SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)

S.R.M. Nagar, Kattankulathur - 603203

DEPARTMENT OF MATHEMATICS

QUESTION BANK

V SEMESTER

B. E- ARTIFICIAL INTELLIGENCE&DATA SCIENCE

1918502 – PROBABILITY RANDOM PROCESSES AND STATISTICS

Regulation – 2019

Academic Year – 2022 - 2023

Prepared by

Dr. G. Sasikala , Assistant Professor / Mathematics

SUBJECT : 1918502 – PROBABILITY RANDOM PROCESSES AND STATISTICS SEM / YEAR: IV / II year B.E. (AI&DS)

UNIT I - PROBABILITY AND RANDOM VARIABLES

Probability – Axioms of probability – Conditional probability – Baye's theorem - Discrete and continuous random variables – Moments – Moment generating functions

Q.No.	Question	BT Level	Competence
	PART – A		
1.	Define probability	BTL -1	Remembering
2.	Define Axioms of probability	BTL -1	Remembering
3.	Define Moment Generating function of a random variable.	BTL -1	Remembering
4.	A die is rolled, find the probability that an even number is obtained.	BTL -2	Understanding
5.	If A and B are independent events then A and \overline{B} also independent	BTL -3	Applying
6.	If A and B are independent events then Aand B also independent	BTL -3	Applying
7.	State Multiplication theorem of Probability	BTL -2	Understanding
8.	Define Moment Generating function of a random variable.	BTL-2	Understanding
9.	A random variables X has the following probability distribution.Find the value of K and $P(X \ge 3)$ X0I2234P(x)K3K5K7K9K	BTL -3	Applying
10.	If A and B are independent events then \overline{A} and \overline{B} also independent	BTL -2	Understanding
11.	A card is drawn from a well shuffled pack of 52 cards. What is the probability of getting queen or club card?	BTL -4	Analyzing
12.	Two coins are tossed, find the probability that two heads are obtained.	BTL -3	Applying
13.	If $f(x) = \begin{cases} ke^{-x}, x > 0\\ 0, otherwise \end{cases}$ is the pdf of a random variable X, then find the value of k.	BTL -4	Analyzing
14.	For a continuous distribution $f(x) = k(x - x^2), 0 \le x \le 1$, where k is a constant. Find k.	BTL-5	Evaluating
15.	If a random variable X has the MGF $M_X(t) = \frac{2}{2-t}$. Find the mean of X.	BTL -4	Analyzing
16.	The p.d.f of a continuous random variable X is $f(x) = k(1+x), 2 < x < 5$, Find k.	BTL-5	Evaluating
17.	Show that the function $f(x) = \begin{cases} e^{-x}, x \ge 0\\ 0, x < 0 \end{cases}$ is a probability density function of a continuous random variable X.	BTL -4	Analyzing
18.	State Multiplication theorem of Probability	BTL -2	Understanding
19.	If the pdf of a random variable is $f(x)=x/2$ $0 \le x \le 2$ find $P(X > 1.5)$.	BTL-6	Creating
20.	A card is drawn at random from a deck of cards. Find the probability of getting the 3 of diamond	BTL -3	Applying
21.	State Baye's Theorem.	BTL -2	Understanding

22.	A continuous random variable X has a p.d.f $f(x)=2x, 0 \le x \le 1$. Find $P(X \ge 0.5)$.	BTL -4	Analyzing
23.	If $f(x)=kx^2$, $0 \le x \le 3$, is to be a density function, find the value of k.	BTL-6	Creating
24.	Write any two properties of mathematical Expectation	BTL -2	Understanding
25.	If $f(x)=k(1+x)$, $0 \le x \le 2$ is to be a density function, find the value of <i>k</i> .	BTL-6	Creating
	PART – B		
	The probability mass function of a discrete R.V X is given in the		
	following table		
1.	X 0 1 2 3 4 5 6 7 8	BTL2	Understanding
	P(X) a 3a 5a 7a 9a 11a 13a 15a 17a		
	Find (i) the value of a ,(ii) $P(X \le 3)$ (iii) Mean of X, (iv) Variance of X.		
	A letter of the English Alphabet is chosen at random calculate the		
2. (a)	probability that the letter so chosen (i) is a vowel (ii) precedes m and is	BTL2	Understanding
	a vowel (11) follows m and is a vowel. If $A = 1 D$ are true second with $D(A) = 2/2 = 1 (D) = 1/2 D(A \cap D) = 1/4$		
2.(b)	If A and B are two events with $P(A)=5/8$ and $(B)=1/2, P(A B)=1/4$,	BTL2	Understanding
	The probability distribution of an infinite discrete distribution is given by		
3.	$P[X = j] = \frac{1}{2^{j}}(j = 1, 2, 3)$ Find (1)Mean of X (2)P [X is even]	BTL4	Analyzing
	(3) P(X is odd) (4) P(X is divisible by 3).		
4. (a)	(b) 4 coins were tossed simultaneously. What is the probability of	BTL6	Creating
	getting (1) 2 heads, (11) at least 2 heads, (11) at most 2 heads.		
4.(b)	If $P(A\cup B)=5/6$, $P(A \mid B)=1/3$ and $P(B)=1/2$, Show that A and B are	BTL-3	Applying
	Independent.		
	The probability mass function of a discrete R. V X is given in the following table:		
	$\begin{bmatrix} 1010 \text{ wing table.} \\ \hline X \\ -2 \\ -1 \\ 0 \\ 1 \\ 2 \\ 3 \\ -2 \\ 3 \\ -2 \\ 3 \\ -2 \\ -1 \\ 0 \\ -1 \\ 2 \\ -3 \\ -2 \\ -1 \\ -1 \\ -2 \\ -3 \\ -2 \\ -1 \\ -2 \\ -3 \\ -2 \\ -2 \\ -1 \\ -2 \\ -3 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$		
5.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BTL2	Understanding
	Find (i) the value of k. (ii) $P(X \le 1)$. (iii) $P(-1 \le X \le 2)$.		
	(iv) E(X) (v) Var(X).		
	Find the mean and variance of the following probability distribution		
6. (a)	X _i 1 2 3 4 5 6 7 8	BTL4	Analyzing
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
6 (h)	Two events A and B are such that $P(A)=1/4, P(A/B)=1/2$ and	BTI 3	Applying
0.(0)	P(B/A)=1/2, find $P(A/B)$	DIE 5	rippiying
	$\int ax, 0 \le x \le 1$		
	$a, 1 \le x \le 2$		
	If $f(x) = \begin{cases} 3a - ax, 2 \le x \le 3 \end{cases}$ is the p.d.f of X. Calculate		
7.	$\begin{array}{c} c a & c a, \ 2 = a = c \\ 0 & a s a u b a s \\ \end{array}$	BTL-3	Applying
	(i) The value of a (ii) The surgulative distribution function of V		
	(i) The value of a (ii) The cumulative distribution function of X (iii) If X_1 , X_2 and X_3 are 3 independent observations of X. Find the		
	(11) M_1 , M_2 and M_3 are 5 independent observations of M_2 . This the independent observations of M_2 . This the independent observations of M_2 is greater than 1.5?		
	If the two dice are thrown, what is the probability that the sum is		A 1 '
8.(a)	(a) greater that 8, and (b) neither 7 nor 11?	BTL-4	Analyzing
0.4	A continuous random variable has the probability density function		A 1:
ð.(D)	$f(x)=k(1-x)^3, 1 \le x \le 3$ Find (i) k (ii) The distribution function $F(x)$.	BTL-3	Apprying

9.	Five salesman of A,B,C,D and E of a company are considered for a three member delegation to represent the company in an international trade conference construct the sample space and find the probability that (i)A is selected (ii) A is not selected (iii) Either A or B (not both) is selected	BTL -5	Evaluating
10.(a)	An integer is chosen at random from two hundred digits. What is the probability that the integer is divisible by 6 or 8	BTL -6	Creating
10.(b)	If A and B are independent events with $P(A)=1/2$ and $P(B)=1/3$, find $P(\overline{A}\cap \overline{B})$.	BTL -3	Applying
11.	The diameter, say X, of an electric cable, is assumed to be a continuous random variable with p.d.f. : $f(x) = 6x (1-x), 0 \le x \le 1$ (i) Check that the above is a p.d.f., (ii) Obtain an expression for the c.d.f. of X., (iii) Compute $(X \le 1/2 1/3 \le X \le 2/3, and$ (iv) Determine the number k such that $P(X \le k) = P(X \ge k)$.	BTL -4	Analyzing
12.(a)	The probability mass function of a discrete R. V X is given in the following table:X-2-10123P(X=x)0.1K0.22k0.3kFind (1) Find the value of k, (2) P(X<1),(3) P(-1 <x 2)<="" th="" ≤=""></x>	BTL3	Understanding
12.(b)	If $P(A)=3/4$ and $P(B)=3/4$, $P(AUB)=11/12$, find $P(A/B)$ and $P(B/A)$	BTL-5	Evaluating
13.	From a city population the probability of selecting (i)a male or a smoker is 7/10,(ii).a male smoker is 2/5 and (ii)a male , if a smoker is already selected is 2/3.Find the Probability of selecting (a) a non-smoker (b) a male and (c) a smoker if a male is first selected	BTL -4	Analyzing
14.(a)	Probability of the complementary event \overline{A} of A is given by $P(\overline{A}) = 1-P(A)$.	BTL -1	Remembering
14.(b)	If A and B are any two events (subsets of sample space S) and are not disjoint, then $P(A \cup B) = P(A)+P(B)-P(A \cap B)$	BTL -1	Remembering
15.	Three newspapers A, B and C are published in a certain city. It is estimated from a survey that of the adult population 20% read, 16% read B, 14% read C, 8% read both A and B, 5% read both A and C, 4% read both B and C, 2% read all three. Find what percentage read at least on of the papers?	BTL -4	Analyzing
16.(a)	An MBA applies for a job in two firms X and Y. the probability of his being selected in firm X is 0.7 and being rejected at Y is 0.5, the probability of at least one of his applications being rejected is 0.6. what is probability that he will be selected in one of the firms ?	BTL -4	Analyzing
16.(b)	The events A and B are independent with $P(A)=0.5$ and $P(B)=0.8$. Find the probability that neither of the event occurs.	BTL -3	Applying
17.	For any two events A and B, we have (i) $P(\overline{A}\cap B) = P(B) - P(A \cap B)$ (ii) $P(A \cap \overline{B}) = P(A) - P(A \cap B)$	BTL -1	Remembering
18. (a)	In a class of 100 students 75 are boys and 25 are girls .The chance that a	BTL -3	Applying

	boy gets a first class is 0.25 and the probability that a girl gets first class		
	is 0.21 .Find the probability that a student selected at random gets a first		
	class.		
	Two dice are thrown together. Find the probability that		
18.(b)	(i)The total of the numbers on the top face is 9 and	BTL-3	Applying
	(ii)The top faces are same		
	PART – C		
	Out of 2000 families with 4 children each, Find how many family would		
1.	you expect to have i) at least 1 boy ii) 2 boys iii) 1 or 2 girls iv) no	BTL -4	Analyzing
	girls $I_{\rm rescaled}$ to the probability of hitting the target are $1/2$ for $\Lambda 2/2$		
	In a shooting test, the probability of mitting the target are $1/2$ for A, $2/5$ for B $3/4$ for C if all of them fire at the target find the probability that		Analyzing
2.	(i)None of them hits the target (ii) Atleast one of them hits the target	BTL -4	
	(iii)Exactly one of them hits the target		
	A bag contains 4 white ,5 red and 6 black balls .Four are drawn at		
	random find the probability that		Understanding
3.	(a) No ball drawn is black	BTL -2	
	(b) Exactly two are black	DIL 2	
	(c) All are of the same colour		
	(d) There is atleast one ball of each colour		
	total output respectively Out of their outputs 542 percent respectively		
4.	are defective bolts. A bolt is drawn at random from the product and is	BTL -2	Understanding
	found to be defective, what are the probabilities that it was manufactured		8
	by machines A,B and C.		
	A random variable X has the following probability distribution:		
	X 0 1 2 3 4 5 6 7		
	P(X) 0 k 2k 2k 3k k ² 2k ² 7k ² +k		
5.	Find (i) The value of k	BTL -3	Applying
	(ii) Evaluate $P(X \le 6)$, $P(X \ge 6)$ and $P(0 \le x \le 5)$		
	(iii) $P(X \le a) > 1/2$, find the minimum value of 'a' and		
	(iv)Determine the distribution function of X.		

UNIT II - TWO - DIMENSIONAL RANDOM VARIABLES

Joint Probability distribution function – Marginal Probability distribution function and conditional distributions – Covariance – Correlation and linear regression

Q.No.	Question	BT Lev	vel	Competence
	PART – A			
1.	Define Two dimensional Discrete random variables.	BTL -1	F	Remembering
2.	Define Two dimensional Continuous random variables.	BTL -1 Remembering		
3.	Define Marginal probability density function of X.	BTL -1	F	Remembering
4.	The joint probability distribution of X and Y is given by $p(x, y) = \frac{x + y}{21}, x = 0, 1, 2; y = 1, 2$. Find the marginal probability distributions of X.	BTL -2	U	Inderstanding
5.	Find the probability distribution of $X + Y$ from the bivariate	BTL -3		Applying

	distribution of (X,Y) given below:			
	X Y 1 2			
	1 0.4 0.2			
	2 0.3 0.1			
6	The joint probability function (X, Y) is given by $P(x, y) =$	DTI 2	Applying	
0	k(2x + 3y), x = 0,1,2, y = 1,2,3, Find the value of K.	DIL-3	Applying	
	Let X and Y have the joint p.m.f			
7	<u>Y X 0 1 2</u>	BTI 2	Understanding	
7.	0 0.1 0.4 0.1	DIL 2	Understanding	
	1 0.2 0.2 0			
	Find $P(X+Y > 1)$			
	If the joint of (\mathbf{X}, \mathbf{Y}) is $f(x, y) = \int_{-\infty}^{1} (0 < x, y < 2)$			
8	If the joint put of (X, T) is $f(X, y) = \begin{cases} 4 & \dots \\ 0, & otherwise \end{cases}$. Find	BTL -2	Understanding	
	$P(X + Y \le 1)$			
	Let X and Y be random variables with joint density function			
9.	$f(x,y) = \int 4xy, 0 < x < 1, 0 < y < 1$ formulate the value of $E(XY)$	BTL -3	Applying	
	0, otherwise			
	If the joint probability density function of a random variable X and			
10	$\frac{(x^3y^3)}{(x^3y^3)}, 0 < x < 2, 0 < y < 2$	BTL -2	Understanding	
10	Y is given by $f(x, y) = \begin{cases} 16 \\ 0 \end{cases}$ Find the			
	marginal density function of X			
11.	What is the condition for two random variables are independent?	BTL-4	Analyzing	
	The joint probability density of a two dimensional random variable		9	
12.	$(kxe^{-y}; 0 \le x < 2, y > 0)$	BTL -3	Applying	
	(X, Y) is given by $f(x, y) = \{ 0, otherwise \}$. Evaluate K.			
12	The joint probability density function of a random varaiable (X, Y) is		A	
13.	$f(x, y) = k e^{-(2x+3y)}, x \ge 0, y \ge 0$. Find the value of k.	BIL-4	Analyzing	
14.	State the correlation coefficient formula.	BTL -2	Understanding	
15	The regression equations are $x + 6y = 14$ and $2x + 3y = 1$. Find the		Analyzing	
15.	correlation coefficient between X &Y.	DIL -4	Anaryzing	
16	If $\overline{X} = 970$, $\overline{Y} = 18$, $\sigma_x = 38$, $\sigma_y = 2$ and $r = 0.6$, Find the line of	BTI _?	Understanding	
10.	regression of X on Y.	DIL-2	Onderstanding	
	In a partially destroyed laboratory, record of an analysis of			
17.	correlation data, the following results only are legible; Varaince of	BTL-4	Analyzing	
1/1	X = 9; Regression equations are $8X - 10Y + 66 = 0$ and $40X-18Y =$	DIL	ThuryZing	
	214. Find the mean values of X and Y?			
18.	The regression equations are $3x + 2y = 26$ and $6x + y = 31$. Find the	BTL -2	Understanding	
	correlation coefficient.		0	
19.	what is the formula to find the acute angle between the two lines of regression?	BTL -4	Analyzing	
	$\frac{(kr^2y)}{(kr^2y)} = \frac{1}{2} \frac{1}{2$			
20	$\left \text{ If } f(x,y) = \right _{x,y}^{x,y} = \left\{ \begin{array}{c} x < x, y < y < y \\ 0 & \text{otherwise} \end{array} \right\} \text{ is a pdf of X and Y.Find the } $	BTL-3	Applving	
-0.	value of k.		·	
21.	Define Marginal probability density function of Y.	BTL -1	Remembering	
22.	Let X be a continuous random variable having the pdf of	BTL -4	Analyzing	

	$f(x) = \begin{cases} 8xy, 0 < x < y < 1\\ 0 & otherwise \end{cases}$ find marginal density function of X		
23.	Define Conditional probability distribution function of X given Y=y	BTL -3	Applying
24.	Define Conditional probability distribution function of Y given X=x	BTL -2	Understanding
25.	The joint probability distribution of X and Y is given by $f(x,y)=x+y$ x = 0,1,2; y = 1, 2. Find the marginal probability distributions of X.	BTL -4	Analyzing
	PART – B		
	If X, Y are RV's having the joint density function		
1	f(x, y) = k(6-x-y), 0 < x < 2, 2 < y < 4, Find	BTI -3	Annlying
1.	(<i>i</i>) $P(x < 1, y < 3)(ii) P(x < 1/y < 3)$	DIL 5	rippiying
	(iii)P(y < 3/x < 1) iv)P(X + Y < 3)		
2 (a)	The joint distribution of X and Y is given by $f(x, y) = \frac{x+y}{21}$,	BTL -5	Evaluating
2. (u)	x = 1,2,3; y = 1,2. Find the marginal distributions of X and Y.	DIL 5	Dvalduting
2 (h)	If $f(x)=3x^2$, $0 \le x \le 1$ is the pdf of a continuous random variable	BTL -5	Evaluating
2.(0)	, find k such that $P(X > k)=0.05$	DIL 5	Livardadning
	The joint pdf of a two dimensional random variable (X, Y) is given		
2	by $f(x, y) = xy^2 + \frac{x}{8}, 0 \le x \le 2, 0 \le y \le 1$. Compute	DTI 2	Applying
5.	(i) $P(X > 1 / Y < \frac{1}{2})$ (ii) $P(Y < \frac{1}{2} / X > 1)$	DIL-J	Apprying
	(iii) $P(X + Y) < 1$		
	If the joint pdf of (X, Y) is given by $P(x, y) = K(2x+3y), x=0, 1, 2,$		
4. (a)	3, $y = 1, 2, 3$ Find all the marginal probability distribution.	BTL -3	Applying
	The joint pdf of X and Y is given by		Applying
4 .(b)	$\int_{f(x,y)=} \{kx(x-y), 0 < x < 2, -x < y < x\}$	BTL -3	
	(0, 0, 0)	DIL-J	
	(1)Find K (11) Find $f_X(x)$ and $f_y(y)$		
	(i) $P(X < 1)$ (ii) $P(Y < 3)$ (iii) $P(X < 1 Y < 3)$ (iv) $P(X < 1/Y < 3)$		
	$\begin{array}{c} (1) & (X \leq 1)(1) & (Y \leq 3)(11) & (X \leq 1)(1) & (X \leq 1)(1) \\ (1) & (X \leq 1)(1) & (X \leq 1)(1) & (X \leq 1)(1) \\ (1) & (X \leq 1)(1)(1) & (X \leq 1)(1) \\ (1) & (X \leq 1)(1)(1)(1) & (X \leq 1)(1) \\ (1) & (X \leq 1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1$		
		-	
	\mathbf{X} 1 2 3 4 5 6		
5		BTL-3	Annlying
	$\begin{bmatrix} 0 & 0 & 0 & \overline{32} & \overline{32} & \overline{32} & \overline{32} \end{bmatrix}$		1 1991 1 118
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
		-	
	$\begin{vmatrix} 2 & \frac{1}{22} & 1$		
	The two dimensional random variable (X, Y) has the joint		
6. (a)	probability mass function $f(x, y) = \frac{x+2y}{2z}, x = 0,1,2; y = 0,1,2.$	BTL-3	Applying
	Find the conditional distribution of Y given $X = 1$.		
6 (b)	Find $P(X < Y/X < 2Y)$ if the joint pdf of (X, Y) is		Applying
0.(D)	$f(x, y) = e^{-(x+y)}, 0 \le x < \infty, 0 \le y < \infty.$	DIL-3	Applying
7.	If the joint pdf of a two-dimensional $RV(X,Y)$ is given by	BTL -1	Remembering

	$f(x,y) = \begin{cases} x^2 + \frac{xy}{3}; 0 < x < 1, 0 < y < 2\\ 0, \ elsewhere \end{cases}$ (ii) $P(Y < \frac{1}{2}, X < \frac{1}{2})$ (iii) $P\left(Y < \frac{1}{2} / X < \frac{1}{2}\right)$		
8.(a)	Given the joint pdf of X and Y is $f(x,y) = \begin{cases} 8xy; 0 < x < y < 1 \\ 0, elsewhere \end{cases}$ Find the marginal probability distribution function of X and Y.Are X and Y independent.	BTL -4	Analyzing
8.(b)	Find the Coefficient of Correlation between industrial productionand export using the following table :Production (X)1417232125Export (Y)1012152023	BTL -3	Applying
9.	If $f(x,y) = \frac{6-x-y}{8}$, $0 \le x \le 2$, $2 \le y \le 4$ for a bivariate random variable (X,Y), Find the correlation coefficient ρ .	BTL -5	Evaluating
10.(a)	The joit pdf of the two dimensional random variable (X,Y) is given by $f(x,y) = \begin{cases} \frac{x^3y^3}{16}; 0 \le x, y \le 2\\ 0, \ elsewhere \end{cases}$ (i)Find the marginal densities of X and Y. (ii)Prove that X and Y are independent.	BTL -6	Creating
10.(b)	Two random variables X and Y have the following joint probability density function $f(x, y) = \begin{cases} x + y; 0 \le x \le 1, 0 \le y \le 1\\ 0, \text{ otherwise} \end{cases}$. Find the marginal density function of X and Y.	BTL -3	Applying
11.	Find the correlation coefficient for the following heights of fathersX, their sons Y and also find the equations of regression lines.Hence find the height of son when the height of father is 71 X 6566676768697076768656872726971	BTL -4	Analyzing
12	The equation of two regression lines obtained by in a correlation analysis is as follows: $3x + 12y = 19$, $3y + 9x = 46$. (i) Mean value of X&Y. (ii) Calculate the correlation coefficient.	BTL -3	Applying
13.	Find the correlation coefficient for the following data X 101418222630 Y 18122463036	BTL -4	Analyzing
14.(a)	The joint pdf of a two dimensional random variable (X, Y) is given by $f(x, y) = \begin{cases} \frac{6}{5}(x+y^2); & 0 \le x \le 1, 0 \le y \le 1\\ 0, & otherwise \end{cases}$ Obtain the marginal pdf of X and Y.	BTL -3	Applying
14.(b)	If X and Y have the joint pdf of $f(x,y) = \begin{cases} 2 - x - y; & 0 \le x \le 1, 0 \le y \le 1 \\ 0, & otherwise \end{cases}$ Find the value of Variance (X).	BTL -3	Applying
15.	The joint probability mass function of X and Y is given below	BTL -4	Analyzing

			Y X	-1		1					
			0	1/8	3	/8					
			1	2/8	2	/8					
	Find the correlation coefficient of X and Y										
	The two li	ines of reg	ression are	4x-5y+33	B=0 and						
16.	20x-9y=1	07.Calcula	te the mean	ns of x and	d y and the	e coeffi	cier	nt of	BTL-4	Analyzing	
	correlation	n between	x and y. A	lso find σ_y	, if $\sigma_x=2$ a	nd σ_x i	fσy	=3.			
	Two rando	om variabl	es X and Y	have the	joint dens	ity fun	ctio	n			
17.	f(x,y) =	$x + y, 0 \leq$	$\leq x \leq 1, 0$	$\leq y \leq 1.$	Calculate	e the	Cor	relation	BTL-4	Analyzing	
	coefficien	t between	X and Y.								
	The ndf of	f X is f(x)-	$\int cx^4; 0 \leq$	$x \le 2$							
18.(a)	The put of	$1 \land 15 1(\Lambda)$	-\0, othe	rwise					BTL -3	Applying	
	Find C and	d E(X).									
	The joint	pdf a biva	riate R.V(2	X, Y) is gi	ven by $f($	(x, y) =	:				
	$\begin{cases} Kxy , 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0 < x < 1	0 < y < 1	L							
18.(b)	(0),	0 (ii) E	therwise	(;;) Aro V or	d V i	adar	andant	BTL -3	Applying	
	(1) Γ $IIIU K$.	. (II) Г.	$\prod_{n \in \mathcal{N}} \mathbf{F}(\mathbf{A} + \mathbf{I})$	\ 1). (III		IU I II	laet	jendent			
	K. V S.			Charles	DADT	7					
	The joint	probability	distributio	on of the r	PARI – C	- iables	X ai	nd V is			
	given belo	probability)W	uistiiouu			laules	2 x a	iiu i is		Analyzing	
	Y		3	SR	M		5				
	X	1	2	3	4	5	5	6			
		10	0	2V	AV	412		6V			
1.	0	0	0		41	41		UK	BTL -4		
	1	4K	4K	8K	8K	8K		8K			
	2	2K	2K	K	K	0		2K			
	Find (i)Va	alue of K a	nd margina	al probabil	lity distrib	ution of	of X	X and			
	Y (ii) $P(X \le 1)$ (iii) $(X \le 1/Y = 2)$ (iv) $P(X < 3/Y \le 4)$										
	Two rande	om variabl	les X and Y	Y have the	e following	g joint	prol	bability		Analyzing	
2.	density fu	nction $f(x)$	$(x, y) = \begin{cases} x - y \\ y \\ y \end{cases}$	$+y; 0 \le x$	$c \leq 1, 0 \leq 1$	$y \leq 1$	_		BTL -4		
	$\begin{array}{c} \text{density function } (x,y) = \begin{pmatrix} 0, \text{ otherwise} \\ 0, \text{ otherwise} \end{pmatrix}$							9			
	Find the c	orrelation	coefficient	for the fo	II A allu I	nta					
3	\mathbf{X} 22	$\frac{126}{26}$			10 mg u	ua			BTL -2	Understanding	
	$\begin{array}{c c} X & 22 \\ \hline Y & 20 \end{array}$	20 27 20 21	29 27	$\frac{31}{24}$ 2	27 31				DIL 2	Chaerstanding	
	From the	following	data , Find	(i)The two	o regressio	on equa	tior	ns			
	(ii) The co	befficient of	of correlation	on betwee	n the mark	s in m	athe	ematics			
4	and Statist	tics (iii) Tl	ne most lik	ely marks	in Statisti	cs whe	n m	arks in	BTI -2	Understanding	
ч.	Mathemat	ics are 30					_		DIL-2	Onderstanding	
	Marks in	Maths :	25 28	35 32 3	31 36 2	29 38	34	4 32			
	Marks in	Statistics:	43 46 4	41 3	$\frac{10}{32}$ $\frac{32}{3}$	1 <u>30</u>	3.	<u>3</u> 39			
	Out of the $2x + 2x$	- 9 - 0 -	of regressi	on given t	y x + 2y	-5 =	บa n v ว	11 G			
5.	2x + 3y - Use the eq	$- \circ = 0, W$	find the m	eans of X	and V If	ULA OL the va	u I ? rian	ce of	BTL -3	Applying	
	X is 12, fi	nd the vari	iance of Y.			une vu	. iuii				

UNIT I	II - RANDOM PROCESSES							
Classification of random process – Stationary Classification of random process – Stationary								
process	processes – Auto correlation function - Bernoulli process - Poisson process – Markov chain							
Q.No.	Question	BT Level	Competence					
1	PARI – A Define Discrete Bandom Process with example	DTI 1	D					
1.	Define continuous random process vitu example.	BILI	Remembering					
2.	Define continuous random process, Give an example.	BILI	Remembering					
3.	Define wide sense stationary process.	BTLI	Remembering					
4.	State and two properties of Poisson process.	BTLI	Remembering					
5.	What are the four types of a stochastic process?	BTLI	Remembering					
6	matrix $P = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$. Find the stationary probabilities of the chain.	BTL5	Evaluating					
7.	The one-step transition probability matrix of a Markov chain with states (0,1) is given by $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Check whether it is irreducible Markov chain?	BTL6	Creating					
8	Find the transition matrix of the following transition diagram.	BTL6	Creating					
9.	Show that the random process $X(t) = A\cos(\omega_c t + \theta)$ is not stationary if it is assumed that A and ω_c are constants and θ is a uniformly distributed variable on the interval $(0,\pi)$.	BTL3	Applying					
10	Define Markov process.	BTL2	Understanding					
11.	Define Poisson process	BTL2	Understanding					
12.	Check whether the Markov chain with transition probability matrix $P = \begin{bmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \end{bmatrix}$ is irreducible or not?	BTL4	Analyzing					
13.	Consider the random process $X(t) = cos(t + \phi)$, where ϕ is uniform random variable $in(-\pi/2, \pi/2)$. Check whether the process is stationary.	BTL5	Evaluating					
14.	Define Strict Sense Stationary Process.	BTL3	Applying					
15.	Find the mean of a stationary random process whose auto correlation function is given by $R_{XX}(\tau) = 18 + \frac{2}{6 + \tau^2}$	BTL2	Understanding					
16.	Derive the auto correlation for a Poisson process with rate λ .	BTL4	Analyzing					
17.	A random process X (t) = A sin t + B cos t where A and B are	BTL3	Applying					

	independent random variables with zero means and equal standard		
18	Define a Markov chain	RTI 1	Remembering
10.	Find the mean of a stationary random process whose auto	DILI	Remembering
19.	correlation function is given by $R_{(Z)} = \frac{25Z^2 + 36}{6.25Z^2 + 4}$	BTL -4	Analyzing
20.	Let $A = \begin{bmatrix} 0 & 1 \\ 1/2 & 1/2 \end{bmatrix}$ be a stochastic matrix. Check whether it is regular.	BTL -3	Applying
21.	Find the mean square value of the random process whose autocorrelation is $\frac{A^2}{2}\cos(\omega\tau)$	BTL -2	Understanding
22.	Define Bernoulli process .	BTL -4	Analyzing
23.	Distinguish between wide sense stationary and strict sense stationary random process.	BTL -3	Applying
24.	Write any two properties of Bernoulli process.	BTL -2	Understanding
25.	Define an Irreducible Markov Chain.	BTL -4	Analyzing
	PART – B		
1.	The process {X(t)} whose probability distribution under certain conditions is given by $P{X(t) = n} = \begin{cases} \frac{(at)^{n-1}}{(1+at)^{n+1}}, n = 1, 2\\ \frac{at}{(1+at)}, n = 0 \end{cases}$ Show that it is not stationary.	BTL -3	Applying
2.	Show that the random process $X(t) = A \sin(\omega t + \theta)$ is wide-sense stationary process where A and ω are constants and θ is uniformly distributed in $(0, 2\pi)$.	BTL -5	Evaluating
3.	The transition probability matrix of a Markov chain {X _n }, n = 1,2,3, having 3 states 1,2 and 3 is $P = \begin{bmatrix} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{bmatrix}$ and the initial distribution is $P^{(0)} = (0.7, 0.2, 0.1)$. Evaluate i) $P(X_2 = 3)$, ii) $P(X_3 = 2, X_2 = 3, X_1 = 3, X_0 = 2)$	BTL -3	Applying
4. (a)	Given that the random process $X(t) = \cos(t + \varphi)$ where φ is a random variable with density function $f(x) = \frac{1}{\pi}, \frac{-\pi}{2} < \varphi < \frac{\pi}{2}$. Check whether the process is stationary or not.	BTL -3	Applying
4.(b)	Consider a markov chain with the state space $\{0,1\}$ and the TPM $P = \begin{bmatrix} 1 & 0 \\ 1/2 & 1/2 \end{bmatrix}$ (i) Is the state 0 recurrent?.Explain (ii) Is the state 1 transient?.Explain	BTL -3	Applying
5.	Show that the random process $X(t) = A \cos(\omega t + \theta)$ is wide sense	BTL-3	Applying

	stationary, if A and ω are constant and θ is a uniformly distributed		
	random variable in $(0, 2\pi)$.		
6.(a)	Consider a random process $X(t) = B \cos (50 t + \Phi)$ where B and Φ are independent random variables. B is a random variable with mean 0 and variance 1. Φ is uniformly distributed in the interval $[-\pi,\pi]$. Find the mean and auto correlation of the process.	BTL -3	Applying
6.(b)	Verify whether sine wave process $X(t)=Y \cos \omega t$, where Y is uniformly distributed in the interval [0,1] is a SSS process.	BTL -3	Applying
7.	The probability of a dry day following a rainy day is $1/3$ and theat the probability of a rainy day following a dry day is $\frac{1}{2}$. Given that May 1^{st} is a dry day. Find the probability that May 3^{rd} is a dry day also May 5^{th} is a dry day.	BTL -1	Remembering
8.	Three boys A, B and C are throwing a ball to each other. A always throws the ball to B and B always throws the ball to C but C is just as likely to throw the ball to B as to A . Show that the process is Markovian. Find the transition probability matrix and classify the states.	BTL -4	Analyzing
9.	Let {X _n : n = 1,2,3} be a Markov chain on the space S = {1,2,3} with one step t.p.m $P = \begin{bmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 1 & 0 & 0 \end{bmatrix}$ (i).Sketch the transition diagram (ii). Is the chain irreducible? Explain.(iii)Is the chain ergodic? Explain.	BTL -5	Evaluating
10. (a)	An engineer analyzing a series of digital signals generated by at testing system observes that only 1 out of 15 highly distorted signal with no recognizable signal whereas 20 out of 23 recognized signals follow recognizable signals with no highly distorted signals between. Given that only highly distorted signals are not recognizable, find the fraction of signals that are highly distorted.	BTL -6	Creating
10.(b)	If the customers arrive in accordance with the Poisson process, with rate of 2 per minute, Find the probability that the interval between 2 consecutive arrivals is (i) more than 1 minute, (ii) between 1 and 2 minutes, (iii) less than 4 minutes.	BTL -3	Applying
11.	Let {X _n , n= 0, 1, 2,3} be a markov chain with state space S={0,1,2} and one step TPM $P = \begin{pmatrix} 0 & 1 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 1 & 0 \end{pmatrix}$ (i)Is the chain ergodic? Explain. (ii)Find the invariant Probability	BTL -4	Analyzing
12.(a)	Check whether the Poisson process $X(t)$ given by the probability law $P\{X(t) = n\} = \frac{e^{-\lambda t} (\lambda t)^n}{n!}$, $n = 0, 1, 2, \dots$ is stationary or not.	BTL -3	Applying
12.(b)	A salesman's territory consists of three regions A, B, C. He never sells in the same region on successive days. If he sells in region A, then the next day he sells in B. However, if he sells either B or C, then the next day he is twice as likely to sell in A as in the other region. Explain How often does he sell in each of the regions in the steady state?	BTL -3	Applying

	Show that the random process $Y(t) = A \cos(\omega t \pm A)$ is not		
12	show that the function process $X(t) = X \cos(\omega t + 0)$ is not		A
13.	stationary if Aand ω are constants and θ is unnorming distributed	B1L -4	Analyzing
	random variable in $(0,\pi)$.		
14.	Consider a Markov chain chain $\{X_n, n=0, 1, 2,\}$ having states space S={ 1,2} and one step TPM $P = \begin{bmatrix} \frac{4}{10} & \frac{6}{10} \\ \frac{8}{10} & \frac{2}{10} \end{bmatrix}$. (1) Draw a transition diagram (2)Is the chain irreducible? (3) Is the state -1 ergodic? Explain (4) Is the chain ergodic? Explain	BTL -3	Applying
15.	Consider the random process $Y(t) = X(t) \cos(\omega_0 t + \theta)$, where $X(t)$ is wide sense stationary process, θ is a Uniformly distributed R.V.	BTL -4	Analyzing
	independent. Show that $Y(t)$ is a wide sense stationary.		
16.(a)	Find the mean and autocorrelation of the Poisson processes	BTL -4	Analyzing
16.(b)	At an intersection, a working traffic light will be out of order the next day with probability 0.07, and an out of order traffic light will be working on the next day with probability 0.88. Find the state space and tpm. Also find $P(X_2=1)$.	BTL -3	Applying
17.	Consider the Markov chain $\{X_n, n=0, 1, 2, 3,\}$ having 3 states space S={1,2,3} and one step TPM $P = \begin{bmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \end{bmatrix}$ and initial probability distribution P(X ₀ =i)=1/3, i= 1,2,3. Compute (1) P(X ₃ =2. X ₂ =1,X ₁ =2/X ₀ =1) (2) P(X ₃ =2, X ₂ =1/X ₁ =2,X ₀ =1) (3) P(X ₂ =2/X ₀ =2) (4)Invariant Probabilities of the Markov Chain.	BTL -4	Analyzing
18. (a)	Suppose the customers arrive in a bank according to the Poisson process, with a mean rate of 3 per minute, Find the probability that during a time interval 0f 2 minute (i)Exactly 4 customers arrive and (ii) more than 4 customers arrive	BTL -3	Applying
18.(b)	Prove that the sum of two independent Poisson process is a Poisson process.	BTL -3	Applying
	PART – C		
1.	The transition probability matrix of a Markov process {X _n }, n = 1,2,3, having 3 states 0,1 and 2 is $P = \begin{pmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 3/4 & 1/4 \end{pmatrix}$ and the initial distribution is $P^{(0)} = (1/3, 1/3, 1/3).$ Evaluate (i) P(X ₃ =2/ X ₂ =1) (ii) P(X ₂ =2, X ₁ =1, X ₀ =2) (iii) P(X ₃ =1, X ₂ =2, X ₁ =1, X ₀ =2) (iv) P(X ₂ =2)	BTL -4	Analyzing
2.	A man either drives a car or catches a train to go to office each day. He never goes 2 days in a row by train but if he drives one day, then the next day he is just as likely to drive again as he is to travel by train. Now suppose that on the first day of the week, the	BTL -4	Analyzing

	man tossed a fair die and drove to work if and only if 6 appeared.											
	Find (i) the probability that he takes a train on the third day											
	(11) the probability that he drives to work in the long run.											
	A machine goes out of order whenever a component fails. The failure of this part, follows a Poisson process with mean rate of 1											
	ner week. Find the probability that 2 weeks have a elapsed since											
3	last failure. If there are 5 spare parts of this component in an	BTI _2	Understanding									
5.	inventory and that the next supply is not due in 10 weeks find the	DTL^{-2}	Onderstanding									
	probability that the machine will not be out of order in the next 10											
	weeks.											
-	A fair die is tossed repeatedly. If X _n denotes the maximum of the											
	numbers occurring in the first n tosses, find the transition \mathbf{PTI}_{2}											
4.	probability matrix \vec{P} of the Markov chain $\{X_n\}$. Find also	BIL-2	Understanding									
	$P\{X_2=6\}$ and P^2 .											
	Suppose the probability of a dry day following a rainy day is 1/3											
5	and that the probability of a rainy day following a dry day BTI _3											
5.	is1/2.Given that may 1 is a dry day .Find the probability that	DIL-J	Applying									
	(i)May 3 is a dry day and (ii) May 5 is a dry day											
UNIT	IV - TESTING OF HYPOTHESIS											
Sampli	ng distributions - Estimation of parameters and interval estimation - Stat	istical hypo	othesis - Large									
sample	tests based on Normal distribution for single mean and difference of me	ans -Tests	based on t,									
Chi-squ	uare and F distributions for mean, variance and proportion - Co	ontingency	table (test for									
indepen	ndent) - Goodness of fit.											
Q.No.	Question	BT	, Competence									
	DADT A	Leve	1 -									
1.	Define the following terms (i) Statistic (ii) parameter	BTL -	1 Remembering									
2.	What are null and alternate hypothesis?	BTL -	1 Remembering									
3.	Mention the various steps involved in testing of hypothesis.	BTL -	1 Remembering									
	What is the essential difference between confidence limits and tolerance	e pri										
4.	limits?	BIL -	I Remembering									
5.	What are the parameters and statistics in sampling	BTL -	1 Remembering									
6	State level of significance.	BTL -	1 Remembering									
7.	Define standard error	BTL -	2 Understanding									
8	Define Hypothesis	BTL -	2 Understanding									
9.	Define Null hypothesis	BTL -	2 Understanding									
10	What is the assumption before applying t-test for equality of two means	c? RTL	2 Understanding									
11.	Write down the formula of test statistic 't' to test the significance of											
	Write down the formula of test statistic 't' to test the significance of	BTL-	3 Applying									
	Write down the formula of test statistic 't' to test the significance of difference between the means.	BTL -	3 Applying									
12.	Write down the formula of test statistic 't' to test the significance of difference between the means. What are the applications of t-test?	BTL -	3 Applying 3 Applying									
12. 13.	Write down the formula of test statistic 't' to test the significance of difference between the means. What are the applications of t-test? State any two applications of ψ^2 -test.	BTL - BTL - BTL - BTL -	2Onderstanding3Applying3Applying6Creating									
12. 13. 14.	Write down the formula of test statistic 't' to test the significance of difference between the means. What are the applications of t-test? State any two applications of ψ^2 -test. Write the application of 'F' test.	BTL - BTL - BTL - BTL - BTL -	2Onderstanding3Applying3Applying6Creating4Analyzing									
12. 13. 14. 15.	Write down the formula of test statistic 't' to test the significance of difference between the means. What are the applications of t-test? State any two applications of ψ^2 -test. Write the application of 'F' test. Define 'F' variate.	BTL - BTL - BTL - BTL - BTL - BTL -	2Onderstanding3Applying3Applying6Creating4Analyzing4Analyzing									
12. 13. 14. 15. 16.	Write down the formula of test statistic 't' to test the significance of difference between the means. What are the applications of t-test? State any two applications of ψ^2 -test. Write the application of 'F' test. Define 'F' variate.	BTL - BTL - BTL - BTL - BTL - BTL - BTL -	 3 Applying 3 Applying 3 Applying 6 Creating 4 Analyzing 4 Analyzing 3 Applying 									
12. 13. 14. 15. 16. 17.	Write down the formula of test statistic 't' to test the significance of difference between the means. What are the applications of t-test? State any two applications of ψ^2 -test. Write the application of 'F' test. Define 'F' variate. What are the properties of "F" test? What is the assumption of t-test?	BTL -	2Onderstanding3Applying3Applying6Creating4Analyzing4Analyzing3Applying5Evaluating									
12. 13. 14. 15. 16. 17. 18.	Write down the formula of test statistic 't' to test the significance of difference between the means. What are the applications of t-test? State any two applications of ψ^2 -test. Write the application of 'F' test. Define 'F' variate. What are the properties of "F" test? What is the assumption of t-test? Write the formula for the chi- square test of goodness of fit of a random sample to a hypothetical distribution.	BTL - BTL -	2Onderstanding3Applying3Applying3Applying4Analyzing4Analyzing3Applying5Evaluating5Evaluating									
12. 13. 14. 15. 16. 17. 18. 19.	Write down the formula of test statistic 't' to test the significance of difference between the means. What are the applications of t-test? State any two applications of ψ^2 -test. Write the application of 'F' test. Define 'F' variate. What are the properties of "F" test? What is the assumption of t-test? Write the formula for the chi- square test of goodness of fit of a random sample to a hypothetical distribution. Give the main use of ψ^2 -test	BTL - BTL -	2Onderstanding3Applying3Applying6Creating4Analyzing3Applying5Evaluating5Evaluating6Creating									

	What are the	expected fr	equencies	of 2x2 conti	ngency tab	ole?		
20.		a h					BTL -4	Analyzing
		c d						, ,
21.	What is a test	BTL -2	Understanding					
22.	Define Type-	I and Type-	BTL -4	Analyzing				
23.	Define one ta	iled and tw	o tailed tes	st			BTL -3	Applying
24	Write down		I la denoten din e					
24.	tailed large sa	BIL-2	Understanding					
25	Write down t	BTI -4	Analyzing					
43.	means using	smll sample	es.				DIL -4	Anaryzing
	1			PART	– B		[
	A simple san	nple of heig	ts of 640	0 Englishm	en has a m	nean of 170cms		
	and a standar	d deviation	of 6.4cms	s, while a sin	mple samp	le of heights of		
1.	1600 Americ	cans has a	mean of	1/2 cm and	1 a standa	rd deviation of	BIL-3	Applying
	then English	ne dala ind	icate that	Americans	are, on the	e average, taller		
	A sample of	100 studer	ts is take	n from a lar	oe nonula	tion The mean	DTI 1	
	height of the	students in	n this sam	ple is 160c	ms. Can it	t be reasonably	DIL-I	Remembering
2. (a)	regarded that	t this samp	le is from	a populati	on of mea	an 165 cm and		Itemeting
	standard devi	ation 10 cm	ı?	1 1	WC.			
	Test of fideli	ty and selec	tivity of 19	90 radio rece	eivers prod	uced the results		
	shown in the	following ta						
	-							
		Selectivity	Low	Average	High		BTL-1	Remembering
2.(b)	-	Low	6	12	32			remembering
	-	Average	33	61	18	-		
		High rol of signi	13 ficence to	15 tost whath	0 or thore is			
	between fide	ity and sele	ctivity	iest wheth		s a relationship		
	Given the fol	lowing tabl	e for hair o	color and ev	e color. id	entify the value		
	of Chi-squar	e. Is there	good asso	ociation bet	ween hair	color and eye		
	color?		e			2		
			Ha	ir color				
3.			Fair	Brown	Black	Total	BTL -1	Remembering
	Eye	Blue	15	5	20	40		
	color	Grey	20	10	20	50		
		Brown	25	15	20	60		
		Total	60	30	60	150		
	A standard sa	mple of 20	tins of co	oconut oil ga	we an aver	age weight of		
4. (a)	4.95 kg with	a standard c	leviation o	f 0.21 kg. D	o we accep	of that the net	BTL-3	Applying
	weight is $\Im K$	g per tin at :	0% level 0	1 significanc	ve!	intion 5 units		
4 (b)	A sample of .	20 nems nas thesis that it	is a rando	units and sta m sample fr	mualu dev	al nonulation	BTL -3	Applying
 (U)	with mean 44	incoro urat It 5 units		in sample II		ai population		триуше
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	411100					L	

	Two independent samples of values.	sizes 8 and	l 7 containe	ed the following		
5.		15 01	16 10	16 14	BTL-3	Applying
	Sample I 19 17 Sample II 15 14	15 21 15 19	16 18 15 18	16 14 16		
	Test if the two populations have	the same m	ean.			
	A group of 10 rats fed on diet A B, Recorded the following	A and anoth increase	er group of the followi	8 rats fed on diet ng increase in		
	weight.(gm)			-		A 1 '
6.(a)	Diet A 5 6 8 1 Diet B 2 2 6 8 1	12 4 3	9 6	10	BTL-3	Applying
	Diet B 2 3 6 8					
	Find the variances are significant.					
	group of 11 part time course stu	dents in a te	st are given	below :		
	Sample I 56 62 63 54	4 60 51	67 69	58		
6.(b)	Sample II 62 70 71 6	2 60 56	75 64	72 68 66	BTL -3	Applying
		2 00 50	13 04	72 00 00		
	Examine whether the marks ob	tained by re	egular stude	nts and part-time		
	students differ significantly at 5	% levels of s	significance.			
	Sample I 9 11	13 11	15 9	12 14		
7	Sample II 10 12	DTI 1	Domomhoring			
/.	following Values of the variable	e (weight in	kgs.) Use 0.0	05 LOS	DIL-I	Kennenhoernig
	To test whether the variances of					
	A sample of 200 persons with	a particular	disease was	selected. Out of		
	these, 100 were given a drug a	and the othe	ers were not	given any drug.		
	Number of persons	Drug	No drug	Total		
8.	Cured	65	55	120	BTL -4	Analyzing
	Not cured	35	45	80		
	Total	100	100	200		
	In a certain factory there are two	o independer	nt processes	manufacturing		
	the same item. The average weight	ght in a sam	ple of 250 it	ems produced		
9.	from one process is found to be	120 Ozs, wi	th a standar	d deviation of 12	BTL -5	Evaluating
	Ozs, while the corresponding fig	gures in a sa	mple of 400	items from the		6
	means significant?			the two sample		
	The nicotine content in milligram	m of two sar	nples of tob	oco where found		
	to be as follows					a .
10.	Sample 1 24 27 26 21 Sample 2 27 30 28 31	1 25 1 22 36			BTL-6	Creating
	Can it be said that this samples	where from	n normal po	pulation with the		

	same mean.									
	Records take	n of the	number of	male a	nd fe	male birt	hs in 800 fa	milies		
	having four (Children	are as follo	ows :						
	Number of m	hale birth								
11.	Number of fe	emale bir	ths :	4 3	$\frac{2}{2}$	1	0		BTL-4	Analyzing
	Number of F	amilies	ata ara a	$32 \cdot 1/8$	s 290	J = 236 C)4 hymothodia	that the		
	hinomial lay	r the a	ata are co	of a m	nt w	hin the	nypoinesis	that the		
	namely $n - \frac{1}{2}$	b = a		01 a 11			qual to tema	ue onui,		
	Certain pesti	$\frac{2-q}{cide}$ is 1	sample							
	of 10 bags i	s drawn	and their	conten	its ar	e found	to weigh(i	n kø) as		
12.	follows 50.4	9 52 44 4	14 45 48 40	5 45 49	0 4 5	Test if t	he average	nacking	BTL -3	Applying
	can be taken	packing								
		1000000000000000000000000000000000000	ios with 5	childre	n an	oh ravaal	ad the follow	vina		
	distribution	520 Tanni	lies with J	ciniure	ii ca			ving		
	Boys	5 4	3	2	1	0				
12	Cirlo		2	2	1	5				Analyzing
13.	Families	14 14 5	<u> </u>	3 88	4	12			DIL -4	Anaryzing
	Is this result	consiste	$\frac{0}{110}$ nt with the	hypot	thesis	that ma	le and fema	le hirths		
	are equally p	robable?	ine wreit the	nypot		, that the				
	The followin	a data ai	ves the nu	nher of	fairc	raft accid	lents that oc	curred		
	during the various days of a week. Find whether the accidents are									
14.	uniformly distributed over the week								BTL-3	Applying
	Days	Su	in Mon	Tues	s V	Ved Th	u Fri	Sat	212 0	119919-18
	No.of accid	ents 14	16	08	1	2 11	9	14		
	Two random	samples	gave the f	<mark>oll</mark> owir	ng rea	sult <mark>s:</mark>				
	Sample	Size Sa	mple mear	Sum	of sq	uares of				
1.	1	10 17	· · · · ·	devia	tion f	rom the 1	mean		Analyzing	
15.		10 15		100					BTL -4	Analyzing
	Analyze wh	12 14 hether th	e complex	have		ne from	the same	normal		
	population	iculti th	e samples				the same	normai		
	Test if the di	fference	in the mean	ns is si	gnifi	cant for tl	he following	data data		
16.	Sample I: 76	6 68 70	43 94 68	33			-2	,	BTL-4	Analyzing
	Sample II: 40	0 48 92	85 70 76	68 22	2					
	Mechanical e	engineers	testing a r	new arc	e wel	ding tech	nique, classi	ified		
	welds both w	vith respe	ect to appea	arance	and a	in X-ray i	nspection	-		
	X-ray/Appe	earance	Bad		No	rmal	Good			
17.	Bad		20		7		3	-	BTL -4	Analyzing
	Normal		13		51		16	_		
	Test for inde	nandance	$\frac{1}{2}$	5 loval	12	anificano	21			
	The nicotine	content i	n milliorar	$\frac{10001}{1000}$	01 51	nnles of	u. tobacco whe	ere		
	found to be a	is follows	s. test the s	ignific	ant d	ifference	between me	ans of		
18.	the two same	oles.	,	00					BTL-3	Applying
	Sample I	21	24	25		26	27	-	1 -	11.70
	Sample II	22	27	28		30	31	36		

			PART	C – C					
	Random samples drawn	from two place	s gave	the foll	owing	data rel	ating		
	to the heights of male ad	lults:					7		
			Pla	nce A	Plac	e B			
1	Mean height (in inches		68.	.50	65.5	0		RTI -4	Analyzing
1.	S.D (in inches)			2.5	3	3.0		DIL -4	Anaryzing
	No. of adut males in sa	imple	120	00	1500)			
	Test at 5 % level, that t	he mean height	is the	same fo	or adult	s in the	e two		
	places.								
	Samples of two types of	and							
	following data were obt								
	Type I Type II								
2.	Sample Size	8		1026	1			BTL-4	Analyzing
	Sample Mean 1234hrs 1036hrs Sample S D 26brs 40brs								, ,
	Sample S.D								
	Analyze that, is the di	Herence in the	means	SUITICI	ent to	warran	t that		
	5 coins were tossed 320	times. The num	e lengti	hands s	hearve	tic air	an		
	below ·	unies. The num		neaus c		1 18 giv	CII		
			-		4	~	7		
3.	No. of heads	0 1	_2	3	4	5	_	BTL -2	Understanding
	Observed	15 45	85	95	60	20			
	Irequencies	in is unbiased	1100 501	lavala	faigni	Saamaa			
	The theory predicts that	the population	of bean	s in the	four g		R		
	C and D should be $9.3.3$	1 In an experi	ment a	mong 1	600 be	oups r ans the	х, D,		
4.	number in the four grou	ps was 882.313.	287 an	$\frac{110}{118}$	Do the	110, the		BTL -2	Understanding
	experimental results sur	port the survey	? ?	a 1101					
	The following data rela	te to the marks	obtaine	d by 11	studen	ts in tv	VO		
	tests one before and the	other after an in	tensive	e coach	ing .Do	the da	ta		
5.	indicate that the student	s have benifitted	l by co	aching	,			BTL -3	Applying
	Test I : 19 23 16 24 1	7 18 20 18 21	19 2	0					
	Test II: 17 24 20 24 2	0 22 20 20 18	8 22 1	9					
UNITY	V - DESIGN OF EXPER	RIMENTS				P			
One w	ay and two way classific	ations - Comple	tely rai	ndomiz	ed desig	gn – Ra	indomi	zed block	design – Latin
square	e design								-
Q.No.		Questi	on					ВТ	Commentance
		-						Level	Competence
			PAR'	$\mathbf{T} - \mathbf{A}$					
1.	What is the aim of desig	gn of experimen	ts?					BTL -1	Remembering
2.	Write the basic assumption	tions in analysis	of vari	ance.				BTL -1	Remembering
3.	When do you apply ana	lysis of variance	e techn	ique?				BTL -1	Remembering
4.	Define Replication.	•		•				BTL -1	Remembering
5.	Define Randomization.							BTL -1	Remembering
6	Define Local control.							BTL -1	Remembering
7.	What is meant by tolera	nce limits?						BTL -2	Understanding
8	What is a completely ra	ndomized desig	n					BTL -2	Understanding

9.	Explain the advantages of a Latin square design?	BTL-2	Understanding
7.	What are the basic elements of an Completely Randomized Experimental	BTL -2	Understanding
10	Design?	D12 2	onderstanding
11.	Demonstrate the purpose of blocking in a randomized block design?	BTL -3	Applying
12.	Manipulate the Basic principles of the design of experiment?	BTL -3	Applying
13.	Why a 2x2 Latin square is not possible? Explain.	BTL -3	Applying
	Demonstrate main advantage of Latin square Design over Randomized	BTL -4	Analyzing
14.	Block Design?		, ,
15.	Analyze the advantages of the Latin square design over the other design.	BTL -4	Analyzing
16.	Write any two differences between RBD and LSD.	BTL -4	Analyzing
17.	What is ANOVA?	BTL -5	Evaluating
18.	What are the uses of ANOVA?	BTL -5	Evaluating
19.	Define experimental error.	BTL-6	Creating
20.	Write any two advantages of RBD over CRD.	BTL -4	Analyzing
21.	Write the basic design of experiments	BTL -2	Understanding
22.	Write the ANOVA table for RBD	BTL -4	Analyzing
23.	Write merits of RBD	BTL-3	Applying
24.	Write the ANOVA table for CRD	BTL -2	Understanding
25.	Write the ANOVA table for Latin Square Design	BTL -4	Analyzing
	PART – B		
1.	The accompanying data resulted from an experiment comparing the degree of soiling for fabric copolymerized with the 3 different mixtures of met acrylic acid. Analyze the classification. Mixture 1 : 0.56 1.12 0.90 1.07 0.94 Mixture 2 : 0.72 0.69 0.87 0.78 0.91	BTL -1	Remembering
	Mixture 2 : 0.72 0.09 0.07 0.70 0.91 Mixture 3 : 0.62 1.08 1.07 0.99 0.93		
2.	The following table shows the lives in hours of four brands of electric lamps brand A: 1610, 1610, 1650, 1680, 1700, 1720, 1800 B: 1580, 1640, 1640, 1700, 1750 C: 1460, 1550, 1600, 1620, 1640, 1660, 1740, 1820 D: 1510, 1520, 1530, 1570, 1600, 1680 Identify an analysis of variance and test the homogeneity of the mean lives of the four brands of lamps.	BTL -5	Evaluating
3.	In order to determine whether the significant difference in the durability of 3makes of computers, samples of size 5 are selected from each make and the frequency of repair during the first year of purchase is observed. The results are as follows: In view of the above data, what conclusion can you draw? Makes $\begin{array}{c c c c c c c c c c c c c c c c c c c $	BTL -3	Applying
4.	Five doctors each test five treatments for a certain disease and observe the number of days each patient takes to recover. The results are as follows (recovery time in days)	BTL -3	Applying

			Treatr	ment							
	D	octor	1	2	3	4		5			
	A		10	14	23	18		20			
	B		11	15	24	17		21			
			9	12	20	16		19			
			8	12	17	17		20			
	E E		12	15	10	15		$\frac{20}{22}$			
	Estimate the di	fforonce	$\frac{12}{betwee}$	$\frac{13}{2}$	17	$\frac{13}{nd(h)}$	traati	22 nonts fo	or the		
	above data at 5	1 loval		cii (a) u		nu(0)	ucau	nems n	Ji the		
	Perform a 2 w	$\frac{70}{10}$ $\frac{10}{10}$ $\frac{10}{10}$	$\frac{1}{VA}$ on	the data	aiven k	alow	·				
	1 chomi a 2-wa	iy Ano		Treatme	$\frac{1}{1}$ given (Jeiuw	•				
			1	1				2			
		1	1	1	2			3			
5		1		<u>30</u>	26			38		DTI 2	Annlying
5.		2	4	24	29			28		BIL-3	Applying
	Treatment 2	3	3	33	24			35			
		4	3	36	31			30			
		5	2	27	35			33			
	Use the coding	method	l subtra	cting 30	from th	ne giv	en no	Э.			
	A chemist wis	hes to	test the	effect	of four	chem	ncal	agents	on the		
	strength of a	particu	lar typ	be of c	loth. B	ecaus	e the	ere mış	ght be		
	variability from one bolt to another, the chemist decides to use a										
	randomized bl										
	,she selects fiv										
	to each bolt, The resulting tensile strength follows										
6.			BC		1.1.2					BTL -3	Applying
				2	3		4	5		_	
		1	73	68	74		71	67			
	CHEMICAL	2	73	67	75	1	72	70			
		3	75	68	78		73	68			
		4	73	71	75		75	69			
	Does the tensi	ile stre	ngth de	epend o	n chem	ical?	Test	t at 10	% level of		
	significance.										
	A latin square of	lesign v	vas useo	d to con	pare th	e bon	d stre	ength of	f gold		
	semiconductor	lead wi	res bou	inded to	the lead	l term	inal	by five	different		
	methods A, B,	C, D &	E. The	bonds v	vere ma	de by	five	differe	nt		
	operators and t	he devi	ce were	encapsi	ulated u	sing f	ive d	ifferent	plastics.		
	With the follow	ving res	ult ,exp	pressed a	s pound	ls of f	force	require	d to break		
	the bond		1.								
7.	Plastics/ opera	ator	1	2	3		4	5		BTL -1	Remembering
	1		A3	B2.4	- C1	.9	D2.	2 E1	1.7		
	2		B2.1	C2.7	7 D2	.3	E2.:	5 A.	3.1		
	3		C2.1	D2.6	5 E2	.5	A2.9	9 B2	2.1		
	4		D2.0	E2.5	B3	.2	B2	5 C2	2.2		
	5 E2.1 A3.6 B2.4 C2.4 D2.1							2.1			
	Analyze these i	results a	and test	with .01	l level c	of sign	nifica	nce.			
	The following	data res	ulted fr	rom an e	xperime	ent to	com	pare thr	ee burners		
8.	A, B, C. A Lati	n squar	e design	n was us	sed as th	e test	ts we	re made	e on 3	BTL -3	Applying
	engines and we	ere sprea	ad over	3 days.							

		A 16	B 1	17	C 20				
		B 16	C 2	21	A 15				
		C 15	A	12	B 13				
	Test the hypothesis an	nd infer	that the	ere is no	o differe	nce between	the		
	burners.								
	A farmer wishes to te	st the eff	fects of	f four d	ifferent	fertilizers A,l	B,C, Don		
	the yield of Wheat. In	n order t	o elim	inate so	urces of	error due to			
	variability in soil ferti	ility, he	uses th	e fertili	zers, in a	a Latin squar	e		
	arrangement a syndic	ated in the	ne foll	owing t	able, wh	ere the numb	bers		
	indicate yields per un	it area.		e					
0	A18	C21		D25	В	11			F 1
9.	D22	B12		A15	С	19		BIL-3	Evaluating
	B15	A20		C23	D	24			
	C22	D21		B10	A	17			
	Design an analysis of	variance	e to de	termine	if there	is a significa	nt		
	difference between th	e fertiliz	ers at	α=0.05	and $\alpha = 0$.01 levels of			
	significance.								
	Set up the analysis of	variance	e for th	ne follov	wing res	ults of a Latin	n Square		
	Design(use $\alpha = 0.01$)	level of	signifi	cance			-		
	A12	C19)	B10	The Party of Land	08			
10.	C18	B12	2	D6	F	7		BTL -3	Applying
	B22	D10)	A5	(21			
	D12		,	C27		217			
	In a 5x5 Latin aquara	avnorim	ant th	o dete a	allastad	ic given in t	a motrix		
	halow Vield per plot	experim is given	in quir	e uala c	the five	different cul	tivation		
	traatmants A B C D	and E E	III quii Orforn	nais ioi	alveie of	Vorionoo	luvation		
	treatments A, D, C,D			1 the all	$2 \frac{1}{2} $	variance.			
11.		D64 I	260 L	50 E6	$\frac{1}{4}$ C63			BTL -4	Analyzing
		B60 /	53 (150 De	1 = E67				
		C57 I	155 C	67 B6	$5 \Delta 55$				
		E67	57 B	$66 \Delta 6$	0 AJJ				
	In a Latin square expe	eriment of	viven k		re the vi	elds in quints	als ner		
	acre on the paddy cro	n carried	l out fo	or testin	g the eff	ect of five fe	rtilizers		
	A B C D E Analyz	e the da	ta for y	variation	ns				
	11, D, C, D, D, III IIII	B25	A18 F	$E27 D^2$	30 C27				
12.		A19 I)31 (229 E2	$B_{6} B_{23}$			BTL -3	Applying
		C28 F	B22 I	D33 A	18 E27				
		E28 (C26 A	$\lambda 20$ B2	25 D33				
		D32	E25 E	323 C ²	28 A20				
	The following are the	number	of mis	stakes n	nade in <i>f</i>	5 successive	days by		
	four technicians work	ing for a	phote	graphic	e laborat	orv. Test whe	ether the		
	difference among the	four san	nple m	eans ca	n be attr	ibuted to cha	nce. Test		
	at a level of significar	nce $\alpha = 0$).01.						
12		Techa							A malarin a
13.		recnn	ician					DIL-4	Anaryzing
		Ι	II	III	IV				
		6	14	10	9				
		1.4	0	10	10				
		14	9	12	12				

			1	0	12	7	8					
			8		10	15	10					
			1	1	14	13	10					
	A	1		1	14	11	11		<u> </u>			
	A randor breaking	n sampi strengt	h (in pou	nds)	are me	ach of the easured	with the	foll	owing	results		
	Sample I	: 70	72 7	75	80 83	3		1011	owing	lebuito		
14.	Sample I	I : 10	: 100 110 108 112 113 120 107									Applying
	Sample	III: 60) 65 5	57	84 8	7 73						
	Test whe	ther the	breaking	g stre	ength o	f the roj	pes diffe	rs si	gnifica	ntly?		
	The table	e below	of paddy									
	in a particular type of soil treated with manures A,B and C.Analyse the											
15.		$\frac{1000}{1000}$ $\frac{1000}{1000}$ $\frac{1000}{1000}$ $\frac{1000}{1000}$					BTL -4	Analyzing				
	B		48		<u></u>	40	<u>a</u>		47			
	C		50	4	50	5	1		49			
	If A,B,C	represe	nt the fer	tilize	er treat	ment, as	s in the p	orevi	ous pro	oblem ,test		
	for the di	fferenc	e betwee	n the	e treatm	nent at 0	.05 leve	lof	signific	cance		
16.	A75 B78 C80									BTL -3	Applying	
	C81 A76 B79											
	A compl	etely ra	ndomized	L des	ion evi	perimen	A//	0 nlc	nte and	three		
	treatments gave the results given in the following table											
	Treatment Replications											
17.	A 5 7 1 3								BTL -4	Analyzing		
	В		4	2	4	7						
	C		3	1	1	5						
	Four farr	ners eac	ch used fo	our t	ypes of	f manure	es for a o	crop	(area ai	nd other		
	considera	former and	re same)	and	obtaine	ed the yi	elds (1n	quir	itals) as	s below		
18.					16	21		12			BTL-3	Applying
101		B	23	1	17	19		12			DILU	119919118
		С	21	1	4	18		11				
		D	22	1	15	19		10				
		1	1 . 4		. 1.0	$\frac{PA}{1 + cc}$	$\frac{RT-C}{A}$. • 1	20 1 1		
	A set of o	data inv	01V1ng 4	tropi	ical Ioc	od stuffs	A, B, C	\mathcal{L}, \mathbf{D}	tried of	1 20 chicks		
	the feedi	ng treat	ments an	d ead	ch feed	ing trea	tment is	oive	espects en to 5	chicks		
	Analyze	the data	lients un	u cu		ing trea		51.		emers.		
1.	A	55	49	42	21	52					BTL -4	Analyzing
	В	61	112	30	89	63						
	C	42	97	81	95	92						
	D	169	137	169	85	154		1		• 1 •		
	A compa	iny appo	oints 4 sa	lesm	len A, I	B, C and	1 D and	obse	erves th	eir sales in		
	following	s, summ o table·		i anu	1 11101150	5011. 1 110	e figures		given			
2.						Sal	esmen				BTL -4	Analyzing
		Se	eason		1	2	3		4			
		Su	ımmer		45	40	28		37			

		Winter		43	41	45	5	38				
		Monsoo	on	39	39	43	3	41				
	Carry out an	Analysis	s of v	variances.					-			
	A variable tri	al was co	ondu	cted on w	heat wi	th 4 va	arieties	s in a L	atin squa	are		
	design. The p	lan of th	e exp	periment	and the	per plo	ot yiel	d are gi	ven belo	OW.		
3.		C25	B2	23 A20	D20						BTL -2	Understanding
		A19	D]	19 C21	B18						212 2	0 110013001101118
		B19	A	$\begin{array}{ccc} 14 & D17 \\ 0 & D21 \end{array}$	C20							
	A laboratory	DI/	C2	$\frac{20 \text{ B}21}{20 \text{ B}21}$	AIS	in a stu	~ ~ ~ 6 0	of cool	of fire			
	A laboratory	throada	ad									
	obtain the fol	IU										
				Instrument	$\frac{1113}{12}$	13	14					Understanding
Δ			1	20.0 /	20.4	10.0	21.0	_			BTI _2	
т.			$\frac{1}{2}$	25	20.7	$\frac{17.7}{27.0}$	21.7				DTL -2	
		q	3	25.5	23.1	$\frac{27.0}{21.5}$	24.0					
		rea	4	24.8	$\frac{23.1}{21.2}$	23.5	25.7					
		Th	5	19.6	21.2	22.1	22.1					
	Perform a 2-v	vay ANC)VA	using the	e 0.05 le	evel of	signif	icance.				
	Three machir	nes A,B	,C ga	ave the pr	oductio	n of pi	eces in	n four c	lays as			
	below . Is the	re a sign	ifica	nt differe	nce bety	ween n	nachin	es	•			
5.	Α		17	1	5 SRN	1	4	24	13		BTL -3	Applying
	В		15	1	2	1	9		18			
	C	,	20	8		1	1		17			