SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)

S.R.M. Nagar, Kattankulathur - 603203

DEPARTMENT OF MATHEMATICS

QUESTION BANK

III SEMESTER

Computer Science, Information Technology, Cyber Security & Artificial Intelligence & Data Science

1918302-DISCRETE MATHEMATICS

Regulation – 2019

Academic Year - 2022 - 2023

Prepared by

Dr. T.Isaiyarasi , Assistant Professor / Mathematics Mr.N.Sundarakannan, Assistant Professor / Mathematics Mr.L.Mohan, Assistant Professor / Mathematics Ms.M.H.A.AyshaChithukka, Assistant Professor / Mathematics

SRM VALLIAMMAI ENGNIEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603203.

DEPARTMENT OF MATHEMATICS

SUBJECT : 1918302-DISCRETE MATHEMATICS

SEM / YEAR: III/ II Year Common to Computer Science, Information Technology, Cyber

Security & Artificial Intelligence & Data Science

UNIT I --LOGIC AND PROOFS Propositional logic – Propositional equivalences – Normal forms - Predicates and quantifiers – Nested quantifiers – Rules of inference

Q.No.	Question	BT Level	Competence
	PART – A		
1.	Construct the truth table for the compound proposition $(p \rightarrow q) \leftrightarrow (\neg p \rightarrow \neg q)$.	BTL -1	Remembering
2.	Construct the truth table for the compound proposition $(p \rightarrow q) \rightarrow (q \rightarrow p)$.	BTL -1	Remembering
3.	Construct the truth table for the compound proposition $(p \lor q) \rightarrow (q \land p)$	BTL -1	Remembering
4.	Construct the truth table for the compound proposition $(\neg p \leftrightarrow \neg q) \leftrightarrow (p \leftrightarrow q)$	BTL -2	Understanding
5.	Construct the truth table for the compound proposition $(p \rightarrow q) \lor (\neg p \rightarrow q)$.	BTL -3	Applying
6	What are the contrapositive, the converse and the inverse of the conditional statement "If you work hard then you will be rewarded".	BTL -3	Applying
7.	What are the contrapositive, the converse and the inverse of the conditional statement "If it is raining then I get wet".	BTL -2	Understanding
8	Write the symbolic representation and give its contra positive statement of "If it rains today, then I buy an umbrella".	BTL -2	Understanding
9.	Write down the negation of the statement: Some people have no two wheeler.	BTL -3	Applying
10	Negate the statements" Every student in this class is intelligent"	BTL -2	Understanding
11.	When do you say that two compound propositions are equivalent?	BTL -4	Analyzing
12.	Show that $(p \rightarrow r) \land (q \rightarrow r)$ and $(p \lor q) \rightarrow r$ are logically equivalent.	BTL -3	Applying
13.	Show that the propositions $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent.	BTL -4	Analyzing
14.	Without using truth table show that $p \to (q \to p) \Leftrightarrow \neg p \to (p \to q)$.	BTL -2	Understanding
15.	Show that $(p \to (q \to r)) \to ((p \to q) \to (p \to r))$ is a tautology.	BTL -4	Analyzing
16.	Is $\neg p \land (p \lor q)) \rightarrow q$ a tautology?	BTL -1	Remembering
17.	Using the truth table, show that the proposition $p \lor \neg (p \land q)$ is	BTL -4	Analyzing

	a tautology.		
10	Given $P = \{2,3,4,5,6\}$, state the truth value of the statement		Understanding
10.	$(\exists x \in P)(x + 3 = 10).$	DIL-2	Understanding
10	Let $E = \{-1, 0, 1, 2\}$ denote the universe of discourse. If		Analyzing
19.	$P(x, y) = x + y + 1$, find the truth value of $(\forall x)(\exists y)P(x, y)$.	DIL -4	Anaryzing
	Find a counter example, if possible, to these universally		
20	quantified statements, where the universe of discourse for all	BTI 3	Applying
20.	variables consists of all integers	DIL-3	Apprynig
	(a) $\forall x \forall y \ (x^2 = y^2 \Longrightarrow x = y)$ (b) $\forall x \forall y \ (xy \ge x)$.		
	If the universe of discourse consists of all real numbers and if		
21.	$p(x)$ and $q(x)$ are given by $p(x): x \ge 0$, and $q(x): x^2 \ge 0$, then	BTL -2	Understanding
	determine the truth value of $(\forall x)(p(x) \rightarrow q(x))$		
22.	Write the negation of the statement $(\exists x)(\forall y)P(x, y)$.	BTL -4	Analyzing
22	Write the following sentence in symbolic form (i) All Lions are	DTI 2	Applying
23.	fierce (ii) Some Lions do not drink coffee	DIL-3	Apprying
24.	Prove that $p, p \rightarrow q, q \rightarrow r \implies r$	BTL -2	Understanding
25	Let $A = \{1, 2, 3, 4, 5, 6\}$, determine the truth value of each of	BTI _∕I	Analyzing
23.	following (i) $(\exists x \in A)(x^2 > 25)$ (ii) $(\forall x \in A)(x^2 - x < 30)$	DIL -4	Anaryzing
	PART – B		
1 (a)	Prove that $((p \lor q) \land \neg (\neg p \land (\neg q \lor \neg r))) \lor (\neg p \land \neg q) \lor$	DTI 2	Applying
1.(a)	$(\neg p \land \neg r)$ is a tautology	DIL-3	Apprying
1 (b)	Show that $(\exists x)(P(x) \land Q(x)) \Longrightarrow (\exists x)P(x) \land (\exists x)Q(x).$	BTL -1	Remembering
1.(D)	Is the converse true?		C C
2 (a)	Without using truth table Show that	BTL -2	Understanding
2.(a)	$q \lor (p \land \neg q) \lor (\neg p \land \neg q)$ is a tautology.		
2 (h)	Without constructing the truth tables, obtain the principle	BTL -1	Remembering
2.(0)	disjunctive normal form of $(\neg p \rightarrow r) \land (q \leftrightarrow r)$		
3.	Show that $(p \to q)$, $(r \to s)$, $(q \to t)$, $(s \to u)$, $\neg(t \land u)$,	BTL -2	Understanding
	$(p \to r) \Longrightarrow \neg p$		
4 (a)	Show that $\forall x (P(x) \rightarrow Q(x)), \forall x (R(x) \rightarrow \neg Q(x)) \Longrightarrow$	BTL -2	Understanding
-1.(u)	$\forall x (R(x) \to \neg P(x))$		
4 (b)	Show that $r \rightarrow s$ can be derived from the premises	BTL -3	Applying
ч.(О)	$p \rightarrow (q \rightarrow s), \neg r \lor p \text{ and } q$		
5.	Without using truth table find PCNF and PDNF of	BTL -2	Understanding
	$[P \to (Q \land R)] \land [\neg P \to (\neg Q \land \neg R)].$		
6 (2)	Show that $(\neg P \land (\neg Q \land R)) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$ without	BTL -1	Remembering
0. (<i>a</i>)	using truth table.		
	Establish these logical equivalences, where A is a proposition		A 1 '
6.(b)	not involving any quantifiers. Show that $(\forall x P(x)) \land A \equiv$	BIL-3	Applying
	$\forall x (P(x) \land A) and (\exists x P(x)) \land A \equiv \exists x (P(x) \land A)$		
-	Show that $\forall x(P(x) \lor Q(x)) \Rightarrow \forall xP(x) \lor \exists xQ(x)$ by indirect	BTL -1	Remembering
7.	method.		C
8 (2)	Obtain the PDNE and PCNE of $(P \land O) \lor (-P \land R)$	BTL -6	Creating
5.(4)			
8.(b)	Using indirect method, show that $R \to \neg Q, R \lor S, S \to \neg Q, P \to Q$	BTL -3	Applying
(~)	$Q \Rightarrow \neg P$		A 1 ·
9.	Using indirect method of proof, derive $P \rightarrow \neg S$ from the	BIL-4	Analyzing

	premises $P \rightarrow (Q \lor R), \ Q \rightarrow \neg P, S \rightarrow \neg R \ and \ P.$		
	Show that the conclusion $\forall x (P(x) \rightarrow \neg Q(x))$ follows from		
10.(a)	the premises $\exists x (P(x) \land Q(x)) \rightarrow \forall y (R(y) \rightarrow S(y))$ and	BIL-2	Understanding
	$\exists y(R(y) \land \neg S(y))$		
10.(b)	Prove that $(P \to Q) \land (R \to Q) \Leftrightarrow (P \lor R) \to Q)$	BTL -2	Understanding
11.	Obtain the PDNF and PCNF of $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$	BTL -4	Analyzing
	Show that the premises "One student in this class knows how to		
12 (a)	write programme in JAVA", and "Everyone who knows how to	BTL -1	Remembering
12.(a)	write the programme in JAVA can get a high paying job imply		
	a conclusion "someone in this class can get a high paying job".		
12.(b)	Show that $(\neg P \rightarrow R) \land (Q \leftrightarrow P) \Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor$	BTL -2	Understanding
	$\frac{R}{R} \wedge (P \lor \neg Q \lor \neg R) \wedge (\neg P \lor Q \lor R) \wedge (\neg P \lor Q \lor \neg R).$		
	Show that the premises "All Hummingbirds are richly colored",		D
13.	"No large birds live on noney", "Birds that do not live on	BIL -I	Remembering
	are small?		
	Prove that the premises $P \rightarrow 0$ $0 \rightarrow R$ $R \rightarrow S S \rightarrow -R$	BTI 1	Pemembering
14.(a)	and $P \wedge S$ are inconsistent	DIL-I	Kemembering
	Establish the validity of the argument "All integers are rational		
14.(b)	numbers. Some integers are powers of 3. Therefore, some	BTL -3	Applying
	rational numbers are powers of 3".		
15	Show that $R \land (P \lor Q)$ is a valid conclusion from the premises	BTL -4	Analyzing
13.	$P \lor Q, Q \to R, P \to M, \neg M$		
	Show that the following premises are inconsistent.		
	1. If Jack misses many classes through illness, then he fails		
16()	high school.		
16.(a)	2. If Jack fails high school, he is uneducated	BIL-4	Analyzing
	3. If Jack reads a lot of books, then he is not uneducated.		
	4. Jack misses many classes through miless, and reads a lot of books		
	Show that $\mathbf{R} \vee \mathbf{S}$ is a valid conclusion from the premises		
16.(b)	$C \lor D, C \lor D \to \neg H, \neg H \to (A \land \neg B) and (A \land \neg B) \to (R \lor S)$	BTL -3	Applying
	Show that the following set of premises is inconsistent:		
	If Rama gets his degree, he will go for a job.		
17.	If he goes for a job, he will get married soon.	BTL -4	Analyzing
	If he goes for higher study, he will not get married.		
	Rama gets his degree and goes for higher study.		
	Prove or disprove the validity of following argument:		
18.(a)	Every living thing is a plant or an animal.	BTL -3	Applying
	David's dog is allve and it is not a plant. All animals have		
	Show that the premises $R \rightarrow -0$ $R \lor S \simeq -0$ $D \rightarrow -0$ D		
18.(b)	are inconsistent	BTL -3	Applying
	PART – C		l
	Show that the hypothesis. "It is not sunny this afternoon and it		
1	is colder than yesterday". "We will go swimming only if it is	BTL -6	Creating
1.	sunny", " If do not go swimming then we will take a canoe	•	B
	trip" and " If we take a canoe trip, then we will be home by		

	sunset". Lead to the conclusion "we will be home by sunset".		
2.	Construct an argument "To show that the following premises imply that conclusion "It rained". "If does not rain or if there is no traffic dislocation, then the sports day will be held and cultural program will go on", "If the sports day is held, the trophy will be awarded" and "The trophy was not awarded".	BTL -1	Remembering
3.	Show that the following argument is valid "Every microcomputer has a serial interface port." "Some microcomputer have a parallel port". Therefore some microcomputer has both serial and parallel port.	BTL -2	Understanding
4.	Test the validity of the following argument, If an integer is divisible by 10 then it is divisible by 2. If an integer is divisible by 2, then it is divisible by 3. Therefore the integer divisible by 10 is also divisible by 3.	BTL -4	Analyzing
5.	Show the following by constructing derivations. $(\exists x)P(x) \rightarrow (x)((P(x) \lor Q(x)) \rightarrow R(x)),$ $(\exists x)P(x), (\exists x)Q(x) \Rightarrow (\exists x)(\exists y)((R(x) \land R(y)))$	BTL -3	Applying

UNIT II - COMBINATORICS

UNIT II - COMBINATORICS Mathematical induction – Strong induction and well ordering – The basics of counting – The pigeonhole principle – Permutations and combinations – Recurrence relations – Solving linear recurrence relations – Generating functions – Inclusion and exclusion principle and its applications.

Q.No.	Question	BT Level	Competence	
PART – A				
1.	State the Principle of Mathematical Induction.	BTL -1	Remembering	
2.	Prove that $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ using Mathematical Induction.	BTL -1	Remembering	
3.	Prove that $1 + 2 + 2^2 + \dots + 2^n = 2^{n+1} - 1$, for $n \ge 1$.	BTL -1	Remembering	
4.	How many different bit strings are there of length seven?	BTL -2	Understanding	
5.	How many permutations are there in the word MISSISSIPPI?	BTL -3	Applying	
6	In how many ways can all the letters in MATHEMATICAL be arranged?	BTL -3	Applying	
7.	How many permutations of $\{a,b,c,d,e,f,g\}$ starting with a?	BTL -2	Understanding	
8	In how many ways can first, second and third prize in Pie- baking contest be given to 15 participants?	BTL -2	Understanding	
9.	How many permutations are there in the word MALAYALAM?	BTL -3	Applying	
10	How many 7 digit numbers can be formed using the digits 1, 2, 0,2,4,2 and 4?	BTL -2	Understanding	
11.	State the Pigeonhole principle.	BTL -4	Analyzing	
12.	State Generalized Pigeonhole Principle.	BTL -3	Applying	
13.	How many cards must be selected from a deck of 52 cards to guarantee that atleast 3 cards of the same suit are chosen?	BTL -4	Analyzing	
14.	How many 16-bit strings are there containing exactly 5 zeros?	BTL -2	Understanding	
15.	From 10 programmers, in how many ways can five be selected when a particular programmer is included every time?	BTL -4	Analyzing	
16.	How many solutions does the equation $x_1 + x_2 + x_3 = 11$, $x_1, x_2, x_3 \ge 0$ have and are integers?	BTL -1	Remembering	

17.	Form the recurrence relation from $S(k) = 5 \cdot 2^k$, $k > 0$.	BTL -4	Analyzing
18.	Find the recurrence relation for the Fibonacci sequence.	BTL -2	Understanding
19.	Find the recurrence relation satisfying the equation $f(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} $	BTL -4	Analyzing
	$y_n = A(3)^n + B(-4)^n$		
20.	Find the recurrence relation from $f(k) = 2k + 9$.	BTL -3	Applying
21.	Find the recurrence relation of the sequence $s(n) = a^n, n \ge 1$	BTL -2	Understanding
22.	Solve $a_n - 5a_{n-1} + 6a_{n-2} = 0$	BTL -4	Analyzing
23.	What is the solution of the recurrence relation	BTL -3	Applying
	$a_n = 6a_{n-1} - 9a_{n-2}$.		
24.	Solve the recurrence relation $(l) = 0$ $(l = 1) + 1((l = 2)) = 0$ $(l = 2)$	BTL -2	Understanding
25	$y(k) - 8y(k-1) + 16y(k-2) = 0, \ k \ge 2$		A
25.	Define Generating Function.	BIL-4	Analyzing
	$\mathbf{PAKT} - \mathbf{B}$		
	From a club consisting of six men and seven women, in how		
	many ways we select a committee of		
1.(a)	(1) 3 men and 4 women?	BTL -3	Applying
	(2) 4 persons which has at least one woman?		11 2 8
	(3) 4 persons that has at most one man?		
1 (1)	(4) 4 persons that has both sexes?		
1.(b)	Using induction principles prove that $n^3 + 2n$ is divisible by 3.	BTL -1	Remembering
2 (a)	Prove by Mathematical induction, that	BTI 5	Evoluting
2.(a)	$\frac{1}{1X2} + \frac{1}{2X3} + \frac{1}{3X4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$	DIL-J	Livaluating
	If we select ten points in the interior of an equilateral triangle of $\frac{1}{2}$	BTL -5	Evaluating
2.(b)	side 1.show that there must be at least two points whose		
(~)	distance apart less than 1/3	212 0	2 (01000116
	How many permutations can be made out of the letters of the		
	word "BASIC"? How many of those		
3. (a)	(1) Begin with B?	BTL -3	Applying
	(2) End with C?		FF J 8
	(3) B and C occupy the end places?		
2.0.)	Find the number of integers between 1 to 100 that are not		
3.(b)	divisible by any of the integers 2,3, 5 or 7.		
4 ()	Use mathematical induction to show that $n^2 - 1$ is divisible by		A
4.(a)	8 whenever n is an odd positive integer.	BIL-3	Applying
	There are three piles of identical red, blue and green balls,		
	where each piles contains at least 10 balls. In how many ways		
	can 10 balls be selected		
	(1) If there is no restriction?		
4.(b)	(2) If at least 1 red ball must be selected?	BTL -3	Applying
	(3) If at least 1 red, at least 2 blue and at least 3green balls		
	must		
	be selected?		
	(4) If at most 1 red ball is selected?		
	Use mathematical induction to show that		
5. (a)	$\left \frac{1}{1}+\frac{1}{1}+\dots+\frac{1}{n}\right \sqrt{n} \qquad n > 2$	BTL -3	Applying
	$\left \frac{\sqrt{1}}{\sqrt{1}} + \frac{\sqrt{2}}{\sqrt{2}} + \dots + \frac{\sqrt{n}}{\sqrt{n}} \right \leq \sqrt{n}, \qquad n \geq 2$		_
5 (b)	A Committee of 5 is to be selected from 6 boys and 5 girls.	рті <i>с</i>	Evoluting
5.(0)	Determine the number of ways of selecting the committee if it	DIL-J	Evaluating

	is to consist of at least 1 boy and 1 girl.		
6.(a)	Prove by mathematical induction that $8^n - 3^n$ is divisible by 5, for each positive integer n.	BTL -3	Applying
6.(b)	Prove that in a group of six people at least three must be mutual friends or at least three must be mutual strangers.	BTL -3	Applying
7.	Use the method of generating function to solve the recurrence relation $a_n + a_{n-1}4a_{n-2} + 4^n$, $n \ge 2$.	BTL -1	Remembering
8. (a)	Prove by induction $13^n - 6^n$ is divisible by 7.	BTL -4	Analyzing
8. (b)	Triangle ACE is equilateral with AC=1. If five points are selected from the interior of the triangle, there are at least two whose distance apart is less than $\frac{1}{2}$.	BTL -3	Applying
9.	Find the solution to the recurrence relation $a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$ with initial conditions $a_0 = 2, a_1 = 5$ and $a_2 = 15$	BTL -5	Evaluating
10.(a)	Prove by mathematical induction $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$	BTL -6	Creating
10.(b)	Prove that in a group of six people at least three must be mutual friends or at least three must be mutual strangers.	BTL -3	Applying
11.	Solve $G(k) - 7 G(k-1) + 10G(k-2) = 8k + 6$, for $k \ge 2$, $G(0) = 1$, $G(1) = 2$.	BTL -4	Analyzing
12. (a)	40 computer programmers interviewed for a job. 25 knew JAVA, 28 knew ORACLE and 7 knew neither language. How many knew both languages?	BTL -3	Applying
12.(b)	Solve the difference equation $a_r + a_{r-1} + a_{r-2} = 0$.	BTL -3	Applying
13.	Solve the recurrence relation $a_n = 3a_{n-1} + 2$, $n \ge 1$, with $a_0 = 1$ by the method of generating function.	BTL -4	Analyzing
14.(a)	Solve the recurrence relation $s(r+2) - 5s(r+1) + 6s(r) = 5^r$.	BTL -3	Applying
14.(b)	Determine the number of positive integer n, $1 \le n \le 2000$ that are not divisible by 2, 3 or 5 but are divisible by 7.	BTL -3	Applying
15.	Solve the difference equation $a_r + 6a_{r-1} + 9a_{r-2} = 3$ with the initial condition $a_0 = 1, a_1 = 1$.	BTL -4	Analyzing
16.(a)	How many bits of string of length 10 contain (i)Exactly four 1's (ii)At most four 1's (iii)At least four 1's (iv)An equal number of 0's and 1's	BTL -4	Analyzing
16.(b)	Find the minimum number of m integers to be selected from $S = \{1, 2, 3 \dots 9\}$ so that the sum of two of m integers is even.	BTL -3	Applying
17.	A survey of 550 television watchers produced the following information: 285 watch football game, 195 watch hockey game, 115 watch baseball game, 45 watch football and baseball games, 70 watch football and hockey games, 50 watch hockey and baseball games, 100 do not watch any of the three games. Then (a) How many people in the survey watch all three games? (b) How many people watch exactly one of the three games?	BTL -4	Analyzing
18. (a)	Find the number of integers between 1 to 250 that are not divisible by any of the integers 2,3,5 and 7	BTL -3	Applying

18.(b)	Solve the recurrence relation $a_r - 3a_{r-1} + 2a_{r-2} = 0$ with the initial condition $a_0 = 1, a_1 = 4$.	BTL -3	Applying	
	PART – C			
1.	In a survey of 120 passengers, an Airline found that 52 enjoyed wine with their meals, 75 enjoyed mixed drinks and 62 enjoyed iced tea. 35 enjoyed any given pair these beverages and 20 passengers enjoyed all of them. Find the no. of passengers who enjoyed (i) Only tea (ii) Only one of the three (iii) Exactly two of the three beverages None of the drinks	BTL -4	Analyzing	
2.	During a four-week vacation, a school student will attend at least one computer class each day, but he won't attend more than 40 classes in all during the vacation. Prove that no matter how he distributes his classes during the four weeks, there is a consecutive span of days which he will attend exactly 15 classes?	BTL -4	Analyzing	
3.	A total of 1232 students have taken a course in Spanish, 879 have taken a course in French and 114 have taken a course in Russian. Further 103 have taken courses in both Spanish and French, 23 have taken courses in both Spanish and Russian and 14 have taken courses in both French and Russian. If 2092 students have taken at least one Spanish, French and Russian, how students have taken a course in all three languages?	BTL -2	Understanding	
4.	Use the method of generating function to solve the recurrence relation $a_n = 4a_{n-1} - 4a_{n-2} + 4^n$; $n \ge 2$ given that $a_0 = 2$ and $a_1 = 8$.	BTL -2	Understanding	
5.	If $(n+1)$ integers are selected from the set of 2n integers $\{1,2, 3,,2n\}$, then show that there must be an integer that divides another selected integer.	BTL -3	Applying	
UNIT I	II -Graphs and graph models – Graph terminology and spec	cial types of	f graphs – Matrix	
represen	tation of graphs and graph isomorphism – Connectivity – Euler an	d Hamilton p	aths.	
Q.No.	Question	BT Level	Competence	
	PART – A			
1.	Define complete graph and draw K_5 .	BTL -1	Remembering	
2.	Define a regular graph. Can a complete graph be a regular graph?	BTL -1	Remembering	
3.	Define pseudo graphs	BTL -1	Remembering	
4.	Define strongly connected graph.	BTL -2	Understanding	
5.	State the handshaking theorem.	BTL -1	Remembering	
6	What is the degree sequence of K_n , where n is a positive integer? Explain your answer.	BTL -3	Applying	
7.	When is a simple graph G bipartite? Give an example.	BTL -2	Understanding	
8	How many edges are there in a graph with 10 vertices each of degree 3?	BTL -3	Applying	
9.	How many edges does a graph have if it has vertices of degree 5, 2, 2, 2, 2, 1? Draw such a graph.	BTL -3	Applying	

10	Define connected graph and a disconnected graph with example.	BTL -1	Remembering
11.	Let G be the graph with 10 vertices. If four vertices has degree four and six vertices has degree five, then find the number of edges of G.	BTL -3	Applying
12.	Use an incidence matrix to represent the graph.	BTL -3	Applying
13.	Draw the graph with the following adjacency matrix $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$	BTL -4	Analyzing
14.	Give an Example of a bipartite graph which is Hamiltonian but not Eulerian.	BTL -3	Applying
15.	What should be the degree of each vertex of a graph G if it has Hamilton circuit?	BTL -4	Analyzing
16.	Define complete bipartite graph.	BTL -1	Remembering
17.	State the necessary and sufficient conditions for the existence of an Eulerian path in a connected graph.	BTL -1	Remembering
18.	Define Hamiltonian path.	BTL -2	Understanding
19.	Show that there does not exist a graph with 5 vertices with degrees 1, 3, 4, 2, 3 respectively.	BTL -4	Analyzing
20.	Give an example of a graph which is Eulerian but not Hamiltonian	BTL -3	Applying
21.	For which value of <i>m</i> and <i>n</i> does the complete bipartite graph K_{mn} , have an (i) Euler circuit (ii) Hamilton circuit.	BTL -3	Applying
22.	Represent the given graph using an adjacency matrix.	BTL -5	Evaluating
23.	An undirected graph G has 16 edges and all the vertices are of degree 2. Find the number of vertices.	BTL -3	Applying
24.	For which values of n do the graphs K_n and C_n have an Euler path but no Euler circuit?	BTL -4	Analyzing
25.	Does the graph have a Hamilton path? If so find such a path.	BTL -6	Creating
	$\mathbf{PAKI} - \mathbf{B}$		
1.	Prove that the maximum number of edges in a simple disconnected graph G with n vertices and k components is $(n-k)(n-k-1)/2$	BTL -2	Understanding

2. (a)	Prove that a connected graph G is Euler graph if and only if every vertex of G is of even degree.	BTL -2	Understanding
2.(b)	Let $\delta(G)$ and $\Delta(G)$ denotes minimum and maximum degrees of all the vertices of <i>G</i> respectively. Then show that for a non- directed graph $G, \delta(G) \leq \frac{2 E }{ V } \leq \Delta(G)$	BTL -3	Applying
3. (a)	The sum of all vertex degree is equal to twice the number of edges (or) the sum of the degrees of the vertices of G is even.	BTL -2	Understanding
3.(b)	Prove that the complement of a disconnected graph is connected.	BTL -2	Understanding
4. (a)	For any simple graph <i>G</i> , the number of edges of <i>G</i> is less than or equal to $\frac{n(n-1)}{2}$, where n is the number of vertices in <i>G</i> .	BTL -1	Remembering
4. (b)	Derive a connected graph has an Euler trail if and only if it has at most two vertices of odd degree.	BTL -3	Applying
5. (a)	If a graph G has exactly two vertices of odd degree there is a path joining these two vertices.	BTL -3	Applying
5.(b)	Show that a graph G is self-complementary, if it has n or 4n+1 vertices (n is non negative integer)	BTL -1	Remembering
6.(a)	Define (i) Complete graph. (ii) Complete bipartite graph with example.	BTL -1	Remembering
6.(b)	Show that the complete graph K_n contain $\frac{n(n-1)}{2}$ different Hamilton cycle.	BTL -3	Applying
7.	 Prove that the following statements are equivalent for a connected graph G. 1. G is Eulerian 2. Every vertex has even degree 3. The set of edges of G can be partitioned into cycles 	BTL -3	Applying
8. (a)	Show that a graph G is connected if and only if for any partition of V into subsets V_1 and V_2 there is an edge joining a vertex of V_1 to a vertex of V_2 .	BTL -4	Analyzing
8.(b)	Find the number of paths of length 4 from the vertex D to E in the undirected graph given below. $A \longrightarrow B$	BTL -3	Applying
9.(a)	How many paths of length four are there from a to d in the simple graph G given below.	BTL -5	Evaluating
9.(b)	If G is a graph with n vertices and $(G) \ge \frac{n-1}{2}$, then G is connected.	BTL -2	Understanding
10.(a)	Using adjacency matrix examine whether the following pairs of	BTL -5	Evaluating

	graphs G and G^1 given below are isomorphism or not.		
	a b b e e e d d d d d d d d d d d d d d d		
10.(b)	Write the adjacency matrix of the digraph $G = \begin{cases} (v_1, v_3), (v_1, v_2), (v_2, v_4), \\ (v_3, v_1), (v_2, v_3), (v_3, v_4), \\ (v_4, v_1), (v_4, v_2), (v_4, v_3) \end{cases}$. Also draw the graph.	BTL -3	Applying
11.	Define isomorphism. Establish an isomorphism for the following the graphs. v_1 v_2 v_3 v_3 v_4 v_3 v_3 v_4 v_3 v_4	BTL -4	Analyzing
12.(a)	Show that the following graphs G and H are not isomorphic.	BTL -3	Applying
12.(b)	Prove that a simple graph with n vertices must be connected if it has more than $\frac{(n-1)(n-2)}{2}$ edges.	BTL -2	Understanding
13	Define Isomorphism between the two graphs. Are the simple graphs with the following adjacency matrices isomorphic? $\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$	BTL -3	Applying
14.(a)	The adjacency matrices of two pairs of graph as given below. Examine the isomorphism of <i>G</i> and <i>H</i> by finding a permutation matrix. $A_G = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} A_H = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	BTL -4	Analyzing

14.(b)	Represent each of the following graphs with an adjacency matrix(<i>i</i>) K_4 (<i>ii</i>) $K_{1,4}$ (<i>iii</i>) C_4 (<i>iv</i>) W_4	BTL -4	Analyzing
15.(a)	Show that the following graphs are isomorphic.	BTL -4	Analyzing
15.(b)	Show that a graph G is disconnected if and only if its vertex set V can be partitioned into two nonempty subsets V_1 and V_2 such that there exists no edge is G whose one end vertex is in V_1 and the other is in V_2 .	BTL -2	Understanding
16.(a)	Using adjacency matrix examine whether the following pairs of graphs G and G^1 given below are isomorphism or not.	BTL -4	Analyzing
16.(b)	Find an Euler path or an Euler Circuit if it exists, in each of the three graphs given below. $A \to C \to C \to C \to C$ $A \to C \to C \to C \to C$ $A \to C \to C \to C \to C$ $B \to C \to C \to C \to C$	BTL -3	Applying
17.	Examine whether the following pair of graphs are isomorphic or not. Justify your answer. $u_1 \underbrace{u_5}_{u_4} \underbrace{u_6}_{G} \underbrace{u_2}_{u_3} \underbrace{v_1 \underbrace{v_2}_{v_5} \underbrace{v_4}_{H}}_{u_5} v_3$	BTL -4	Analyzing
18.(a)	Give an example of a graph which is (i) Eulerian but not Hamiltonian (ii) Hamiltonian but not Eulerian	BTL -4	Analyzing

	(iii) B	oth Eu	lerian a	and Ha	amiltor	nian						
	(iv) N	ot Eule	erian ar	nd not	Hamil	tonian						
18.(b)	Expla	in cut e	edges a	nd cut	t vertic	es wit	h suita	ble exa	mple.		BTL -3	Applying
PART – C												
1.	 Model the following situations as (possibly weighted, possibly directed) graphs. Draw each graph, and give the corresponding adjacency matrices. (a) Ada and Bertrand are friends. Ada is also friends with Cecilia and David. Bertrand, Cecilia and Évariste are all friends of each other. (b) Wikipedia has five particularly interesting articles: Animal, Burrow, Chile, Desert, and Elephant. Some of them even link to each other! (c) It is well-known that in the Netherlands, there is a 2-lane highway from Amsterdam to Breda, another 2-lane highway from Amsterdam to Cappeleaan den IJssel, a 3-lane highway from Breda to Dordrecht, a 1-lane road from Breda to Ede and another one from Dordrecht to Ede, and a 5-lane superhighway from Cappeleaan den IJsseltto Ede 						BTL -4	Analyzing				
2.	In the town of Königsberg in Prussia, there was a river containing two islands. The islands were connected to the banks of the river by seven bridges (as seen below). The bridges were very beautiful, and on their days off, townspeople would spend time walking over the bridges. As time passed, a question arose: was it possible to plan a walk so that you cross each bridge once and only once?					river to the b. The people sed, a cross	BTL -4	Analyzing				
3.	Suppo unpop are cl record freque A B C D E F G H I J	bee 10 pulated lose en led in encies t A x x x x x x x	new ra (by ra nough the stat B x x	adio st dio st to ea ble be ions c X X X X X X X	tations ations) ach ot elow. D D x x x x x x	are to regio her to What se? E x x x	be se n. The caus is the F x x x x x x x x x x	et up in radio e inte fewess G x x x x x x	n a cur statior rferenc t numl H 	I I I X X X X	BTL -2	Understanding
4.	There are 25 telephones in Geeks land. Is it possible to connect them with wires so that each telephone is connected with						onnect with	BTL -2	Understanding			
5.	 exactly / others Describe a discrete structure based on a graph that can be used to model airline routes and their flight times. 					e used	BTL -3	Applying				
UNIT IV -ALGEBRAIC STRUCTURES												
Algebraic systems – Semi groups and monoids - Groups – Subgroups – Homomorphisms – Normal subgroup and												

cosets – Lagrange's theorem – Definitions and examples of Rings and Fields.

O No	Question	DT Lovol	Competence			
Q.NO.	Question	DI Level	Competence			
1.	group which is not a monoid. Give an example of a semi	BTL -1	Remembering			
2.	Show that semi-group homomorphism preserves the property of idempotency.	BTL -1	Remembering			
3.	Find the idempotent elements of $G = \{1, -1, i, -i\}$ under the binary operation multiplication	BTL -1	Remembering			
4.	Prove that monoid homomorphism preserves invertibility.	BTL -2	Understanding			
5.	Define group and State any two properties of a group.	BTL -3	Applying			
6	Define a cyclic group and give an example	BTL -3	Applying			
7.	Prove that identity element in a group is unique.	BTL -2	Understanding			
8	Prove that the inverse of each element of the group $(G,*)$ is unique	BTL -2	Understanding			
9.	Show that the cancellation laws are true in a group $(G,*)$	BTL -3	Applying			
10	If $(G,*)$ is a group infer that the only idempotent element of a is the identity element	BTL -4	Analyzing			
11.	Prove if a has inverse b and b has inverse c, then $a = c$.	BTL -4	Analyzing			
10	Let R be the set of non-zero real numbers and $*$ is the binary		· · ·			
12.	operation defined as $a * b = \frac{1}{2}$, for $a, b \in R$. Find the inverse of any element	B1L -3	Applying			
13.	In a group $(G,*)$, prove that $(a*b)^{-1} = b^{-1}*a^{-1}$ for all $a, b \in G$	BTL -4	Analyzing			
14.	Let Z be a group of integers with binary operation * defined by $a * b = a + b - 2$ for all $a, b \in Z$. Find the identity element of the group(Z,*).	BTL -2	Understanding			
15.	Prove that the order of an element a of a group G is the same as that of its inverse (a^{-1})	BTL -4	Analyzing			
16.	Prove that if <i>G</i> is abelian group, then for all $a, b \in G$, $(a * b)^2 = a^2 * b^2$	BTL -1	Remembering			
17.	Prove that every cyclic group is abelian	BTL -4	Analyzing			
18.	Show that $(Z_5, +_5)$ is a cyclic group.	BTL -2	Understanding			
19.	Is (Z_5^*, \times_6) a cyclic group.Justify	BTL -4	Analyzing			
20.	If <i>a</i> is a generator of a cyclic group <i>G</i> , then show that a^{-1} is also a generator of <i>G</i> .	BTL -3	Applying			
21.	State Lagrange's theorem.	BTL -2	Understanding			
22.	Find the left cosets of $\{[0], [3]\}$ in the addition modulo group $(Z_{6}, +_{6})$.	BTL -4	Analyzing			
23.	Discuss a ring and give an example	BTL -3	Applying			
24.	Define a commutative ring.	BTL -2	Understanding			
25.	Define a field with example	BTL -4	Analyzing			
PART – B						
1.	If $S = NXN$, the set of ordered pairs of positive integers with the operation * defined by $(a, b) * (c, d) = (ad + bc, bd)$ and if	BTL -3	Applying			

· · · · · · · · · · · · · · · · · · ·			
	$f: (S,*) \to (Q, +)$ is defined by $f(a, b) = a/b$, show that f is a semi-group homomorphism		
	Prove that in a group G the equations		
2 (9)	a * r = h and $y * a = h$ have unique solutions for the	BTL -5	Evaluating
2.(a)	unknowns x and y as $x = a^{-1} * h y = h * a^{-1}$ when $a h \in G$	DIL 5	Livaluating
	$\begin{bmatrix} a & b \end{bmatrix}_{a}$		
2.(h)	Evaluate that the set of all matrices $\begin{bmatrix} a & b \\ -h & a \end{bmatrix}$ forms an abelian	BTL -5	Evaluating
	group with respect to matrix multiplication.		8
	Prove that $C = \{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \}$		
3.	$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 0 & -1 \end{bmatrix}$	BTL -3	Applying
	forms an abelian group under matrix multiplication.		
4.(a)	If $(G,*)$ is an abelian group and if $\forall a, b \in G$. Show that	BTL -3	Applying
	$(a * b)^n = a^n * b^n$, for every integer n	212 0	
4.(b)	Show that $(Q^+, *)$ is an abelian group where $*$ is defined as	BTL -3	Applying
	$a * b = ab/2, \forall a, b \in Q^+$	212 0	· · · · · · · · · · · · · · · · · · ·
_	Apply the definition of a group to Prove that $(G,*)$ is a non-		
5.	abelian group where $G = R^* \times R$ and the binary operation * is	BTL -3	Applying
	defined as $(a, b) * (c, d) = (ac, bc + d)$		
6.	Show that group homomorphism preserves identity, inverse,	BTL -3	Applying
	and subgroup		11 5 6
7.	Show that M_2 , the set of all 2X2 nonsingular matrices over R is	BTL -1	Remembering
	a group under usual matrix multiplication. Is it abelian?		
8. (a)	Prove that the intersection of two subgroups of a group G is	BTL -4	Analyzing
	again a subgroup of G		
8.(b)	Prove that the set $\{1, -1, l, -l\}$ is a finite abelian group with	BTL -3	Applying
	Show that the union of two subgroups of a group G is again a		
9.	subgroup of G if and only if one is contained in the other	BTL -5	Evaluating
	Prove that the necessary and sufficient condition for a non-		
10 (a)	empty subset H of a group (G *) to be a subgroup is $a \to H \to H$	BTI -6	Creating
10.(<i>a</i>)	$a * h^{-1} \subseteq H$	DIL-0	Creating
10 (b)	Prove that every subgroup of a cyclic group is cyclic	BTL -3	Applying
10.(0)	Prove that (S_{0} *) where $S = (1, 2, 3)$ is a group under the	DIL 3	rippijing
11.	operation of right composition. Is it abelian?	BTL -4	Analyzing
	Prove that the kernel of a homomorphism f from a group (G *)		
12.(a)	to a group (T, Λ) is a subgroup $(G, *)$	BTL -3	Applying
	Determine whether $H_1 = \{0, 5, 10\}$ and $H_2 = \{0, 4, 8, 12\}$ are		
12.(b)	subgroups of Z_{1c} .	BTL -3	Applying
	If (G, *) is a finite cyclic group generated by ab element		
13.	$a \in G$ and is of order n then $a^n = e$ so that $G = \{a, a^2,, a^n\}$	BTL -4	Analyzing
	e)}. Also, n is the least positive integer for which $a^n = e$.		, ,
	Let G be a group and $a \in G$. Let $f: G \to G$ be given by		
14.(a)	$f(x) = axa^{-1}, \forall x \in G$. Prove that f is an isomorphism of	BTL -3	Applying
	G onto G		
14.(b)	Show that the group $(\{1, 2, 3, 4\}, X_5)$ is cyclic.	BTL -3	Applying
	If $(G,*)$ is a finite cyclic group of order n with a as a generator,		
15.	then a^m is also a generator of $(G,*)$, if and only if the GCD of	BTL-4	Analyzing
	m and n is 1, where $m < n$		
16.(a)	Prove that any group of prime order is cyclic.	BTL -4	Analyzing

16.(b)	Let (H, \cdot) be a subgroup of (G, \cdot) Let $N = \{x \mid x \in G, xHx^{-1} = H\}$. Show that (N, \cdot) is a	BTL -3	Applying		
	subgroup of <i>G</i> .				
17.	Prove that every finite group of order n is isomorphic to permutation group of degree n	BTL -4	Analyzing		
18. (a)	Prove that (U_9, \times_9) is an abelian group	BTL -3	Applying		
18.(b)	Let $H = \{[0], [4], [8]\}$ is a subgroup of $(Z_{12}, +_{12})$, find all the cosets of H	BTL -3	Applying		
	PART – C				
1.	State and prove the fundamental theorem of group homomorphism	BTL -4	Analyzing		
2.	If the permutations of the elements {1,2,3,4,5} are given by $f = \begin{pmatrix} 1 & 23 & 4 & 5 \\ 2 & 31 & 4 & 5 \end{pmatrix} g = \begin{pmatrix} 1 & 23 & 4 & 5 \\ 1 & 23 & 4 & 5 \end{pmatrix},$ $h = \begin{pmatrix} 1 & 23 & 4 & 5 \\ 5 & 43 & 1 & 2 \end{pmatrix}$ find fg,gf,f^2,h^{-1},fgh	BTL -4	Analyzing		
3.	Discuss and show that the order of a subgroup of a finite group divides the order of the group	BTL -2	Understanding		
4.	Show that group of order 3 is cyclic and every group of order 4 is abelian	BTL -2	Understanding		
5.	Show that $Z_4 = \{0,1,2,3\}$ is a commutative ring with respect to the binary operations $+_4$ and \times_4	BTL -3	Applying		
Partial ordering – Posets – Lattices as posets – Properties of lattices - Lattices as algebraic systems – Sub lattices – Direct product and homomorphism – Some special lattices – Boolean algebra.					
Partial c lattices -	rdering – Posets – Lattices as p <mark>osets – Properties o</mark> f lattices - Lat - Direct product and homomorp <mark>hism – Some special</mark> lattices – Boo	tices as algeb lean algebra.	oraic systems – Sub		
Partial c lattices - Q.No.	ordering – Posets – Lattices as p <mark>osets – Properties o</mark> f lattices - Lat - Direct product and homomorphism – Some special lattices – Boo Question	tices as alget lean algebra. BT Level	oraic systems – Sub Competence		
Partial of lattices - Q.No.	ordering – Posets – Lattices as posets – Properties of lattices - Lat - Direct product and homomorphism – Some special lattices – Boo Question PART – A	tices as algeb lean algebra. BT Level	oraic systems – Sub Competence		
Partial of lattices - Q.No.	ordering – Posets – Lattices as posets – Properties of lattices - Lat - Direct product and homomorphism – Some special lattices – Boo Question PART – A Define partial order relation	tices as algeb lean algebra. BT Level BTL -1	Competence Remembering		
Partial of lattices - Q.No. 1. 2.	rdering – Posets – Lattices as posets – Properties of lattices - Lat - Direct product and homomorphism – Some special lattices – Boo Question PART – A Define partial order relation Define POSET and give the example.	tices as algeb lean algebra. BT Level BTL -1 BTL -1	Competence Remembering Remembering		
Partial of lattices - Q.No. 1. 2. 3.	ordering – Posets – Lattices as posets – Properties of lattices - Lat- Direct product and homomorphism – Some special lattices – BooQuestionPART – ADefine partial order relationDefine POSET and give the example.Draw the Hasse diagram for $[S, /]$ where $S = \{1,2,3,4,5,7,8,12\}$	tices as algebra. BT Level BTL -1 BTL -1 BTL -3	Competence Remembering Remembering Applying		
Partial of lattices - Q.No. 1. 2. 3. 4.	ordering – Posets – Lattices as posets – Properties of lattices - Lat- Direct product and homomorphism – Some special lattices – BooQuestionPART – ADefine partial order relationDefine POSET and give the example.Draw the Hasse diagram for $[S, /]$ where $S = \{1,2,3,4,5,7,8,12\}$ Draw the Hasse diagram for $[P(A), \subseteq]$ where $A = \{1,2,3\}$	tices as algebra. BT Level BTL -1 BTL -1 BTL -3 BTL -3	oraic systems – Sub Competence Remembering Remembering Applying Applying		
Partial of lattices - Q.No. 1. 2. 3. 4. 5.	rdering – Posets – Lattices as posets – Properties of lattices - Lat - Direct product and homomorphism – Some special lattices – Boo Question PART – A Define partial order relation Define POSET and give the example. Draw the Hasse diagram for $[S, /]$ where $S = \{1,2,3,4,5,7,8,12\}$ Draw the Hasse diagram for $[P(A), \subseteq]$ where $A = \{1,2,3\}$ Draw the Hasse diagram for $[D_{30},]$ where $D_{30} = \{1,2,3,5,6,10,15,30\}$	tices as algebra. BT Level BTL -1 BTL -1 BTL -3 BTL -3 BTL -3	Competence Competence Remembering Remembering Applying Applying Applying Applying		
Partial of lattices - Q.No. 1. 2. 3. 4. 5. 6	ordering – Posets – Lattices as posets – Properties of lattices - Lat- Direct product and homomorphism – Some special lattices – BooQuestionPART – ADefine partial order relationDefine POSET and give the example.Draw the Hasse diagram for $[S, /]$ where $S = \{1,2,3,4,5,7,8,12\}$ Draw the Hasse diagram for $[P(A), \subseteq]$ where $A = \{1,2,3\}$ Draw the Hasse diagram for $[D_{30},]$ where $D_{30} = \{1,2,3,5,6,10,15,30\}$ Define Least upper bound and Greatest lower bound.	tices as algeb lean algebra. BT Level BTL -1 BTL -1 BTL -3 BTL -3 BTL -3 BTL -3	Competence Remembering Remembering Applying Applying Applying Applying Applying Applying Applying Applying Applying		
Partial of lattices - Q.No. 1. 2. 3. 4. 5. 6 7.	rdering – Posets – Lattices as posets – Properties of lattices - Lat - Direct product and homomorphism – Some special lattices – Boo Question PART – A Define partial order relation Define POSET and give the example. Draw the Hasse diagram for $[S, /]$ where $S = \{1,2,3,4,5,7,8,12\}$ Draw the Hasse diagram for $[P(A), \subseteq]$ where $A = \{1,2,3\}$ Draw the Hasse diagram for $[D_{30},]$ where $D_{30} = \{1,2,3,5,6,10,15,30\}$ Define Least upper bound and Greatest lower bound. Define Lattice with example.	tices as algeb lean algebra. BT Level BTL -1 BTL -1 BTL -3 BTL -3 BTL -3 BTL -3 BTL -1 BTL -1	Competence Competence Remembering Remembering Applying Applying Applying Remembering Remembering Remembering Remembering Remembering Remembering Applying Remembering Remembering		
Partial of lattices - Q.No. 1. 2. 3. 4. 5. 6 7. 8	rdering – Posets – Lattices as posets – Properties of lattices - Lat - Direct product and homomorphism – Some special lattices – Boo Question PART – A Define partial order relation Define POSET and give the example. Draw the Hasse diagram for $[S, /]$ where $S = \{1,2,3,4,5,7,8,12\}$ Draw the Hasse diagram for $[P(A), \subseteq]$ where $A = \{1,2,3\}$ Draw the Hasse diagram for $[D_{30},]$ where $D_{30} = \{1,2,3,5,6,10,15,30\}$ Define Least upper bound and Greatest lower bound. Define Lattice with example. Show that ($\{1,2,3,4,5\}, /$) is not a alattice.	tices as algeb lean algebra. BT Level BTL -1 BTL -1 BTL -3 BTL -3 BTL -3 BTL -3 BTL -1 BTL -1 BTL -1 BTL -1	oraic systems – Sub Competence Remembering Remembering Applying Applying Applying Remembering Understanding		
Partial of lattices - Q.No. 1. 2. 3. 4. 5. 6 7. 8 9.	rdering – Posets – Lattices as posets – Properties of lattices - Lat - Direct product and homomorphism – Some special lattices – Boo Question PART – A Define partial order relation Define POSET and give the example. Draw the Hasse diagram for $[S, /]$ where $S = \{1,2,3,4,5,7,8,12\}$ Draw the Hasse diagram for $[P(A), \subseteq]$ where $A = \{1,2,3\}$ Draw the Hasse diagram for $[D_{30},]$ where $D_{30} = \{1,2,3,5,6,10,15,30\}$ Define Least upper bound and Greatest lower bound. Define Lattice with example. Show that ($\{1,2,3,4,5\}, /$) is not a alattice. Define Lattice Homomorphism	tices as algeb lean algebra. BT Level BTL -1 BTL -1 BTL -3 BTL -3 BTL -3 BTL -3 BTL -1 BTL -1 BTL -1 BTL -2 BTL -1	Competence Competence Remembering Remembering Applying Applying Applying Remembering Understanding Remembering		
Partial of lattices - Q.No. 1. 2. 3. 4. 5. 6 7. 8 9. 10	rdering – Posets – Lattices as posets – Properties of lattices - Lat - Direct product and homomorphism – Some special lattices – Boo Question PART – A Define partial order relation Define POSET and give the example. Draw the Hasse diagram for $[S, /]$ where $S = \{1,2,3,4,5,7,8,12\}$ Draw the Hasse diagram for $[P(A), \subseteq]$ where $A = \{1,2,3\}$ Draw the Hasse diagram for $[D_{30},]$ where $D_{30} = \{1,2,3,5,6,10,15,30\}$ Define Least upper bound and Greatest lower bound. Define Lattice with example. Show that ($\{1,2,3,4,5\}, /$) is not a alattice. Define Lattice Homomorphism Define Distributive lattice	tices as algeb lean algebra. BT Level BTL -1 BTL -1 BTL -3 BTL -3 BTL -3 BTL -3 BTL -1 BTL -1 BTL -1 BTL -1 BTL -1 BTL -1	Competence Competence Remembering Remembering Applying Applying Applying Remembering Understanding Remembering Remembering Remembering Remembering Remembering Remembering Remembering		
Partial of lattices - Q.No. 1. 2. 3. 4. 5. 6 7. 8 9. 10 11.	rdering – Posets – Lattices as posets – Properties of lattices - Lat - Direct product and homomorphism – Some special lattices – Boo Question PART – A Define partial order relation Define POSET and give the example. Draw the Hasse diagram for $[S, /]$ where $S = \{1,2,3,4,5,7,8,12\}$ Draw the Hasse diagram for $[P(A), \subseteq]$ where $A = \{1,2,3\}$ Draw the Hasse diagram for $[D_{30},]$ where $D_{30} = \{1,2,3,5,6,10,15,30\}$ Define Least upper bound and Greatest lower bound. Define Lattice with example. Show that ($\{1,2,3,4,5\}, /$) is not a alattice. Define Distributive lattice Give an example of a lattice which is not distributive.	tices as algeb lean algebra. BT Level BTL -1 BTL -1 BTL -3 BTL -3 BTL -3 BTL -3 BTL -1 BTL -1 BTL -1 BTL -1 BTL -1 BTL -1 BTL -1 BTL -1	Competence Competence Remembering Remembering Applying Applying Applying Remembering Understanding Remembering Remembering Analyzing		
Partial of lattices - Q.No. 1. 2. 3. 4. 5. 6 7. 8 9. 10 11. 12.	rdering – Posets – Lattices as posets – Properties of lattices - Lat - Direct product and homomorphism – Some special lattices – Boo Question PART – A Define partial order relation Define POSET and give the example. Draw the Hasse diagram for $[S, /]$ where $S = \{1,2,3,4,5,7,8,12\}$ Draw the Hasse diagram for $[P(A), \subseteq]$ where $A = \{1,2,3\}$ Draw the Hasse diagram for $[D_{30},]$ where $D_{30} = \{1,2,3,5,6,10,15,30\}$ Define Least upper bound and Greatest lower bound. Define Lattice with example. Show that ($\{1,2,3,4,5\}, /$) is not a alattice. Define Distributive lattice Give an example of a lattice which is not distributive. Define Complemented Lattice.	tices as algeb lean algebra. BT Level BTL -1 BTL -1 BTL -3 BTL -3 BTL -3 BTL -3 BTL -3 BTL -1 BTL -1 BTL -1 BTL -1 BTL -1 BTL -4 BTL -1	Competence Competence Remembering Remembering Applying Applying Applying Remembering Understanding Remembering Remembering Analyzing Remembering		
Partial of lattices - Q.No. 1. 2. 3. 4. 5. 6 7. 8 9. 10 11. 12. 13.	rdering – Posets – Lattices as posets – Properties of lattices - Lat - Direct product and homomorphism – Some special lattices – Boo Question PART – A Define partial order relation Define POSET and give the example. Draw the Hasse diagram for $[S, /]$ where $S = \{1,2,3,4,5,7,8,12\}$ Draw the Hasse diagram for $[P(A), \subseteq]$ where $A = \{1,2,3\}$ Draw the Hasse diagram for $[D_{30},]$ where $D_{30} = \{1,2,3,5,6,10,15,30\}$ Define Least upper bound and Greatest lower bound. Define Lattice with example. Show that ($\{1,2,3,4,5\}, /$) is not a alattice. Define Distributive lattice Give an example of a lattice which is not distributive. Define Complemented Lattice.	tices as algeb lean algebra. BT Level BTL -1 BTL -1 BTL -3 BTL -3 BTL -3 BTL -3 BTL -3 BTL -1 BTL -1 BTL -1 BTL -1 BTL -1 BTL -1 BTL -1	Competence Competence Remembering Remembering Applying Applying Applying Remembering Understanding Remembering Remembering		
Partial of lattices - Q.No. 1. 2. 3. 4. 5. 6 7. 8 9. 10 11. 12. 13. 14.	rdering – Posets – Lattices as posets – Properties of lattices - Latt – Direct product and homomorphism – Some special lattices – Boo Question PART – A Define partial order relation Define POSET and give the example. Draw the Hasse diagram for $[S, /]$ where $S = \{1,2,3,4,5,7,8,12\}$ Draw the Hasse diagram for $[D_{30},]$ where $D_{30} = \{1,2,3,5,6,10,15,30\}$ Define Least upper bound and Greatest lower bound. Define Lattice with example. Show that ($\{1,2,3,4,5\}, /$) is not a alattice. Define Lattice Homomorphism Define Distributive lattice Give an example of a lattice which is not distributive. Define Complemented Lattice. Prove that every distributive lattice is Modular.	tices as algeb lean algebra. BT Level BTL -1 BTL -1 BTL -3 BTL -3 BTL -3 BTL -3 BTL -3 BTL -1 BTL -2	Competence Competence Remembering Remembering Applying Applying Applying Remembering Understanding Remembering Understanding Remembering Understanding Remembering Understanding		
Partial of lattices - Q.No. 1. 2. 3. 4. 5. 6 7. 8 9. 10 11. 12. 13. 14. 15.	rdering – Posets – Lattices as posets – Properties of lattices - Latt – Direct product and homomorphism – Some special lattices – Boo Question PART – A Define partial order relation Define POSET and give the example. Draw the Hasse diagram for $[S, /]$ where $S = \{1,2,3,4,5,7,8,12\}$ Draw the Hasse diagram for $[D_{30},]$ where $D_{30} = \{1,2,3,5,6,10,15,30\}$ Define Least upper bound and Greatest lower bound. Define Lattice with example. Show that ($\{1,2,3,4,5\}, /$) is not a alattice. Define Lattice Homomorphism Define Distributive lattice Give an example of a lattice which is not distributive. Define Complemented Lattice. Prove that every distributive lattice is Modular. State the reason to the statement "Every Chain is Modular".	tices as algeb lean algebra. BT Level BTL -1 BTL -1 BTL -3 BTL -3 BTL -3 BTL -3 BTL -3 BTL -1 BTL -2 BTL -1 BTL -2 BTL -4	Competence Competence Remembering Remembering Applying Applying Applying Remembering Understanding Remembering Remembering Remembering Remembering Understanding Remembering Remembering Understanding Remembering Analyzing Understanding Analyzing		

17.	Show that every bounded chain of order ≥ 3 is not complemented.	BTL -4	Analyzing
18.	Define Boolean Algebra	BTL -1	Remembering
19.	What is the 0 element and unity element of $[D_{30}, /]$.	BTL -4	Analyzing
	State the dual of $a \land (b \lor c) = (a \land b) \lor (a \land c)$	BTL -3	Applying
21.	Define Sub-lattice.	BTL -1	Remembering
22.	When is a lattice said to be bounded?	BTL -4	Analyzing
23.	Give an example of a distributive lattice but not complemented.	BTL -3	Applying
24.	Define Sub Boolean Algebra.	BTL -1	Remembering
25.	In there a Boolean algebra with five elements? Justify.	BTL -4	Analyzing
PART -	B		
1.(a)	Let N be set of all natural numbers. Prove that the relation R in N defined by $aRb \Leftrightarrow a \ divides \ b$ is a partial order relation.	BTL -3	Applying
1. (b)	$(i) = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 4 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 4 \\ 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 4 \end{bmatrix} $	BTL -3	Applying
2.	and Associative property of lattice.	BTL -5	Evaluating
3. (a)	Let (L,\leq) be a Lattice, then prove that for $a, b \in L$, $a \leq b \Leftrightarrow a \land b = a \Leftrightarrow a \lor b = b$.	BTL -5	Evaluating
3.(b)	Prove that in a Boolean Algebra $(a \cup b)' = a' \wedge b'$ and $(a \wedge b)' = a' \vee b'$	BTL -3	Applying
4. (a)	Let (L,\leq) be a Lattice, for $a, b \in L$ then prove that $a \land (b \lor c) \ge (a \land b) \lor (a \land c)$ and $a \lor (b \land c) \le (a \lor b) \land (a \lor c)$	BTL -3	Applying
4.(b)	In a complemented and distributive lattice, then prove that complement of each element is unique.	BTL -3	Applying
5.	Show that in a complemented distributive lattice, $a \le b \Leftrightarrow a * b' = 0 \Leftrightarrow a' \oplus b = 1 \Leftrightarrow b' \le a'$	BTL -3	Applying
6.(a)	Prove that the cancellation property: Let (L,\leq) be a Lattice, for $a, b \in L$ then $a \lor b = a \lor c \& a \land b = a \land c \Rightarrow b = c$ $\forall a, b, c \in L$	BTL -3	Applying
6.(b)	If a and b are two elements of a Boolean Algebra, prove that $a + (a, b) = a$; $a \cdot (a + b) = a$	BTL -3	Applying
7.	Draw the Hass diagram of $D_{42} = \{1,2,3,6,7,14,21,42\}$ and Prove that it is a complemented lattice by finding the	BTL -1	Remembering

	complements of all the elements.		
8. (a)	Show that a chain is a lattice. Let (L, \leq) be a Lattice, for $a, b, c \in L$ then $a \leq c \Rightarrow a \lor (b \land c) \leq (a \lor b) \land c$ (or) $a \oplus (b \ast c) \leq (a \oplus b) \ast c$	BTL -4	Analyzing
8.(b)	In a Boolean Algebra. Show that $(a + b')(b + c')(c + a') = (a + b')(b + c')(c + a') = (a' + b)(b' + c)(c' + a)$	BTL -3	Applying
9.	Prove that $\{S_{110}, \}$ is a Boolean Algebra and find all its sub algebras. Find also the number of sub lattices with 4 elements.	BTL -5	Evaluating
10.(a)	Prove that every chain is a distributive lattice.	BTL -6	Creating
10.(b)	In a Boolean Algebra, prove that $(a + b)' = a' \cdot b' \otimes (a \cdot b)' = a' + b'$	BTL -3	Applying
11.	In a Boolean Algebra, show that the following statements are equivalent. For any a, b (i) $a + b = b$ (ii) $a. b = a$ (iii) $a' + b = 1$ (iv) $a. b' = 0$ (v) $a \le b$	BTL -4	Analyzing
12.(a)	Show that in a Boolean Algebra, for any <i>a</i> and <i>b</i> , $a = b$ iff $(a \wedge b') \vee (a' \wedge b) = 0$ or $a = b$ iff $a \cdot b' + a' \cdot b = 0$.	BTL -3	Applying
12.(b)	Prove that $D_{42} \equiv \{S_{42}, D\}$ is a complemented Lattice by finding complements of all the elements.	BTL -3	Applying
13.	Let $D_{30} = \{1, 2, 3, 5, 6, 10, 15, 30\}$ and let the relation R be divisor on D_{30} . Find 1. Draw the Hasse Diagram. 2. All lower bounds of 10 and 15. 3. the GLB of 10 and 15 4. all upper bounds of 10 and 15 5. LUB of 10 and 15. 6. All the sublattice which contains 4 elements.	BTL -4	Analyzing
14.(a)	In a Boolean Algebra, for any a, b Show that $(a \land b) \lor (a \land b') = a$ and $b \land (a \lor (a' \land (b \lor b'))) = b$	BTL -3	Applying
14.(b)	Find all the sub lattices of $[P(S), \subseteq]$ where $S = \{p, q, r\}$	BTL -3	Applying
15.	In a Boolean Algebra. Show that (a + b')(b + c')(c + a') = (a' + b)(b' + c)(c' + a)	BTL -4	Analyzing
16.(a)	Prove that in a Boolean Algebra, $a = 0$ iff $a \cdot b' + a' \cdot b = b$.	BTL -4	Analyzing
16.(b)	Show that in any Boolean Algebra, $(x + y)(x' + z) = xz + x'y$	BTL -3	Applying
17.	Let $D_{24} = \{1, 2, 3, 4, 6, 8, 12, 24\}$ and let the relation R be divisor on D_{24} . Find 1. Draw the Hasse Diagram. 2. All lower bounds of 8 and 12. 3. the GLB of 8 and 12 4. all upper bounds of 8 and 12 5. LUB of 8 and 12. 6. All the sublattice which contains 5 elements.	BTL -4	Analyzing
18. (a)	In a Boolean Algebra, for any a,b,c Show that (i) $(a \land b \land c) \lor (b \land c) = b \land c$ (ii) $((a \lor c) \land (b' \land c))' = (a' \lor b) \land c'$	BTL -3	Applying
18.(b)	Find all the sub lattices of the lattice (S_{12}, D)	BTL -3	Applying

1.	Let $D_{100} \equiv \{1, 2, 4, 5, 10, 20, 25, 50, 100\}$ be the divisors of 100 and let the relation \leq be the relation $a \leq b$ if $a \mid b$, then $(D_{100} \mid)$ is a poset. Determine (i) GLB $\{10, 20\}$, (ii) LUB $\{10, 20\}$, (iii) GLB $\{5, 10, 20, 25\}$, (iv) LUB $\{5, 10, 20, 25\}$	BTL -4	Analyzing
2.	Consider the lattice D_{105} with the partial ordered relation divides then 1. Draw the Hasse diagram of D_{105} 2. Find the complement of each element of D_{105} 3. Find the set of atoms of D_{105} 4. Find the number of sub algebras of D_{105}	BTL -4	Analyzing
3.	If S_n is the set of all divisors of the positive integer n and D is the relation of 'division', prove that $\{S_{30}, D\}$ is a lattice. Find also all the sub lattices of $\{S_{30}, D\}$ that contain six or more elements.	BTL -2	Understanding
4.	If $a, b \in S$, $S = \{1, 2, 3, 6\}$ and $a + b = LCM(a, b)$, $a.b = GCD(a, b)$ and $a' = \frac{6}{a}$, show that $\{S, +, \cdot, ', 1, 6\}$ is a Boolean Algebra.	BTL -2	Understanding
5.	Prove that algebraically (i) $ab' + bc' + ca' = a'b + b'c + c'a$ (ii) $(a + b)$. $(b + c)$. $(c + a) = a.c + b.c + a.b$ (iii) $ab + abc + a'b + ab'c = b + ac$	BTL -3	Applying

