SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) S.R.M.Nagar, Kattankulathur, 603203

DEPARTMENT OF MATHEMATICS

QUESTION BANK

V SEMESTER

B. E- CYBER SECURITY

1918501- MATHEMATICAL FOUNDATION FOR CYBER SECURITY SYSTEM

Regulation – 2019

Academic Year – 2022 - 2023

Prepared by

Dr. T.ISAIYARASI, Assistant Professor / Mathematics

SRM VALLIAMMAI ENGNIEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603203.

DEPARTMENT OF MATHEMATICS

SUBJECT: 1918501- Mathematical Foundation for Cyber Security System SEM / YEAR: V / III Year B.E. CYBER SECURITY

Algeora	ouse the second se		Compotones
Q.No.	Question PART – A	BI Level	Competence
1.	Define group and State any two properties of a group	BTL -1	Remembering
2.	Define a cyclic group and give an example	BTL -1	Remembering
3.	Define cosets of a group	BTL -1	Remembering
4.	Prove that identity element in a group is unique	BTL -2	Understanding
5.	Prove that the inverse of each element of the group (G,*) is unique	BTL -3	Applying
6	Let Z be a group of integers with binary operation * defined by $a * b = a + b - 2$ for all $a, b \in Z$. Find the identity element of the group $\langle Z, * \rangle$	BTL -3	Applying
7.	In a group $(G,*)$, prove that $(a*b)^{-1} = b^{-1}*a^{-1}$ for all $a, b \in G$	BTL -2	Understanding
8	Show that the cancellation laws are true in a group (G,*)	BTL -2	Understanding
9.	Prove that every cyclic group is abelian	BTL -3	Applying
10	If (<i>G</i> ,*) is a group for any $a \in G$ prove that $(a^{-1})^{-1} = a$	BTL -2	Understanding
11.	If $(G,*)$ is a group infer that the only idempotent element of a is the identity element	BTL -4	Analyzing
12.	Show that $(Z_5, +_5)$ is a cyclic group	BTL -3	Applying
13.	Prove that the order of an element <i>a</i> of a group <i>G</i> is the same as that of its inverse (a^{-1})	BTL -4	Analyzing
14.	Prove that if <i>G</i> is abelian group then for all $a, b \in G$, $(a * b)^2 = a^2 * b^2$	BTL -2	Understanding
15.	If <i>a</i> is a generator of a cyclic group <i>G</i> , then show that a^{-1} is also a generator of <i>G</i>	BTL -4	Analyzing
16.	State Lagrange's theorem	BTL -1	Remembering
17.	Find the left cosets of $\{[0], [3]\}$ in the addition modulo group $(Z_6, +_6)$	BTL -4	Analyzing
18.	If G is a group of order n and $a \in G$, prove that $a^n = e$	BTL -2	Understanding
19.	Give an example of a ring which is not a field	BTL -4	Analyzing
20.	Discuss a ring and give an example	BTL -3	Applying
21.	Discuss a sub ring with example	BTL -2	Understanding
22.	Define integral domain and give an example.	BTL -4	Analyzing
23.	Define a field with example	BTL -1	Remembering
24.	Define conjugacy search problem in a group	BTL -1	Remembering
25.	Define discrete logarithm problem in a group	BTL-1	Remembering
	PART – B		

1.	Prove that $G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$ forms an abelian group under matrix multiplication	BTL -3	Applying
2. (a)	Prove that in a group G the equations a * x = b and $y * a = b$ have unique solutions for the unknowns x and y as $x = a^{-1} * b$, $y = b * a^{-1}$ when $a, b \in G$	BTL -2	Understanding
2.(b)	Evaluate that the set of all matrices $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ forms an abelian group with respect to matrix multiplication	BTL -5	Evaluating
3.	Apply the definition of a group to Prove that $(G,*)$ is a non-abelian group where $G = R^* \times R$ and the binary operation * is defined as $(a,b) * (c,d) = (ac,bc+d)$	BTL -3	Applying
4. (a)	If $(G,*)$ is an abelian group and if $\forall a, b \in G$. Show that $(a * b)^n = a^n * b^n$, for every integer n	BTL -3	Applying
4.(b)	Show that $(Q^+, *)$ is an abelian group where $*$ is defined as $a * b = ab/2, \forall a, b \in Q^+$	BTL -3	Applying
5.	Show that the union of two subgroups of a group G is again a subgroup of G if and only if one is contained in the other	BTL -3	Applying
6.(a)	Prove that the intersection of two subgroups of a group G is again a subgroup of G	BTL-3	Applying
6.(b)	Prove that the set $\{1, -1, i, -i\}$ is a finite abelian group with respect to the multiplication of complex numbers	BTL-3	Applying
7.	If (G, *) is a finite cyclic group generated by ab element $a \in G$ and is of order n then $a^n = e$ so that $G = \{a, a^2,, a^n (= e)\}$. Also, n is the least positive integer for which $a^n = e$	BTL -1	Remembering
8. (a)	Prove that the necessary and sufficient condition for a non-empty subset Hof a group (G_{1*}) to be a subgroup is $a, b \in H \Rightarrow a * b^{-1} \in H$	BTL -4	Analyzing
8.(b)	Prove that every subgroup of a cyclic group is cyclic.	BTL-3	Applying
9.	Show that group homomorphism preserves identity, inverse, and subgroup	BTL -5	Evaluating
10. (a)	Let G be a group and $a \in G$. Let $f: G \to G$ be given by $f(x) = axa^{-1}, \forall x \in G$. Prove that f is an isomorphism of G onto G	BTL -6	Creating
10.(b)	Show that the group ($\{1, 2, 3, 4\}, X_5$) is cyclic	BTL-3	Applying
11.	Analyze that Z_n is a field if and only if n is prime	BTL -4	Analyzing
12.(a)	Let $f: G, *$ $\rightarrow (H, \Delta)$ be group homomorphism then show that $Ker(f)$ is a normal subgroup	BTL-3	Applying
12.(b)	Show that M_2 , the set of all 2X2 nonsingular matrices over R is a group under usual matrix multiplication. Is it abelian?	BTL -3	Applying
13.	 Prove that in a Ring (R,+,.) (a) The zero element is unique (b) The additive inverse of each ring element is unique (c) If R has a unity then it is unique (d) If R has a unity, x is a unit of R then the multiplicative inverse of x is unique 	BTL -4	Analyzing
14.(a)	If G is a group of prime order, then G has no proper subgroups	BTL-3	Applying
14.(b)	Determine whether $H_1 = \{0, 5, 10\}$ and $H_2 = \{0, 4, 8, 12\}$ are subgroups of Z_{15}	BTL -3	Applying
15.	Prove that every field is an integral domain and every finite integral	BTL-4	Analyzing

	domain is a field. Give an example for an integral domain which is		
	nor a field		
16.(a)	Define a cyclic group. Prove that any group of prime order is cyclic	BTL-4	Analyzing
16.(b)	Find the left cosets of the subgroup $H = \{[0], [3]\}$ of the group $[\mathbb{Z}_6, +_6]$	BTL -3	Applying
17.	Analyze whether (Z, \oplus, \odot) is a ring with the binary operation $x \oplus y = x + y - 1, x \odot y = x + y - xy$ for all $x, y \in Z$	BTL -4	Analyzing
18. (a)	Let (H, \cdot) be a subgroup of (G, \cdot) . Let $N = \{x \mid x \in G, xHx^{-1} = H\}$. Show that (N, \cdot) is a subgroup of G .	BTL -3	Applying
18.(b)	Show that $(Z_{5,+5}, \cdot_5)$ is a field	BTL-3	Applying
	PART – C		
1.	Prove that every finite group of order n is isomorphic to a permutation group of degree n	BTL -4	Analyzing
2.	Discuss and show that the order of a subgroup of a finite group divides the order of the group	BTL -4	Analyzing
3.	Determine whether (Q, \oplus, \odot) is a ring with the binary operations $x \oplus y = x + y + 7, x \odot y = x + y + \frac{xy}{7}$ for all $x, y \in Q$	BTL -2	Understanding
4.	Prove that the set $Z_4 = \{0,1,2,3\}$ is a commutative ring with respct of the binary operation $+_4$ and \times_4	BTL -2	Understanding
5.	Discuss the application of discrete logarithm problem in Diffie- Hellman key exchange	BTL -3	Applying

UNIT II - FINITE FIELDS AND POLYNOMIALS

Rings – Polynomial rings – Irreducible polynomials over finite fields – Factorization of polynomials over finite fields

Q.No.	Qu <mark>estion</mark>	BT Level	Competence	
PART – A				
1.	Define polynomial	BTL -1	Remembering	
2.	Define root of a polynomial	BTL -1	Remembering	
3.	Find the roots for the function $f(x) = x^2 + 3x + 2 \in \mathbb{Z}_6[x]$	BTL -1	Remembering	
4.	What are the roots of $f(x) = x^2 - 6x + 9 \in \mathbb{R}[x]$	BTL -2	Understanding	
5.	Find the roots for the function $f(x) = x^2 - 2$ in $R[x]$ and $Q[x]$	BTL -3	Applying	
6	How many polynomials in \mathbb{Z}_5 has degree 3?	BTL -3	Applying	
7.	How many polynomials in \mathbb{Z}_7 has degree 5?	BTL -2	Understanding	
8	If $f(x) = 7x^4 + 4x^3 + 3x^2 + x + 4 \& g(x) = 3x^3 + 5x^2 + 6x + 1, f(x), g(x) \in Z_7[x]$, then find $f(x) + g(x) \& \deg(f(x) + g(x))$	BTL -2	Understanding	
9.	Determine all polynomials of degree 2 in $\mathbb{Z}_2[x]$	BTL -3	Applying	
10	Define irreducible polynomial	BTL -2	Understanding	
11.	Determine whether $x^2 + 1$ is an irreducible polynomial over the field $\{0,1\}$	BTL -4	Analyzing	
12.	Show that $x^2 + x + 1$ is irreducible over Z_5	BTL -3	Applying	
13.	Show that $x^2 + 1$ is irreducible in $\mathbb{Z}_3[x]$	BTL -4	Analyzing	
14.	Obtain reducible polynomial of degree six with no roots in \mathbb{Z}_2	BTL -2	Understanding	
15.	Does the set $F = \{0,1,2,3\}$ form a filed with respect to addition modulo 4 and multiplication modulo 4? Why?	BTL -4	Analyzing	

16	If $f(x) = x^5 - 2x^2 + 5x - 3$ and $g(x) = x^4 - 5x^3 + 7x$ are	BTI -1	Remembering
10.	f(x) = q(x)q(x) + r(x)	DIL-I	Kennennbernig
	Find quotient and reminder when $g(x) = 2x-1$ divides		
17.	$f(x) = 2x^4 + 5x^3 - 7x^2 + 4x + 8$, where f(x) and g(x) are	BTL -4	Analyzing
	polynomials over Q[x]		
18	What is the remainder when $f(x) = x^7 - 6x^5 + 4x^4 - x^2 + $	BTL-2	Understanding
10.	$3x - 7 \in \mathbb{Q}[x]$ is divided by $x - 2$.	DIL 2	Chiderstanding
<u>19.</u>	State division algorithm for polynomials.	BTL -4	Analyzing
20.	State Remainder theorem.	BTL -3	Applying
21.	Define characteristics of a field.	BTL -2	Understanding
22.	State Euclidean algorithm. Find two non-non-nolwromiolo $f(u)$ and $g(u)$ in \overline{Z} [u] such	BIL-4	Analyzing
23.	Find two non-zero polynomials $f(x)$ and $g(x)$ in $Z_6[x]$ such that $f(x) g(x) = 0$	BTL -3	Applying
	that $f(x)g(x) = 0$ Check the reducibility of $f(x) = x^2 + 3x - 1$ in O[x]. P[x]		
24.	and $C[x]$	BTL -2	Understanding
25.	Check the reducibility of $f(x) = x^3 - 1$ in Q[x], R[x] and C[x]	BTL -4	Analyzing
	PART – B		
	Let $\mathbb{R}[x]$ be a polynomial ring, then Prove the following		
-	(a) If \mathbb{R} is commutative then $\mathbb{R}[x]$ is commutative.		
1.	(b) If \mathbb{R} is a ring with unity then $\mathbb{R}[x]$ is a ring with unity.	BIL-3	Applying
	(c) $\mathbb{K}[x]$ is an integral domain if and only if \mathbb{K} is an integral domain		
	Find $f(x) + a(x)$, $f(x) - a(x)$ and $f(x) - a(x)$ such that		
2.(a)	$f(x) = x^4 + x^3 + x + 1$, $g(x) = x^3 + x^2 + x + 1$ over	BTL -5	Evaluating
	$\mathbb{Z}_2[x]$		_ · · · · · · · · · · · · · · g
2.(b)	Find all the roots of $f(x) = x^5 - x$ in $\mathbb{Z}_5[x]$ and then write	BTL -5	Evaluating
	f(x) as a product of first degree polynomials	_	6
3.	If \mathbb{R} is a ring then prove that $(\mathbb{R}[x], +, .)$ is a ring called a	BTL-3	Applying
	polynomial ring over \mathbb{K}		
	is an integral domain iff for all $f(x)$ $a(x) \in \mathbb{R}[x]$ if neither		
4. (a)	f(x) nor $q(x)$ is the zero polynomial, then prove that	BTL -3	Applying
	degree of $f(x)g(x) = degreef(x) + degreeg(x)$		
4 (b)	Find the remainder when $g(x) = 7x^3 - 2x^2 + 5x - 2$ is		Applying
4. (D)	divided by $f(x) = x - 3$ and $f(x), g(x) \in \mathbb{Z}[x]$	DIL-3	Apprying
5.	State and Prove (i) Remainder Theorem (ii) Factor theorem	BTL -3	Applying
6. (a)	Find all roots of $f(x) = x^2 + 4x$ if $f(x) \in Z_{12}$.	BTL -3	Applying
6.(b)	If $g(x) = x^5 - 2x^2 + 5x - 3 \& f(x) = x^4 - 5x^3 + 7x$ Find $g(x) = x(x)$ such that $g(x) = f(x)g(x) + x(x)$	BTL -3	Applying
	Find $q(x)$, $f(x)$ such that $g(x) = f(x)q(x) + f(x)$. (i) Check whether $f(x) = x^4 + x^3 + x^2 + x + 1 \in \mathbb{Z}$ [x] is		
7.	(i) Check when $f(x) = x + x + x + x + 1 \in \mathbb{Z}_2[x]$ is irreducible or not?	BTL-1	Remembering
	(ii) Discuss whether $x^4 + x^3 + 1$ is reducible over Z_2		itemenieering
0 (.)	If F is a field and $f(x) \in F[x]$ has degree ≥ 1 , then prove that		A
ð.(a)	f(x) has at most n roots in F	БIL -4	Analyzing
	If $(x) = 3x^5 - 8x^4 + x^3 - x^2 + 4x - 7$, $g(x) = x + 9$ and ,		
8.(b)	$f(x), g(x) \in \mathbb{Z}_{11}[x]$ find the remainder when $f(x)$ is divided	BTL -3	Applying
	by $g(x)$		

	(i) Determine whether the given polynomial is irreducible or		
9.	not? $f(x) = x^2 + x + 1$ over Z_3, Z_5, Z_7	BTL -5	Evaluating
	(ii) Find four distinct linear polynomials $g(x)$, $h(x)$, $s(x)$,	_	6
	$t(x) \in Z_{12}[x]$ so that $f(x) = g(x)h(x) = s(x)t(x)$.		
10 (9)	bas degree 8 and degree 6, it is reducible but it has no real	BTL-6	Creating
10.(<i>a</i>)	roots	DIL-0	Creating
10.(b)	Discuss whether $x^4 - 2$ is reducible over \mathbb{Q} , \mathbb{R} , \mathbb{C}	BTL -3	Applying
11	Let $(F, +, \cdot)$ be a field. If Char $(F) > 0$, then prove that		Analyzina
11.	Char (F) must be Prime	BIL -4	Analyzing
12 (9)	Check whether $f(x) = x^4 + x^3 + x^2 + x + 1 \in Z_2[x]$ is	BTI -3	Applying
12.(a)	irreducible or not?	DIL 5	rippiying
12.(b)	Find four distinct linear polynomials $g(x)$, $h(x)$, $s(x)$, $t(x) \in$	BTL -3	Applying
	$Z_{12}[x]$ so that $f(x) = g(x)h(x) = s(x)t(x)$		11 9 0
13.	Identify the equivalence classes of $Z_2[x]$ with $S(x) = x^2 + x + 1$	BTL -4	Analyzing
	S(x) = x + x + 1 Write $f(x) = (2x^2 + 1)(5x^3 - 5x + 3)(4x - 3) \in \mathbb{Z}_{-}[x]$ as a		
14.(a)	product of the unit and three Monic polynomial	BTL -3	Applying
14 (b)	Determine whether the following polynomial is irreducible or	DTI 2	Applying
14.(D)	not? $f(x) = x^2 + 3x - 1$ in $\mathbb{R}[x]$, $\mathbb{Q}[x]$, $\mathbb{C}[x]$	DIL-3	Applying
15.	Determine whether the given polynomial is irreducible or not?	BTL-4	Analyzing
101	$f(x) = x^3 + 3x + 2$ over Z_3, Z_5, Z_7	DIL	Thuryzing
16.(a)	If $f(x) = 4x^2 + 1$, $g(x) = 2x + 3$, $f(x)$, $g(x) \in Z_8[x]$.	BTL -4	Analyzing
	Then show that deg $f(x)g(x) = deg f(x) + deg g(x)$. If $f(x) = 2x^4 + 5x^2 + 2$, $g(x) = 6x^2 + 4$, then determine		
16.(b)	$a(x)$ and $r(x)$ in $\mathbb{Z}_{-}[x]$ where $f(x)$ is divided by $a(x)$	BTL -3	Applying
	Analyze the GCD of (i) $4x^3 - 2x^2 - 3x + 1$ and $2x^2 - x - 2$		
17.	in Q[x] (ii) $x^5 + x^4 + 2x^2 - x - 1$ and $x^3 + x^2 - x$ in Q[x]	BTL -4	Analyzing
18 (a)	Find the remainder when $g(x) = 6x^4 + 4x^3 + 5x^2 + 3x + 1$ is	BTI 3	Applying
10.(a)	divided by $f(x) = 3x^2 + 4x + 2$ over polynomials in $\mathbb{Z}_7[x]$	BIL-3	Apprying
18.(b)	Find the g.c.d of $x^4 + x^3 + 2x^2 + x + 1$ and $x^3 - 1$ over Q.	BTL -3	Applying
	$\frac{PART - C}{C}$		
1.	Prove that a finite field F has order p^{t} , where p is a prime and	BTL -4	Analyzing
2	$t \in Z^{-}$ Infer the equivalence classes of \overline{Z} [x] with $S(x) = x^3 + x + 1$	BTI 1	Analyzing
<u>2</u> . 3	Obtain the equivalence classes of $Z_2[x]$ with $S(x) = x^2 + x + 1$	BTL -4 BTL -2	Understanding
<u> </u>	Show that $Z_2[x]/x^3 + x + 1$ forms a field	BTL -2	Understanding
5.	Show that $Z_2[x]/x^3 + x^2 + 1$ forms a field	BTL -3	Applying
UNIT II	I - ANALYTIC NUMBER THEORY	_	<u> </u>
Division	algorithm – Base – b representations – Number patterns – Prime a	and composite	e numbers – GCD –
Euclidea	an algorithm – Fundamental theorem of arithmetic – LCM		
Q.No.	Question	BT Level	Competence
	$\mathbf{PART} - \mathbf{A}$		
1.	State divisible algorithm	BIL-I	Remembering
2.	State pigeon hole principle	BIL -1	Remembering
3.	State principle of inclusion and exclusion	BIL-I	Remembering
	$\Gamma_{\rm D}$ is a number of positive integers < 20.76 that are divisible		

5	Find the number of positive integers \leq 3076 that are not	DTI 2	Applying
5.	divisible by 17	DIL-3	Apprying
6	Find the number of positive integers \leq 3076 that are divisible by 19	BTL -3	Applying
7.	Prove that if n is odd then $n^2 - 1$ is divisible by 8	BTL -2	Understanding
8	Express $(10110)_2$ in base 10 and express $(1076)_{10}$ in base two	BTL -2	Understanding
9.	Express $(1776)_8$ in base 10 and express $(676)_{10}$ as octagonal	BTL -3	Applying
10	Express $(1976)_{16}$ in base 10 and express $(2076)_{10}$ as hexadecimal	BTL -2	Understanding
11.	Find the six consecutive integers that are composite	BTL -4	Analyzing
12.	Express (12,15,21) as a linear combination of 12,15,and 21	BTL -3	Applying
13.	Prove that the product of any two integers of the form 4n+1 is also the same form	BTL -4	Analyzing
14.	Use canonical decomposition to Evaluate the GCD of 168 and 180	BTL -2	Understanding
15.	Use canonical decomposition to evaluate LCM of 1050 and 2574	BTL -4	Analyzing
16.	Find the canonical decomposition of 2520	BTL-1	Remembering
17.	Find the prime factorization of 420, 135, 1925	BTL -4	Analyzing
18.	Using (252,360) construct [252,360]	BTL -2	Understanding
19.	Using recursion evaluate [24,28,36,40]	BTL -4	Analyzing
20.	Using recursion evaluate (18,30,60,75,132)	BTL -3	Applying
21.	Find the GCD (414,662) using Euclidean algorithm	BTL -2	Understanding
22.	Find the LCM (120.500)	BTL -4	Analyzing
23.	Find the canonical decomposition of 1976	BTL -3	Applying
24.	108 Use canonical decomposition to Evaluate the GCD of 72 and	BTL -2	Understanding
25.	Use canonical decomposition to Evaluate the LCM of 110 and 210	BTL -4	Analyzing
	PART – B		
1.	If $a, b, c \in Z$ then (i) a/a , for all $a \neq 0 \in Z$ (ii) a/b and b/c then a/c , $\forall a, b \neq 0, c \neq 0 \in Z$ (iii) a/b then a/bc , $\forall a \neq 0, b \in Z$ (iv) a/b and a/c then $a/(xb + yc)$, $\forall x, y \in Z, a \neq 0 \in Z$	BTL -3	Applying
2.(a)	State and Prove Euclidean algorithm	BTL -5	Evaluating
2.(b)	Find the number of positive integers ≤ 3000 divisible by 3, 5 or 7	BTL -5	Evaluating
3.	Prove that (i) If p is a prime and p/ab then p/a or p/b (ii) If p is a prime and $p/a_1a_2a_3\cdots a_n$, where $a_{1,}a_{2,}a_{3,}\cdots,a_n$ are positive integers then p/a_i for some i, $1 \le i \le n$	BTL -3	Applying
4. (a)	Prove that the GCD of two positive integers a and b is a linear combination of a and b	BTL -3	Applying
4.(b)	Find the number of positive integers in the range 1976 through 3776 that are divisible by 13 and not divisible by 17	BTL -3	Applying
5. (a)	Prove that (i) Every integer $n \ge 2$ has a prime factor.	BTL-3	Applying
5. (b)	Find the number of integers from 1 to 250 that are divisible by any of the integers 2,3,5,7		

6. (a)	Prove that there are infinitely many primes.	BTL -3	Applying
6.(b)	Prove that $(a, a - b) = 1$ if and only if $(a, b) = 1$	BTL -3	Applying
7.	State and prove Fundamental Theorem of Arithmetic.	BTL -1	Remembering
8. (a)	Evaluate (625,1000) by using canonical decomposition	BTL -4	Analyzing
8.(b)	Use Euclidean algorithm to find the GCD of (1819, 3587). Also express the GCD as a linear combination of the given numbers	BTL -3	Applying
9.	State and Prove Euclid theorem	BTL -5	Evaluating
10.(a)	Prove that there are infinitely many primes of the form $4n + 3$	BTL -6	Creating
10.(b)	Use Euclidean algorithm to find the GCD of (12345,54321). Also express the GCD as a linear combination of the given numbers	BTL -3	Applying
11.(a)	If a and b are positive integers then prove that (i) $[a, b] = \frac{a.b}{(a,b)}$	BTL -4	Analyzing
11.(b)	Use Euclidean algorithm to find the GCD of (2076, 1776). Also express the GCD as a linear combination of the given numbers	BTL -3	Applying
12.(a)	Prove that every composite number n has prime factor $\leq \sqrt{n}$	BTL -3	Applying
12.(b)	Prove that two positive integers a and b are relatively prime iff [a,b]= ab	BTL -3	Applying
13.	Use Euclidean algorithm to evaluate the GCD of (2024, 1024). Also express the GCD as a linear combination of the given numbers	BTL -4	Analyzing
14.(a)	Prove that for every positive integer <i>n</i> there are <i>n</i> consecutive integers that are composite numbers	BTL -3	Applying
14.(b)	Use Euclidean algorithm to find the GCD of (4076, 1024). Also express the GCD as a linear combination of the given numbers	BTL -3	Applying
15.	(i) If $d = (a, b)$ and d' is any common divisor of a and b then d'/d (ii) For any positive integer m prove that $(ma, mb) = m(a, b)$ (iii) If $d = (a, b)$, then $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$	BTL -4	Analyzing
16. (a)	Construct the canonical decomposition of 23!	BTL -4	Analyzing
16.(b)	Use Euclidean algorithm to find the GCD of (3076, 1976). Also express the GCD as a linear combination of the given numbers	BTL -3	Applying
17.	If $d = (a, b)$ then $(i)(a, a - b) = d$ (ii)For any integer x then $(a, b) = (a, b + ax)$	BTL -4	Analyzing
18. (a)	Construct the canonical decomposition of 23!	BTL -3	Applying
18.(b)	Use Euclidean algorithm to find the GCD of (3076, 1976). Also express the GCD as a linear combination of the given numbers	BTL -3	Applying
	PART – C		
1.	Prove the following If (i)(a, m) = 1 and (a, m) = 1, then (ab, m) = 1 (ii)If a/c and b/c and (a, b) = 1, then ab/c	BTL -4	Analyzing
2.	A total of 1232 students have taken a course in Spanish, 879 have taken a course in French and 114 have taken a course in Russian. Further 103 have taken courses in both Spanish and French, 23 have taken courses in both Spanish and Russian and 14 have taken courses in both French and Russian. If 2092	BTL -4	Analyzing

	students have taken at least one Spanish, French and Russian,		
	how students have taken a course in all three languages?		
	There are 250 students in an Engineering college, of the 188		
	have taken a course in Fortran, 100 have taken a course in C		
	and 35 have taken a course in Java. Further 88 have taken		
3.	courses in both Fortran and C, 23 have taken courses in both C	BTL -2	Understanding
0.	and Java and 29 have taken courses in both Fortran and Java.		0 110013001101118
	If 19 of of these students have taken all the three course, how		
	many of these 250 students have not taken a course in any of		
	these three programming languages?		
4. (a)	Prove that in a group of six people at least three must be mutual	BTL -2	Understanding
	friends or at least three must be mutual strangers		0.110013001101118
	If we select ten points in the interior of an equilateral triangle of		
4.(b)	side 1, show that there must be at least two points whose	BTL -3	Applying
	distance apart less than 1/3		
	Apply Euclidean algorithm find the GCD of		
	(i)2024,1024		
5.	(ii)4076,2076	BTL -3	Applying
	Also express the GCD as a linear combination of the given		
	numbers		
UNIT I	V - DIOPHANTINE EQUATIONS AND CONGRUENCES		
Linear I	Diophantine equations – Congruence's – Linear Congruence's – Ap	plications: D	ivisibility tests –
Modula	r exponentiation–Chinese remainder theorem – 2 X2 linear system		
O.No.	Question	BT Level	Competence
			1
	PART – A		• -
1.	PART – A Define linear Diophantine Equation in two variables	BTL -1	Remembering
1. 2.	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvable	BTL -1 BTL -1	Remembering Remembering
1. 2. 3.	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $12x+18y=30$ is solvable	BTL -1 BTL -1 BTL -1	Remembering Remembering Remembering
1. 2. 3. 4.	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $12x+18y=30$ is solvableIs $6x+12y+15z=10$ solvable?	BTL -1 BTL -1 BTL -1 BTL -2	Remembering Remembering Remembering Understanding
1. 2. 3. 4. 5.	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $12x+18y=30$ is solvableIs $6x+12y+15z=10$ solvable?Prove that $9^{100} - 1$ is divisible by 10	BTL -1 BTL -1 BTL -1 BTL -2 BTL -3	Remembering Remembering Remembering Understanding Applying
1. 2. 3. 4. 5.	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $12x+18y=30$ is solvableIs $6x+12y+15z=10$ solvable?Prove that $9^{100} - 1$ is divisible by 10Prove that $a \equiv b (mod \ m)$ if and only if	BTL -1 BTL -1 BTL -1 BTL -2 BTL -3 BTL -3	Remembering Remembering Understanding Applying
1. 2. 3. 4. 5. 6	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $12x+18y=30$ is solvableIs $6x+12y+15z=10$ solvable?Prove that $9^{100} - 1$ is divisible by 10Prove that $a \equiv b \pmod{m}$ if and only if $a = b + km$ for some integer k	BTL -1 BTL -1 BTL -1 BTL -2 BTL -3 BTL -3	Remembering Remembering Remembering Understanding Applying Applying
1. 2. 3. 4. 5. 6 7.	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $12x+18y=30$ is solvableIs $6x+12y+15z=10$ solvable?Prove that $9^{100} - 1$ is divisible by 10Prove that $a \equiv b(mod \ m)$ if and only if $a = b + km$ for some integer kFind the least residue of 23 modulo 5, -3 modulo 5.	BTL -1 BTL -1 BTL -1 BTL -2 BTL -3 BTL -3 BTL -3 BTL -2	Remembering Remembering Remembering Understanding Applying Applying Understanding
1. 2. 3. 4. 5. 6 7. 8	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $12x+18y=30$ is solvableIs $6x+12y+15z=10$ solvable?Prove that $9^{100} - 1$ is divisible by 10Prove that $9^{100} - 1$ is divisible by 10Prove that $a \equiv b(mod m)$ if and only if $a = b + km$ for some integer kFind the least residue of 23 modulo 5, -3 modulo 5.Define complete sets of residues modulo m.	BTL -1 BTL -1 BTL -1 BTL -2 BTL -2 BTL -3 BTL -3 BTL -2 BTL -2	Remembering Remembering Remembering Understanding Applying Applying Understanding Understanding
1. 2. 3. 4. 5. 6 7. 8 9.	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $12x+18y=30$ is solvableIs $6x+12y+15z=10$ solvable?Prove that $9^{100} - 1$ is divisible by 10Prove that $a \equiv b(mod m)$ if and only if $a = b + km$ for some integer kFind the least residue of 23 modulo 5, -3 modulo 5.Define complete sets of residues modulo m.Find the Congruence classes modulo 5.	BTL -1 BTL -1 BTL -1 BTL -2 BTL -2 BTL -3 BTL -3 BTL -2 BTL -2 BTL -2 BTL -3	Remembering Remembering Remembering Understanding Applying Understanding Understanding Applying
1. 2. 3. 4. 5. 6 7. 8 9. 10	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $12x+18y=30$ is solvableDiscuss whether $12x+18y=30$ is solvableIs $6x+12y+15z=10$ solvable?Prove that $9^{100} - 1$ is divisible by 10Prove that $9^{100} - 1$ is divisible by 10Prove that $a \equiv b(mod m)$ if and only if $a = b + km$ for some integer kFind the least residue of 23 modulo 5, -3 modulo 5.Define complete sets of residues modulo m.Find the Congruence classes modulo 5.Find the remainder when $1! + 2! + \dots + 100!$ is divided by 15	BTL -1 BTL -1 BTL -1 BTL -2 BTL -2 BTL -3 BTL -3 BTL -2 BTL -2 BTL -3 BTL -2	Remembering Remembering Remembering Understanding Applying Understanding Understanding Applying Understanding Applying Understanding
1. 2. 3. 4. 5. 6 7. 8 9. 10 11.	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $12x+18y=30$ is solvableDiscuss whether $12x+18y=30$ is solvableIs $6x+12y+15z=10$ solvable?Prove that $9^{100} - 1$ is divisible by 10Prove that $9^{100} - 1$ is divisible by 10Prove that $a \equiv b(mod m)$ if and only if $a = b + km$ for some integer kFind the least residue of 23 modulo 5, -3 modulo 5.Define complete sets of residues modulo m.Find the Congruence classes modulo 5.Find the remainder when $1! + 2! + \dots + 100!$ is divided by 15Find the remainder when $1! + 2! + \dots + 1000!$ is divided by 10	BTL -1 BTL -1 BTL -1 BTL -2 BTL -2 BTL -3 BTL -3 BTL -2 BTL -2 BTL -2 BTL -2 BTL -2 BTL -2 BTL -2	RememberingRememberingRememberingUnderstandingApplyingApplyingUnderstandingUnderstandingUnderstandingApplyingUnderstandingApplyingUnderstandingApplyingUnderstandingApplyingUnderstandingApplyingUnderstandingApplyingUnderstandingAnalyzing
1. 2. 3. 4. 5. 6 7. 8 9. 10 11. 12.	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $12x+18y=30$ is solvableDiscuss whether $12x+18y=30$ is solvableIs $6x+12y+15z=10$ solvable?Prove that $9^{100} - 1$ is divisible by 10Prove that $9^{100} - 1$ is divisible by 10Prove that $a \equiv b(mod m)$ if and only if $a = b + km$ for some integer kFind the least residue of 23 modulo 5, -3 modulo 5.Define complete sets of residues modulo m.Find the Congruence classes modulo 5.Find the remainder when $1! + 2! + \dots + 100!$ is divided by 15Find the remainder when $1! + 2! + \dots + 1000!$ is divided by 10Find the remainder when $1! + 2! + \dots + 1000!$ is divided by 12	BTL -1 BTL -1 BTL -1 BTL -2 BTL -2 BTL -3 BTL -3 BTL -2 BTL -2 BTL -3 BTL -2 BTL -4 BTL -3	RememberingRememberingRememberingUnderstandingApplyingApplyingUnderstandingUnderstandingUnderstandingApplyingUnderstandingApplyingUnderstandingApplyingUnderstandingApplyingUnderstandingApplyingUnderstandingApplyingAnalyzingApplying
1. 2. 3. 4. 5. 6 7. 8 9. 10 11. 12. 13	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $12x+18y=30$ is solvableIs $6x+12y+15z=10$ solvable?Prove that $9^{100} - 1$ is divisible by 10Prove that $9^{100} - 1$ is divisible by 10Prove that $a \equiv b(mod m)$ if and only if $a = b + km$ for some integer kFind the least residue of 23 modulo 5, -3 modulo 5.Define complete sets of residues modulo m.Find the Congruence classes modulo 5.Find the remainder when $1! + 2! + \dots + 100!$ is divided by 15Find the remainder when $1! + 2! + \dots + 1000!$ is divided by 10Find the remainder when $1! + 2! + \dots + 1000!$ is divided by 12If $a \equiv b(mod m)$, then prove that $a^n \equiv b^n(mod m)$ for any	BTL -1 BTL -1 BTL -1 BTL -2 BTL -2 BTL -3 BTL -3 BTL -2 BTL -2 BTL -2 BTL -2 BTL -2 BTL -2 BTL -3 BTL -2 BTL -4 BTL -3	RememberingRememberingRememberingUnderstandingApplyingApplyingUnderstandingUnderstandingUnderstandingUnderstandingApplyingUnderstandingApplyingUnderstandingApplyingUnderstandingApplyingUnderstandingApplyingAnalyzingApplyingApplying
1. 2. 3. 4. 5. 6 7. 8 9. 10 11. 12. 13.	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $12x+18y=30$ is solvableIs $6x+12y+15z=10$ solvable?Prove that $9^{100} - 1$ is divisible by 10Prove that $9^{100} - 1$ is divisible by 10Prove that $a \equiv b(mod m)$ if and only if $a = b + km$ for some integer kFind the least residue of 23 modulo 5, -3 modulo 5.Define complete sets of residues modulo m.Find the Congruence classes modulo 5.Find the remainder when $1! + 2! + \dots + 100!$ is divided by 15Find the remainder when $1! + 2! + \dots + 1000!$ is divided by 10Find the remainder when $1! + 2! + \dots + 1000!$ is divided by 12If $a \equiv b(mod m)$, then prove that $a^n \equiv b^n(mod m)$ for any positive integer n	BTL -1 BTL -1 BTL -1 BTL -2 BTL -2 BTL -3 BTL -3 BTL -2 BTL -2 BTL -2 BTL -2 BTL -3 BTL -2 BTL -4 BTL -3 BTL -4	RememberingRememberingRememberingUnderstandingApplyingApplyingUnderstandingUnderstandingUnderstandingUnderstandingApplyingUnderstandingApplyingUnderstandingApplyingUnderstandingAnalyzingAnalyzingAnalyzing
$ \begin{array}{c} 1. \\ 2. \\ 3. \\ 4. \\ 5. \\ 6 \\ 7. \\ 8 \\ 9. \\ 10 \\ 11. \\ 12. \\ 13. \\ 14. \\ \end{array} $	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $12x+18y=30$ is solvableIs $6x+12y+15z=10$ solvable?Prove that $9^{100} - 1$ is divisible by 10Prove that $9^{100} - 1$ is divisible by 10Prove that $a \equiv b(mod m)$ if and only if $a = b + km$ for some integer kFind the least residue of 23 modulo 5, -3 modulo 5.Define complete sets of residues modulo m.Find the Congruence classes modulo 5.Find the remainder when $1! + 2! + \dots + 100!$ is divided by 15Find the remainder when $1! + 2! + \dots + 1000!$ is divided by 10Find the remainder when $1! + 2! + \dots + 1000!$ is divided by 12If $a \equiv b(mod m)$, then prove that $a^n \equiv b^n(mod m)$ for any positive integer nIf $ac \equiv bc(mod m)$ and $(c,m) = 1$, then $a \equiv b(mod m)$	BTL -1 BTL -1 BTL -1 BTL -2 BTL -2 BTL -3 BTL -3 BTL -2 BTL -2 BTL -2 BTL -2 BTL -2 BTL -2 BTL -4 BTL -3 BTL -4 BTL -4 BTL -2	RememberingRememberingRememberingUnderstandingApplyingApplyingUnderstandingUnderstandingUnderstandingApplyingUnderstandingApplyingUnderstandingApplyingUnderstandingApplyingUnderstandingAnalyzingAnalyzingUnderstandingUnderstanding
$ \begin{array}{c} 1. \\ 2. \\ 3. \\ 4. \\ 5. \\ 6 \\ 7. \\ 8 \\ 9. \\ 10 \\ 11. \\ 12. \\ 13. \\ 14. \\ 15. \\ 15. \\ $	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $12x+18y=30$ is solvableProve that $9^{100} - 1$ is divisible by 10 Prove that $a \equiv b(mod m)$ if and only if $a = b + km$ for some integer kFind the least residue of 23 modulo 5, -3 modulo 5.Define complete sets of residues modulo m.Find the remainder when $1! + 2! + \cdots + 1000!$ is divided by 10 Find the remainder when $1! + 2! + \cdots + 1000!$ is divided by 12 If $a \equiv b(mod m)$, then prove that $a^n \equiv b^n(mod m)$ for any positive integer n If $ac \equiv bc(mod m)$ and $(c,m) = 1$, then $a \equiv b(mod m)$ If $ac \equiv bc(mod m)$ and $(c,m) $	BTL -1 BTL -1 BTL -1 BTL -2 BTL -2 BTL -3 BTL -3 BTL -3 BTL -2 BTL -2 BTL -2 BTL -2 BTL -4 BTL -3 BTL -4 BTL -4 BTL -2 BTL -4	RememberingRememberingRememberingUnderstandingApplyingApplyingUnderstandingUnderstandingUnderstandingApplyingUnderstandingApplyingUnderstandingApplyingUnderstandingAnalyzingAnalyzingUnderstandingAnalyzingAnalyzing
$ \begin{array}{c} 1. \\ 2. \\ 3. \\ 4. \\ 5. \\ 6 \\ 7. \\ 8 \\ 9. \\ 10 \\ 11. \\ 12. \\ 13. \\ 14. \\ 15. \\ 16. \\ \end{array} $	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $12x+18y=30$ is solvableIs $6x+12y+15z=10$ solvable?Prove that $9^{100} - 1$ is divisible by 10Prove that $9^{100} - 1$ is divisible by 10Prove that $a \equiv b(mod m)$ if and only if $a = b + km$ for some integer kFind the least residue of 23 modulo 5, -3 modulo 5.Define complete sets of residues modulo m.Find the Congruence classes modulo 5.Find the remainder when $1! + 2! + \dots + 100!$ is divided by 15Find the remainder when $1! + 2! + \dots + 1000!$ is divided by 10Find the remainder when $1! + 2! + \dots + 1000!$ is divided by 12If $a \equiv b(mod m)$, then prove that $a^n \equiv b^n(mod m)$ for any positive integer nIf $ac \equiv bc(mod m)$ and $(c, m) = 1$, then $a \equiv b(mod m)$ If $ac \equiv bc(mod m)$ and $(c, m) = d$, then $a \equiv b(mod m)$ If $ac \equiv bc(mod m)$ and $(c, m) = d$, then $a \equiv b(mod m)$ If $ac \equiv bc(mod m)$ and $(c, m) = 1$, then $a \equiv b(mod m)$ Determine whether the congruence $8x \equiv 10(mod 6)$ is solvable	BTL -1 BTL -1 BTL -1 BTL -2 BTL -2 BTL -3 BTL -3 BTL -2 BTL -2 BTL -2 BTL -2 BTL -2 BTL -2 BTL -4 BTL -3 BTL -4 BTL -4 BTL -2 BTL -4 BTL -2 BTL -4	RememberingRememberingRememberingUnderstandingApplyingApplyingUnderstandingUnderstandingUnderstandingApplyingUnderstandingApplyingUnderstandingApplyingUnderstandingAnalyzingAnalyzingUnderstandingAnalyzingRemembering
$ \begin{array}{c} 1. \\ 2. \\ 3. \\ 4. \\ 5. \\ 6 \\ 7. \\ 8 \\ 9. \\ 10 \\ 11. \\ 12. \\ 13. \\ 14. \\ 15. \\ 16. \\ 17 \\ 17 \\ 17 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 10 \\ 17 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 10 \\ 17 \\ 10 \\ 11 \\ 12 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 10 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 10 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 10 \\ 11 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 15 \\ 10 \\ 11 \\ 15 \\ 10 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 15 \\ 11 \\ 1$	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $12x+18y=30$ is solvableIs $6x+12y+15z=10$ solvable?Prove that $9^{100} - 1$ is divisible by 10Prove that $9^{100} - 1$ is divisible by 10Prove that $a \equiv b(mod m)$ if and only if $a = b + km$ for some integer kFind the least residue of 23 modulo 5, -3 modulo 5.Define complete sets of residues modulo m.Find the congruence classes modulo 5.Find the remainder when $1! + 2! + \dots + 100!$ is divided by 15Find the remainder when $1! + 2! + \dots + 1000!$ is divided by 10Find the remainder when $1! + 2! + \dots + 1000!$ is divided by 12If $a \equiv b(mod m)$, then prove that $a^n \equiv b^n(mod m)$ for any positive integer nIf $ac \equiv bc(mod m)$ and $(c,m) = 1$, then $a \equiv b(mod m)$ If $ac \equiv bc(mod m)$ and $(c,m) = d$, then $a \equiv b(mod m)$ If $ac \equiv bc(mod m)$ and $(c,m) = d$, then $a \equiv b(mod m)$ Determine whether the congruence $8x \equiv 10(mod 6)$ is solvableDetermine whether the congruence $2x \equiv 3(mod 4)$ is solvable	BTL -1 BTL -1 BTL -1 BTL -2 BTL -2 BTL -3 BTL -3 BTL -2 BTL -2 BTL -2 BTL -2 BTL -2 BTL -4 BTL -3 BTL -4 BTL -4 BTL -2 BTL -4 BTL -4 BTL -2 BTL -4 BTL -1	RememberingRememberingRememberingUnderstandingApplyingApplyingUnderstandingUnderstandingUnderstandingApplyingUnderstandingApplyingUnderstandingApplyingUnderstandingAnalyzingAnalyzingUnderstandingAnalyzingRememberingAnalyzing
$ \begin{array}{c} 1.\\ 2.\\ 3.\\ 4.\\ 5.\\ 6\\ 7.\\ 8\\ 9.\\ 10\\ 11.\\ 12.\\ 13.\\ 14.\\ 15.\\ 16.\\ 17.\\ 18 \end{array} $	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $12x+18y=30$ is solvableIs $6x+12y+15z=10$ solvable?Prove that $9^{100} - 1$ is divisible by 10Prove that $9^{100} - 1$ is divisible by 10Prove that $a \equiv b(mod m)$ if and only if $a = b + km$ for some integer kFind the least residue of 23 modulo 5, -3 modulo 5.Define complete sets of residues modulo m.Find the Congruence classes modulo 5.Find the remainder when $1! + 2! + \dots + 100!$ is divided by 15Find the remainder when $1! + 2! + \dots + 1000!$ is divided by 10Find the remainder when $1! + 2! + \dots + 1000!$ is divided by 12If $a \equiv b(mod m)$, then prove that $a^n \equiv b^n(mod m)$ for any positive integer nIf $ac \equiv bc(mod m)$ and $(c,m) = 1$, then $a \equiv b(mod m)$ If $ac \equiv bc(mod m)$ and $(c,m) = d$, then $a \equiv b(mod m)$ If $ac \equiv bc(mod m)$ and $(c,m) = d$, then $a \equiv b(mod m)$ Determine whether the congruence $8x \equiv 10(mod 6)$ is solvableDetermine whether the congruence $2x \equiv 3(mod 4)$ is solvableDetermine whether the congruence $2x \equiv 3(mod 4)$ is solvable	BTL -1 BTL -1 BTL -1 BTL -2 BTL -2 BTL -3 BTL -3 BTL -2 BTL -2 BTL -2 BTL -2 BTL -2 BTL -3 BTL -2 BTL -4 BTL -3 BTL -4 BTL -2 BTL -4 BTL -1 BTL -1 BTL -4 BTL -2	RememberingRememberingRememberingUnderstandingApplyingApplyingUnderstandingUnderstandingUnderstandingApplyingUnderstandingApplyingUnderstandingApplyingUnderstandingAnalyzingAnalyzingUnderstandingAnalyzingRememberingAnalyzingUnderstanding
$ \begin{array}{c} 1. \\ 2. \\ 3. \\ 4. \\ 5. \\ 6 \\ 7. \\ 8 \\ 9. \\ 10 \\ 11. \\ 12. \\ 13. \\ 14. \\ 15. \\ 16. \\ 17. \\ 18. \\ 10 \end{array} $	PART – ADefine linear Diophantine Equation in two variablesDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $6x + 8y = 25$ is solvableDiscuss whether $12x+18y=30$ is solvableProve that $9^{100} - 1$ is divisible by 10 Prove that $9^{100} - 1$ is divisible by 10 Prove that $9^{100} - 1$ is divisible by 10 Prove that $9^{100} - 1$ is divisible by 10 Prove that $a^{100} - 1$ is divisible by 10 Prove that $a^{100} - 1$ is divisible by 10 Prove that $a = b (mod m)$ if and only if $a = b + km$ for some integer k Find the least residue of 23 modulo 5 , -3 modulo 5 .Define complete sets of residues modulo m.Find the compruence classes modulo 5 .Find the remainder when $1! + 2! + \cdots + 1000!$ is divided by 10 Find the remainder when $1! + 2! + \cdots + 1000!$ is divided by 12 If $a \equiv b(mod m)$, then prove that $a^n \equiv b^n(mod m)$ for any positive integer n If $ac \equiv bc(mod m)$ and $(c,m) = 1$, then $a \equiv b(mod m)$ If $ac \equiv bc(mod m)$ and $(c,m) = d$, then $a \equiv b(mod m)$ Determine whether the congruence $2x \equiv 3(mod 4)$ is solvable <th>BTL -1 BTL -1 BTL -1 BTL -2 BTL -2 BTL -3 BTL -3 BTL -2 BTL -2 BTL -2 BTL -2 BTL -2 BTL -2 BTL -4 BTL -3 BTL -4 BTL -4 BTL -4 BTL -1 BTL -4 BTL -1 BTL -4 BTL -2 BTL -4</br></br></th> <th>RememberingRememberingRememberingUnderstandingApplyingApplyingUnderstandingUnderstandingUnderstandingUnderstandingApplyingUnderstandingApplyingUnderstandingAnalyzingAnalyzingUnderstandingAnalyzingRememberingAnalyzingUnderstanding</th>	BTL -1 BTL -1 BTL -1 BTL -2 BTL -2 	RememberingRememberingRememberingUnderstandingApplyingApplyingUnderstandingUnderstandingUnderstandingUnderstandingApplyingUnderstandingApplyingUnderstandingAnalyzingAnalyzingUnderstandingAnalyzingRememberingAnalyzingUnderstanding

	solvable		
20	Using Chinese Remainder theorem, determine whether the	DTI 2	A antria a
20.	linear system is solvable $x \equiv 7 \pmod{9}$, $x \equiv 11 \pmod{12}$	BIL-3	Applying
21.	Using Chinese Remainder theorem, determine whether the		Understanding
	linear system is solvable $x \equiv 3 \pmod{6}$, $x \equiv 5 \pmod{8}$	DIL-2	Understanding
22.	Using Chinese Remainder theorem, determine whether the		Analyzing
	linear system is solvable $x \equiv 2 \pmod{10}$, $x \equiv 7 \pmod{15}$	DIL -4	Anaryzing
23.	Define 2x2 linear system	BTL -3	Applying
24.	State Chinese Remainder Theorem	BTL -2	Understanding
25.	Define Congruence and incongruence solution	BTL -4	Analyzing
	PART – B		
	Prove that the linear Diophantine equation $ax + by = c$ is		
	solvable if and only if d/c , where $d = (a, b)$. If x_0 and y_0 is a		
1.	particular solution of the linear Diophantine equation, then all	BTL-3	Applying
	its solutions are given by $x = x_0 + \frac{dt}{dt}$, $y = y_0 - \frac{at}{dt}$ where t is		1199-1-18
	an arbitrary integer		
2 (2)	Solve $71r - 50v = 1$	BTL_2	Understanding
$\frac{2.(a)}{2.(b)}$	Find the remainder when 16^{53} is divided by 7	BTL -5	Evaluating
2.(0)	Solve $1776r + 1976v - 4152$	BTL -3	Applying
$\frac{3}{4(a)}$	Solve $93r - 81v - 3$	BTL -3	Applying
$\frac{4.(a)}{4(b)}$	Find the remainder when $(n^2 + n + 41)^2$ is divided by 12	BTL -3	Applying
H (U)	Find the general solution of the linear Diophantine equation	DIL 5	rippiying
5.	6r + 8v + 12z = 10	BTL -3	Applying
	Determine if each linear Diophantine equation is solvable	BTL -3	Applying
6.(a)	(i)12x + 16y = 18 (ii)28x + 91y = 119		
oi (u)	(iii)1776x + 1976y = 4152 (iv) 1076x + 2076y = 1155		
	Find the least positive integer that leaves the remainder 3 when		
6.(b)	divided by 7,4 when divided by 9 and 8 when divided by 11	BTL-3	Applying
	Prove that (i) $a \equiv b(modm)$ if and only if $a = b + km$ for		
7	some integer k	DTI 1	Damanharina
7.	(ii) Prove that the relation $' \equiv '$ (congruence) is an equivalence	BIL-I	Remembering
	relation		
8 (a)	Prove that $a \equiv b(modm)$ iff a and b leave the same remainder		Analyzing
0.(a)	when divided by <i>m</i>	DIL -4	Anaryzing
8.(b)	Solve $3x + 13y \equiv 8 \pmod{55}, 5x + 21y \equiv 34 \pmod{55}$	BTL -3	Applying
Q	Prove that the integer r is the remainder when a is divided by	BTL-5	Evaluating
<i>.</i>	$m \text{ iff } a \equiv r(modm) where \ 0 \le r < m$	DIE 5	Dvaldading
10.(a)	Solve $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$	BTL -6	Creating
10.(b)	Solve $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{4}$, $x \equiv 3 \pmod{5}$	BTL -3	Applying
	Prove that, let $a \equiv b(modm)$ and $c \equiv d(modm)$ then		
11.	$(i)a + c \equiv b + d(modm)$	BTL-4	Analyzing
	$(ii)ac \equiv bd(modm)$		
	(iii) $a^n \equiv b^n (modm)$ for any positive integer n		
12.(a)	Solve $2x + 3y \equiv 4 \pmod{13}$, $3x + 4y \equiv 5 \pmod{13}$	BTL-3	Applying
12.(b)	Show that every integer is congruent to exactly one of the least	BTL -3	Applying
10	residues $0, 1, 2, \cdots, (m-1)$ modulo m		
13.	State and prove Chinese remainder theorem	BTL-4	Analyzing
14.(a)	Verity that whether the number of prime of the form $4n + 3$	BTL-3	Applying

	be expressed as the sum of two squares		
14.(b)	Compute the remainder when 3^{247} is divided by 25	BTL -3	Applying
	The linear congruence $ax \equiv b(modm)$ is solvable if and only		
15.	if d/b , where $d = (a, m)$. If d/b , then it has d incongruent	BTL -4	Analyzing
	solutions		, ,
16.(a)	Compute the remainder when 5^{31} is divided by 12	BTL -4	Analyzing
	Verify that whether the number of integer of the form $8n + 7$		<u> </u>
16.(b)	be expressed as the sum of three squares	BTL-3	Applying
	If n is any integer then show that		
	$(i)n^2 + n \equiv 0 \pmod{2}$		
17.	$(ii)n^4 + 2n^3 + n^2 \equiv 0 \pmod{4}$	BTL -4	Analyzing
	$(iii)2n^3 + 3n^2 + n \equiv 0 \pmod{6}$		
18.(a)	Compute the remainder when 23^{1001} is divided by 17	BTL-3	Applying
18.(b)	Find the incongruent solutions of $28x \equiv 119 \pmod{91}$	BTL -3	Applying
100(0)	$\frac{1}{1} \frac{1}{1} \frac{1}$		119919118
	23 weary travelers entered the outskirts of a lush and beautiful		
_	forest. They found 63 equal heaps of plantains put together and		
1.	seven single fruits are divided then equally. Find the number of	BTL -4	Analyzing
	fruits in each heap		
	A fruit basket contains apples and oranges. Each apple cost 65		
2.	Rs. Each orange cost 45Rs. For a total of 810 Rs. Find the	BTL -4	Analyzing
	minimum possible numbers of apple in the basket.		5
	If a cock is worth five coins, a hen three coins and three chicks	BTL -2	Understanding
3.	together one coin, how many cocks, hens and chicks, totally		
	100 can be bought for 100 coins		0
	A child has some marbles in a box. If the marbles are grouped		
	in sevens, there will be five left over; If they are grouped in		
4.	elevens, there will be six left over; If they are grouped in	BTL -2	Understanding
	thirteen, eight will be left over; Determine the latest number of		C .
	marbles in the box		
	Find the least positive integer that leaves the reminder 2 when		
5.	divided by 5, 4 when divided by 6 and 5 when divided by 11,	BTL -3	Applying
	and 6 when divided by 13		
UNIT V	- CLASSICAL THEOREMS AND MULTIPLICATIVE FU	NCTIONS	
Wilson'	s theorem – Fermat's little theorem – Euler's theorem – Euler's	Phi function	s – Tau and Sigma
function	8.		
Q.No.	Question	BT Level	Competence
	PART – A		
1.	State Wilsons Theorem	BTL -1	Remembering
2.	State Fermat's Theorem	BTL -1	Remembering
3.	State Euler's Theorem	BTL-1	Remembering
4.	Define Euler Phi Function	BTL -2	Understanding
5.	Define Tau Function	BTL-3	Applying
6	Define Sigma Function	BTL -3	Applying
7.	Show that 11 is self invertible.	BTL -2	Understanding
8	Evaluate $\frac{(np)!}{n! p^n}$ if n=46, p=5	BTL -2	Understanding
9.	How many primes are there of the form $m! + 1$ when $m \le 100$?	BTL -3	Applying

10	Find the self-invertible least residue modulo each prime 7 & 19	BTL -2	Understanding
11.	Solve $x^2 \equiv 1 \mod(6)$	BTL -4	Analyzing
12.	Find the least residues of 1,2,, $p - 1 \mod 100$ 7	BTL -3	Applying
13.	Let p be a prime number and a any integer such that $p \nmid a$ then prove that a^{p-2} is an inverse of a modulo p	BTL -4	Analyzing
14.	Evaluate the inverse of 12 modulo 7	BTL -2	Understanding
15.	Solve the linear congruence of $12x \equiv 6 \pmod{7}$	BTL -4	Analyzing
16.	Solve the linear congruence of $24x \equiv 11 \pmod{17}$	BTL -1	Remembering
17.	Create $\emptyset(11)$ and $\emptyset(18)$	BTL -4	Analyzing
18.	Solve the linear congruence of $35x \equiv 47 \pmod{24}$	BTL -2	Understanding
19.	Define Multiplication Theorem	BTL -4	Analyzing
20.	Compute Ø (47), Ø (223), Ø (7919)	BTL -3	Applying
21.	Compute Ø (15,625)	BTL -2	Understanding
22.	Find the twin primes p and q if $\emptyset(pq) = 288$	BTL -4	Analyzing
23.	Compute $\tau(81), \tau(2187)$	BTL -3	Applying
24.	Compute $\tau(1560), \tau(6120)$	BTL -2	Understanding
25.	Compute $\sigma(97), \sigma(36)$	BTL -4	Analyzing
	PART – B		
1.	Prove that a positive integer a is invertible modulo p iff $a \equiv \pm 1 \pmod{P}$ and hence prove Wilson's Theorem	BTL -3	Applying
2.(a)	Find the reminder of 13! When divided by 19	BTL-5	Evaluating
2.(b)	Find the remainder when 7 ¹⁰⁰¹ is divided by 17	BTL-5	Evaluating
	Verify $(p-1)! \equiv -1(modp)$, when p=13		Applying
3.	(i)Without using Wilson's theorem (ii)Using Wilson's theorem	BIL-3	
4. (a)	Find the reminder of 17! When divided by 23	BTL-3	Applying
4.(b)	Find the remainder when 24 ¹⁹⁴⁷ is divided by 17	BTL-3	Applying
	Let p be a prime and a is any integer such that $p \nmid a$ then prove		
5	that the least residues of the integers a, 2a, 3a,,	BTL -3	Applying
	(p-1)a modulo p are permutation of integers 1,2,3,,	DIL J	rippiying
	p-1 and use it to prove Fermat's Little Theorem		
6. (a)	If n is a positive integer such that $(n - 1)! \equiv -1 (modp)$	BTL -3	Applying
6.(b)	Find the remainder when 15^{1976} is divided by 23	BTL -3	Applying
	Let p be a prime and a any integer such that $p \nmid a$ then		
	(i)prove that the solution of the linear congruence		
7.	$ax \equiv b \pmod{p}$ is given by $x \equiv a^{p-2}b \pmod{p}$	BTL -1	Remembering
	(ii) Let p be a prime and a any positive integer then show that		
	$a^p = a \pmod{p}$		
8. (a)	Verify that $\sum_{\underline{d}} \phi(d) = n$ for n=28	BTL -4	Analyzing
8.(b)	Find the remainder when 31 ¹⁷⁰⁶ is divided by 23	BTL -3	Applying
9. (a)	State and prove fundamental theorem for multiplicative function	BTL-5	Evaluating
9.(b)	If f is a multiplicative function. Then show that $F(n) = \sum_{d} F(d)$ is also multiplicative		
10.(a)	Solve the linear congruence $5x \equiv 3(mod24)$	BTL -6	Creating
10.(b)	Let p and q are distinct prime then prove that $pq^{-1} + qp^{-1} = 1mqdnq$	BTL -3	Applying
	$p^{*} + q^{*} = 1000pq$ Prove that (i) A positive integer n is prime if and only if		
11.	$\phi(p) = p - 1$	BTL -4	Analyzing

	(ii) Let p be a prime and e any positive integer then prove that $q(n^{\ell}) = n^{\ell} - n^{\ell-1}$		
	$\varphi(p^{\circ}) = p^{\circ} - p^{\circ}$		
	(iii) Let $n = p_1 + p_2 + \dots + p_k$ where the canonical decomposition of a positive integer n. Then Prove that		
	$\phi(n) = n\left(1 - \frac{1}{n}\right)\left(1 - \frac{1}{n}\right), \dots, \left(1 - \frac{1}{n}\right)$		
12.(a)	Evaluate τ (<i>n</i>) and σ (<i>n</i>) for each $n = 43, 1560, 44982, \& 496$	BTL-3	Applying
	Create the remainder when 245^{1040} is divided by 18 and the		
12.(b)	remainder when 7^{1020} is divided by 15	BTL -6	Creating
	Let n be a positive integer with canonical decomposition $n =$		
	$p_1^{e_1} p_2^{e_2},, p_k^{e_k}$ then show that		
13 (a)	$\tau(n) = (e_1 + 1)(e_2 + 1), \dots, (e_k + 1)$	BTL -4	Analyzing
10.(u)	$\sigma(n) = \frac{p_1^{e_1+1}-1}{p_2^{e_2+1}-1} \qquad \frac{p_2^{e_2+1}-1}{p_k^{e_1+1}-1}$	DIL	7 mary 2mg
	p_{1-1} p_{1-1} p_{1-1} p_{1-1}		
	Also compute $\tau(6120)$ and $\sigma(6120)$.		
13.(b)	Let p be a prime and e any positive integer then prove that $p^{e+1}-1$	BTL-3	Applying
200(~)	$\tau(p^e) = e + 1 \text{ and } \sigma(p^e) = \frac{p}{p-1}$. Also find $\tau(49)$		
14.(a)	State and Prove Euler's Theorem.	BTL -3	Applying
14.(b)	Evaluate the remainder when 199^{2020} is divided by 28 and the	BTL-3	Applying
	remainder when 79 ¹⁷⁷⁶ is divided by 24		
15.	Show that the Euler's φ function is multiplicative function.	BTL -4	Analyzing
16.(a)	Find the remainder when $35^{32} + 51^{24}$ is divisible by 1785	BTL -4	Analyzing
16.(b) 17.(a)	Show that the Tau and Sigma functions are multiplicative	BTL-3	Applying
	function. Also compute $\tau(36)$ and $\sigma(36)$		
	Let m be positive integer and a be any integer such that $(a, m) =$	BTL -4	Analyzing
	1. Then prove that $a^{(0,0)} = 1s$ an inverse of a modulo m	+	
17.(b)	Using Euler's Theorem, evaluate the ones digit in the decimal value of each (i) 17^{666} (ii) 23^{7777}	BTL -3	Applying
	Let m be a positive integer and a be any integer with		
18 (a)	$(a,m) = 1$. Then the solution of the linear congruence $ax \equiv$	BTL-3	Applying
101(11)	$h(modm)$ is given by $x = a^{\phi(m)-1}h(modm)$		r ippijing
18.(b)	Solve the linear congruence $15x \equiv 7(mod 13)$	BTL -3	Applying
()	PART – C		11 9 8
	Using Fermat's theorem prove the following		
1.	Let p and q are distinct prime then prove that	RTI -4	Analyzing
	(i) $p^q + q^p \equiv p + q(modpq)$	DIL	7 mary 2mg
	$(ii)(a+b)^p \equiv (a^p + b^q)(modp)$		
2.	Apply Wilson's theorem to find the reminder of (i) 51! When	BTL-3	Applying
	divided by 91 (ii)6/! When divided by/1 Evaluate the line expression (i) 0 $\mu = 2(m + d11)$		
3.	Evaluate the linear congruence equations (1) $8x = 3(moa11)$ (ii)12x = 6(mod7) using Fermat's little theorem	BTL-5	Evaluating
	(1) $12x = 0(110u7)$ using Fermiat 8 intre incorem Create the reminder of (i) 55^{1876} when divided by 12		
4.	(ii) 25^{2550} when divided by 18	BTL -2	Understanding
	Compute (i) $\phi(7919) \phi(666) \phi(1976)$		
5.	(ii) τ (6491), τ (2187), τ (44982)	BTL -3	Applying
	$(iii)\sigma(331),\sigma(1024),\sigma(2187)$		· · · · · · · · · · · · · · · · · · ·