fe415 grade steel.	BT-6	Creating

13.	The following data refers to a cyclic pile load test carried out on a 300mm								BT-3	Applying
	diameter, 10 m long pile.	1	1	1	1					
	Load on pile top (kN) Top settlement of pile trip	150	200	250	300	400	500	600		
	(mm)	1.45	2.25	2.75	3.60	5.75	10.75	30.00		
	Net settlement of pile trip (mm)	0.40	0.65	0.80	1.0	1.70	5.25	22.80		
	Plot the load-settlement curv	ve and	estimat	the a	llowab	le load	of the j	pile as pe	r	
1.4	IS code of practice.	6.050	0.1.11		1	. 1	1 4	·1 1	DT 2	
14.	A column carrying a load of 30 cm X 30 cm size at	01 250 a spac	U KN I ing of	100 c	be sup	ported	by 4 p	illes, each	<u>п</u> ВІ-3	Applying
	cm X 60 cm. Solve for the	e pile	cap de	sign. l	Use M	$_{20}$ cond	crete ar	nd Fe 41.	5	
	steel.	1	1	U						
15.	A pile cap consisting of 4	piles o	of 300	mm ×	300 n	nm is t	o be de	esigned to	D BT-4	Analyzing
	support a reinforced conc	rete 50	00 mm	× 50	0 mm	carryir	ng a loa	ad of 200	С	
	kN. The piles are located	parall	el to t	he col	umn fa	aces w	with the	ir center	s	
	and Fe415 HVSD Bars	center design	to the	colum	n. Usii n. and	ig M2 sketc	0 grade	e concrete	e f	
	reinforcements.	uesigi			ip and	SKette				
16.	The foundation for a struc	ture co	onsists	of 10	piles t	o carr	y a load	d of 6000) BT-4	Analyzing
	kN. The piles are spaced	1.5 m	centre	es. The	ey are	driven	through	gh a haro	t l	
	stratum available at a dept	h of 6	m. De	sign o	ne of t	he pile	es and s	ketch the	e	
	details of reinforcements.	Adopt	: M20	grade	concr	ete and	d Fe 41	15 HYSI		
17	A nile group of three rows	with	3 niles	in a r	owist	nade i	n a uni	form clay	v BT-4	Analyzing
17.	deposit with cohesion of	75kPa	a. The	diam	eter a	nd len	gth of	piles ar	e	Anaryzing
	500mm and 12m respect	ively.	The c	entre (co cent	re spa	icing o	f piles i	s	
	1.5m in both directions. T	he adh	esion :	factor	is 0.4.	Find t	he load	l carrying	g	
	capacity of the pile group.			DAT			۰.,	1		
		-		PAR	п-с		/			
1.	Briefly Describe about								BT-3	Applying
	a) Negative skin fricti	on (4)								
	b) Pile cap (3)	(2)								
	d) Laterally loaded pil	es(5)								
	e) Pile groups									
2.	With the help of a case	study,	briefl	y exp	lain p	le fou	Indatio	n and its	s BT-3	Applying
	failure.									
3.	Explain in detail about Pile	load t	est.						BT-3	Applying

3.	A 30cm diameter pile of length 12m was subjected to a pile load test and the following were obtained.								Analyzing
	Load (kN)	0	500	1000	1500	2000	2500		
	Settlement during loading (cm)	0	0.85	1.65	2.55	3.8	6.0		
	Settlement during unloading (cm)	4.0	4.6	5.2	5.5	5.8	6.0		
	Determine the allowable load.								
4.	A group of 16 friction piles is	to sup	port a	colum	n load	of 400	0kN. Th	ne BT-4	Analyzing
	piles will be driven in four rows with four members in each column. The								
	piles are 35cm diameter and	centre-	to-cent	re spac	ing is	1m bo	oth way	s.	
	What set value must be attain	le							
	acting 22.5kN steam hammer y	with 90	cm str	oke so	that the	e nile ø	roup ca	n	
	carry the column load.								
5	Design a friction square nile or	oun to	carry a	load o	f 30001	N incl	uding th	e BT-6	Creating
5.	weight of the nile can at a site	where	the soi	lie uni	form cl	av to a	denth (of DIG	Creating
	weight of the phe cap at a site where the solid is uniform clay to a depth of $20m$, underdrein by reach Assertion scheduling of the alar is 251 N/m^2 . The								
	alay may be assumed to be of								
	clay may be assumed to be of	norma		ded W1	in iiqu	ia iimi	ι ου%	A	
	factor of safety of 3 is required	agains	t shear	failure.	· · · ·			0	

UNIT-3 WELL FOUNDATIONS

Types of well foundation – Grip length – load carrying capacity – construction of wells – Failures and Remedies – Design of well foundation – Lateral stability

PART - A					
Q.No	Questions	BT Level	Competence		
1.	What are Pneumatic caissons?	BT-1	Remembering		
2.	What are open caissons?	BT-1	Remembering		
3.	How the thickness of well steining is designed?	BT-1	Remembering		
4.	List the forces acting on well foundation?	BT-1	Remembering		
5.	Under what circumstances, a caisson is advantages compared to other	BT-1	Remembering		
	types of deep foundations?				
6.	What are the different shapes of well foundation?	BT-1	Remembering		
7.	Discuss about drilled caissons.	BT-2	Understanding		
8.	Predict the reasons for providing bottom concrete plug to a well.	BT-2	Understanding		
9.	Describe well cap.	BT-2	Understanding		
10.	Describe well curb.	BT-2	Understanding		
11.	Differentiate between bottom plug and top plug.				
12.	Sketch a typical well foundation and its components.	BT-2	Understanding		

Prepared by

13.	Sketch and point out the types of drilled piers.	BT-2	Understanding
14.	State the Advantages and Disadvantages of Drilled Pier Foundations	BT-1	Remembering
15.	Relate box caisson with other types of well foundation.	BT-3	Applying
16.	Why lateral stability of the well foundation is is necessary?	BT-1	Remembering
17.	Summarize about grip length and how it is measure?	BT-3	Applying
18.	How lateral stability of well foundation is checked?	BT-1	Remembering
19.	Write about "caisson disease"	BT-2	Understanding
20.	Express "scour depth" in terms of the design of cassions.	BT-2	Understanding
21.	Sketch observed failure of the well foundationunder ultimate conditions.	BT-2	Understanding
22.	Define Base Resisting Moment.	BT-1	Remembering
23.	Enlist the conditions of surrounding soil of well foundation to be checked.	BT-1	Remembering
24.	Enlist the assumptions made in elastic theory.	BT-1	Remembering
25.	Express the condition for stability of well foundation.	BT-2	Understanding
	PART - B		I
1.	What are the elements of bridge structures? Mention the function of each	BT-1	Remembering
	element.		
2.	Explain in detail the design procedure of pier cap	BT-2	Understanding
3.	What are the causes of tilts and shifts? List the various methods of	BT-1	Remembering
	rectifying tilts and discuss th <mark>em in detail.</mark>		
4.	A circular well of 5m external diameter and steining 1 m is used as foundation for a bridge pier in a sandy stratum. the submerged unit weight of sand is 10 kN/m ³ and angle of shearing resistance, ø is 30° . The well is subjected to a horizontal force of 500 kN and a total moment of 5000 kNm at the scour level. the depth of well below scour level is 12m. Assuming the well to be light, check the lateral stability of the well.	BT-4	Analyzing
5.	A bridge pier is supported on two round caissons that is to rest on hard soil of a depth of 32m below the river bed. the caissons are to carry 28000 kN. The skin friction of the material above the soil may be assumed as 16 kN. Solve for the diameter of the caisson and the thickness of the plug.	BT-3	Applying
6.	An open caisson, 20 m deep, is of cylindrical shape, with external and internal diameters of 9 m and 6 m, respectively. If the water level is 2 m below the top of the caisson. solve for the minimum thickness of the seal required. Check for perimeter shear also. Assume $\sigma_c = 2400 \text{ kN/m}^2$ and $\gamma c = 24 \text{ kN/m}^3$, for concrete. Allowable perimeter shear stress = 650 kN/m ² .	BT-3	Applying
7.	Explain in detail about the types of well foundation.	BT-2	Understanding
8.	With the help of IRC 45 code, give the step by step procedure of ultimate resistance method to calculate the soil resistance of well foundation.	BT-2	Understanding

9.	Design the outside well diameter of a cassion to be sunk through 40m of sand and water bed rock if the allowable bearing capacity is 2000 kN/m ² . The cassion receives a load of 50000kN from the super structure. The mantle friction is 30 kN/m ² . Test the feasibility of sinking. Also calculate the thickness of the seal.	BT-6	Creating
10.	A cylindrical well of external diameter 6 m and internal diameter 4 m is sunk to a depth 16 m below the maximum scour level in a sand deposit. The well is subjected to a horizontal force of 1000 kN acting at a height of 8 m above the scour level. Determine the total allowable equivalent resisting force due to earth pressure, assuming that (a) the well rotates about a point above the base (b) the well rotates about the base. Assume γ ' = 10 kN/m ³ , ϕ = 30°, and factor of safety against passive resistance = 2. Use Terzaghi's Approach.	BT-5	Evaluating
11.	A circular well has an external diameter of 7.5 m and is sunk into a sandy soil to a depth of 20 m below the maximum scour level. The resultant horizontal force is 1800 kN. The well is subjected to a moment of 36,000 kN.m about the maximum scour level due to the lateral force. Check whether the well is safe against lateral forces, assuming the well to rotate (a) about a point above the base (b) about the base Assume $\gamma' = 10$ kN/m ³ , and $\phi = 36^{\circ}$. a factor of safety of 2 against passive resistance. Use Terzaghi's analysis.	BT-5	Evaluating
12.	Examine the cross-sectional dimensions of a cylindrical open caisson to be sunk through 35 m of sand and water to bed rock if the allowable bearing pressure is 2000 N/m ² . The caisson has to support a load of 60 MN from the superstructure. Test the feasibility of sinking if the skin friction is 40 kN/m ² . Also calculate the necessary thickness of the seal.	BT-5	Evaluating
13.	Outline the Design Aspects of the Components of a Well Foundation.	BT-4	Analyzing
14.	Write the design procedure for calculating the soil resistance for well foundation by Elastic theory as per IRC 45 recommendations.	BT-3	Applying
15.	Express in detail about the forces acting on well foundation.	BT-3	Applying
16.	With neat sketch, give the expression for base pressure calculation in well foundation.	BT-3	Applying

17.	A multistory building is to be constructed in a stiff to very stiff clay. The	BT-4	Analyzing			
	soil is homogeneous to a great depth. The average value of undrained					
	shear strength cu is 120 kN/m ² . It is proposed to use a drilled pier of					
	length 20 m and diameter 1 m as shown in figure.					
	0					
	Clay					
	Φ=0					
	20 m C _u =120 kN/m ²					
	D=1m					
	Calculate					
	(a) Ultimate load capacity of the pier					
	(b) Allowable load on the pier with $Fs = 2.5$.					
	PART - C	-				
1	What are the Stability analyses of a wall foundation? Evaluin them with	BT-3	Applying			
1.	neat sketches	1-3	Арргушд			
2	Discuss in detail the failures and remedies of well four detion	РТ 2	A			
2.	Discuss in detail the failures and remedies of well foundation.		Applying			
3.	Explain the construction procedure of caisson foundation.		Applying			
4.	Write the elements of well foundation detail. Mention the function of each		Applying			
	element with neat sketch.					
5.	With the help of case study, explain about well foundation in detail.	BT-3	Applying			

UNIT-4 MACHINE FOUNDATIONS

Introduction – Types of machine foundation – Basic principles of design of machine foundation – Dynamic properties of soil – vibration analysis of machine foundation – Design of foundation for Reciprocating machines and Impact machines – Reinforcement and construction details – vibration isolation.

PART - A					
Q.No	Questions	BT Level	Competence		
1.	Recall 'Frequency ratio'? What is its criterion in machine foundation?	BT-1	Remembering		
2.	Define the term Frequency and resonance.	BT-1	Remembering		

Prepared by

3.	What are the various types of machine foundation used for different	BT-1	Remembering		
	kinds of machinery?				
4.	What is the use of bonded rubber mountings in machine foundations?	BT-1	Remembering		
5.	Write down the two basic principles of machine foundation design.	BT-2	Understanding		
6.	Write down the technique adopted for isolation of a dynamic foundation.	BT-2	Understanding		
7.	Explain about Machine foundation.	BT-2	Understanding		
8.	What are the various techniques adopted for isolation of a dynamic	BT-1	Remembering		
9	Toundation? Distinguish between horizontal amplitude and rotating amplitude in the	BT-2	Understanding		
	design of machine foundation.		Chucistanung		
10.	Summarize the damping parameters.	BT-3	Applying		
11.	Assess the importance of spring absorbers.	BT-3	Applying		
12.	Define angular frequency, operation frequency, & Natural frequency.	BT-1	Remembering		
13.	Define the terms period, cycle and period motion	BT-1	Remembering		
14	Differentiate free and forced vibration	BT-2	Understanding		
14.	Distinguish between single mass system and multiple mass system	BT-2	Understanding		
10.	Distinguish between single mass system and multiple mass system.				
16.	Sketch the different types of machine foundation.	Б1-3	Applying		
17.	Enlist the various vibration isolation technique.	BT-1	Remembering		
18.	Brief Elastic Half Space Theory	BT-1	Remembering		
19.	Tell about dynamic analysis of machine foundation.	BT-1	Remembering		
20.	Dramatize the properties of isolating materials.	BT-3	Applying		
21.	Enlist different types of machine foundation on various elements.	BT-1	Remembering		
22.	Outline the loads to be considered for the design of machine foundation.	BT-1	Remembering		
23.	Differentiate plate and spring foundation.	BT-2	Understanding		
24.	Define damping.	BT-1	Remembering		
25.	What do you mean by damper? Give examples.	BT-1	Remembering		
PART - B					
1.	Explain the design criteria for machine foundations	BT-3	Applying		
2.	Design a foundation for a simple rotary machine which has following	BT-6	Creating		
	characteristics		0		
	Weight $Wm = 230kN$ Base Area = 2 x 4 m Height of CG = 1.2 m				
	Speed = 1000 rpm				
	Mass inertia = 8500 kg m^4				
	Vertical excitation force = 40 kN				
	Co-efficient of elastic uniform compression = 60 MN/m^3				
	Assume M20 grade of concrete and Fe 415 Grade of steel				

3.	Design for a suitable block foundation for a two cylinder vertical compressor for the following data: Crank angle : $0 \& \pi/2$ Weight of compressor = 200 kN Operating speed = 600 rpm Total weight of rotating mass = 0.06 kN Total weight of reciprocating mass = 0.27 kN Radius of Crank = 0.4 m Safe Bearing capacity of soil under static condition = 100 kN/m ² Co-efficient of elastic uniform compression = 45000 kN/m ³	BT-6	Creating
4.	A single cylinder engine with the following particulars is to be placed on a concrete foundation. Estimate the maximum unbalanced force generated by the engine: crank radius = 80 mm Length of connecting rod = 280 mm operating frequency = 1800 rpm Weight of reciprocating parts = 49 N	BT-4	Analyzing
5.	The exciting force in a constant force-amplitude excitation is 90 kN. The natural frequency of the machine foundation is 3 Hz. The damping factor is 0.30. Evaluate the magnification factor and the transmitted force at an operating frequency of 6 Hz.	BT-4	Analyzing
6.	Briefly explain the stiffness and damping parameters used in the design of machine foundation.	BT-2	Understanding
7.	Explain the "free vibration with damping" and bring out the meaning of over damped, under damped and critically damped conditions.	BT-2	Understanding
8.	Determine the coefficient of elastic uniform compression if a vibration test on a concrete block of 1 m cube gave a resonant frequency of 36 Hz in vertical vibration. The weight of the oscillator used was 500 N. Take the unit weight of concrete as 24.0 kN/m ³	BT-4	Analyzing
9.	How does the design of machine foundation differ from that of shallow foundation? Discuss in detail.	BT-3	Applying
10.	Examine the natural frequency of a machine foundation of base area 2m ×2m and weight 150 kN, assuming that the soil mass participating in the vibration is a) Negligible b) 20% of the weight of foundation. Take Cu = 36,000 kN/m ³	BT-3	Applying
11.	Describe the following in detaila) Significance of spring mass system in machine foundation.b) The role of resonance in the design of machine foundation.	BT-3	Applying
12.	Record the bulb of pressure concept proposed by "Balakrishna Rao" for the design of Machine foundations.	BT-3	Applying

13.	Design a suitable foundation for a double-acting steam hammer for the following data: Weight of tup = 50 kN Height of fall = 1 m Area of piston = 0.2 m ² Steam pressure on piston = 900 kN/m ² Weight of anvil and frame = 1000 kN Safe bearing capacity under static loading conditions = 200 kN/m ² Coefficient of elastic uniform compression of soil = 5×10^4 kN/m ³ Base area of anvil (base area of elastic pad also) = 5.5 m ² Thickness of elastic pad = 0.60 m Modulus of elasticity of the material of the pad = 5×10^5 kN/m ² Coefficient of restitution = 0.5 Unit weight of soil = 16 kN/m ³ Safe bearing capacity under static loading conditions = 200 kN/m ² Coefficient of elastic uniform compression of soil = 5×10^4 kN/m ³	BT-6	Creating
14.	The resonant frequency of a block foundation, excited by an oscillator is observed as 20 Hz. The amplitude of vibration at resonance is 1 mm. The magnitude of the dynamic force at 20 Hz is 5 kN. If the total weight of the block and oscillator is 20kN, Record the damping factor associated with it.	BT-3	Applying
15.	Discuss about the various safety criterion for machine foundations.	BT-3	Applying
16.	Discuss about the various method of analysis of machine foundation.	BT-3	Applying
17.	Give the requirements of design of foundation for reciprocating machines as per IS code and also list the various aspects in the design criteria for machine foundation used for an impact engine.	BT-3	Applying
	PART - C		·
1.	Take a heavy industrial building having larger number of vibrating machines. Discuss the type of foundation to be adopted for the machines. Illustrate with example.	BT-3	Applying
2.	Point out the requirements governing the design of foundations for impact type machines.	BT-1	Remembering
3.	Give the requirements of design of foundation for reciprocating machines as per IS code and also list the various aspects in the design criteria for machine foundation used for a Reciprocating engine.	BT-1	Remembering
4.	Explain the various techniques adopted for the isolating the dynamic effects in machine foundation.	BT-2	Understanding
5.	Summarize application to analysis of hammer foundation for impact type machines (hammer foundations) with neat model sketch.	BT-3	Applying

UNIT-5 SPECIAL FOUNDATIONS

Foundation on expansive soils – choice of foundation – Foundation for concrete Towers, chimneys – Design of anchors- Reinforced earth retailing walls.

PART - A

Prepared by

Q.No	Questions	BT	Competence		
1.	Indicate the general design criteria for the satisfactory performance of a tower foundation.	BT-2	Understanding		
2.	What are anchored bulk heads?	BT-1	Remembering		
3.	Give various types of foundation for transmission line towers.	BT-2	Understanding		
4.	What are the forces acting on tower foundation?	BT-1	Remembering		
5.	Explain the method of selecting a proper type of foundation for transmission.	BT-2	Understanding		
6.	How the safety of tower foundation is checked against uplift?	BT-1	Remembering		
7.	What do you mean by Ground anchor?	BT-1	Remembering		
8.	Criticize between normal condition and broken wire condition in tower foundation design.	BT-2	Understanding		
9.	Outline with sketch How do the ground anchors derive resistance loads?	BT-2	Understanding		
10.	What are the forces to be considered in the design of foundation for chimneys?	BT-1	Remembering		
11.	What are the IS codes to be followed for the satisfactory performance of a cooling tower foundation?	BT-1	Remembering		
12.	Write down the points to be considered in the design of anchors.	BT-2	Understanding		
13.	Compare the load transfer mechanism of single under reamed pile with that of double under reamed pile with neat sketches.	BT-2	Understanding		
14.	Demonstrate the stability analysis for tower foundation.	BT-3	Applying		
15.	Write the formula used for checking the uplift capacity of tower foundation.	BT-2	Understanding		
16.	Categorize the types of loads to be considered for tower foundation	BT-2	Understanding		
17.	Develop and sketch the Structural arrangement of foundation for towers	BT-3	Applying		
18.	Recommend the importance of under reamed piles for loose soil.	BT-2	Understanding		
19.	Show in what way reinforced earth walls differ from retaining wall.		Applying		
20.	Criticize the slip failure and its remedies.		Remembering		
21.	Brief marine foundation.		Understanding		
22.	Define chimneys.		Remembering		
23.	What are the factors to be considered for the design of marine foundation?		Remembering		
24.	Enlist the design aspects of tower foundation.	BT-1	Remembering		
25.	Sketch a reinforced retaining earth wall with forces action on it.	BT-2	Understanding		
PART - B					

1.	Give the necessary infor	BT-1	Remembering			
	construction of transmission					
2.	What are the various types	BT-1	Remembering			
3.	Identify the forces acting of	BT-1	Remembering			
4.	Employ how stability ag checked in tower foundati	BT-1	Remembering			
5.	Outline the general desig foundation.	BT-2	Understanding			
6.	Recall the methods of sele	ecting a proper type of	foundation.	BT-1	Remembering	
7.	Sketch the various types	s of foundation in us	se for transmission line	BT-2	Understanding	
8.	Generalize the factors tha in detail.	t decide the type of to	wer foundation? Discuss	BT-1	Remembering	
9.	Describe about ground and	chors.	(Erro)	BT-3	Applying	
10.	Illustrate the design princi	ples of ground anchors	8.	BT-3	Applying	
11.	Rewrite the necessity of s	upports for foundation	excavation.	BT-2	Understanding	
12.	Illustrate in detail about un	nder reamed pile found	lation.	BT-3	Applying	
13.	Assess in detail about Rei	nforced Earth retaining	, walls.	BT-3	Applying	
14.	Tabulate in brief about expansive soils.	BT-2	Understanding			
15.	Discuss about the challeng	BT-3	Applying			
16.	Summarize the design aspects and procedure of marine foundation.				Applying	
17.	Write short notes on the difficulties in constructing reinforced earth retaining walls.				Understanding	
PART - C						
1.	Design a suitable foundation	on for a 20° angle tow	er to be used in a double	BT-6	Creating	
	circuit 132 kV transmission	on line. The foundation	on is located in medium			
	dense sand with $\phi = 30^{\circ}$ as	nd 17kN/m ³ . Depth of	groundwater table is 5.0			
	m below the ground level.	Use overload factors	of 2 and 1.5 for normal			
	and broken wire condition					
	the following loadings					
	Nature of load Load in kN under Conditions					
	Demonstra	<u>N.C</u>	B.W.C			
		400	450			
	Uplift Shear in transverse	300	380			
	direction	5.5	23			
	Shear in longitudinal direction	-	16			

2.	Assess a suitable tower	foundation for a d	ouble circuit 144K	W BT-5	Evaluating
	transmission line without a	ny deviation. The fo	undation is located	in	
	cohesive soil with allowable	bearing pressure as 2	200kN/m ² . Consider	Cu	
	$=20kN/m^2, \ \gamma = 18kN/m^3, \phi$	$= 35^{\circ}$, for computation	on of uplift forces. T	he	
	foundation is subjected to the	e loading given below.			
	Name of the Load	N.C	B.W.C		
	Downward	250	300		
	Uplift	1750	250		
	Shear (transverse)	12	17		
	Shear (longitudinal)		8		
		V P	1 August		
3.	Formulate a suitable tower transmission line for the foll- located in dense sand with d	V BT-5	Evaluating		
	pressure as 250kN/m ² . The y	W			
	the existing GL.	5			
	Nature of load	Actual Load			
		N.C	B.W.C		
	Downward load	500 kN	650 kN	5.00	
	Upward load	250 kN	325 kN	- m	
	Shear in transverse direction	5 kN	20 kN		
	Shear in longitudinal direction	0	25 kN		
			1	1	
4.	Two main brick wall of a ro	om in a residential bu	uilding 225mm thick,	a BT-4	Analyzing
	loading of 40kN/m at foundation level. another cross wall of same				-
	thickness joins it and transmits a concentrated load 50kN. Design a				
	under-reamed pile with space	m			
	for the foundation of a main wall.				
5.	With the help of a case study, discuss about the marine foundation.			BT-3	Applying