SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – $603\ 203$

DEPARTMENT OF

ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

III SEMESTER

1905302 DIGITAL ELECTRONICS

Regulation – 2019

Academic Year 2022–2023

Prepared by

Ms. Bency. P, Assistant Professor (O. G)

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

QUESTION BANK

SUBJECT & SUBJECT CODE: 1905302- Digital Electronics SEM / YEAR: II / III

UNIT-I NUMBER SYSTEMS, BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS

Number system, error detection, corrections & codes conversions, Boolean algebra: De-Morgan's theorem, switching functions and minimisation using K-maps & Quine McCluskey method

PART-A							
Q .	Questions	BT	Competence	CO			
No		Level					
1.	Label the different types of number system.	BTL1	Remembering	CO1			
2.	Convert decimal to binary.	BTL2	Understanding	CO1			
	i. 35						
	ii. 25						
3.	Renovate decimal to octal.	BTL1	Remembering	CO1			
	i. 45						
	ii. 65 SRM						
4.	Infer the rules of successive multiplication method.	BTL2	Understanding	CO1			
5.	Determine the following	BTL3	Applying	CO1			
	i. $(110011)_2 = (___)_{10}$						
	ii. $(43)_8 = (___)_{10}$						
6.	Build the rules for binary to octal conversion with an	BTL3	Applying	CO1			
	example.						
7.	Bring out the rules for binary to hexadecimal	BTL1	Remembering	CO1			
	conversion with an example.						
8.	Deduct the rules for octal to hexadecimal conversion	BTL5	Evaluating	CO1			
	with an example.						
9.	Illustrate binary codes.	BTL2	Understanding	CO1			
10.	Explore the different types of binary codes.	BTL4	Analyzing	CO1			
11.	Define gray code.	BTL1	Remembering	CO1			
12.	Convert binary to gray code 1001.	BTL4	Analyzing	CO1			
13.	Outline Excess-3 code.	BTL2	Understanding	CO1			
14.	Switch the gray code 1101 to binary code.	BTL4	Analyzing	CO1			
15.	Identify error detection and correction code.	BTL3	Applying	CO1			
16.	Recall about Boolean algebra.	BTL1	Remembering	CO1			
17.	What do you meant by postulates?	BTL1	Remembering	CO1			
18.	Compose the meaning of literals.	BTL6	Creating	CO1			
19.	Compile about product term and sum term.	BTL6	Creating	CO1			
20.	Criticize SOP form & POS form.	BTL5	Evaluating	CO1			
21.	Recollect canonical form.	BTL1	Remembering	CO1			

22.	Infer about octet, quad, pair and isolated ones.	BTL2	Understanding	CO1	
23.	f(A,B,C)=ABC+AB'C+ABC'+A'BC express in	M-	BTL3	Applying	CO1
	notation.				
24.	Analyze the limitations while using Boolean post	ulates	BTL4	Analyzing	CO1
	and theorems for simplifying Boolean function.				
	PART-B				1
1.	What are the different types of number system	(3)	BTL1	Remembering	CO1
	and give short note on conversion between				
	number systems.				
	1. Integer part	(5)			
	11. Fraction part	(5)	DTLA	TT 1 . 1	
2.	Convert the following.		BTL2	Understanding	COI
	1. $(1100)_2 = (___)_{10}$	(2)			
	$\begin{array}{c} 11. (13/)_{10} = (\underline{})_{8} \\ \cdots \\ (5.0) (5.0) (\underline{})_{8} \end{array}$	(2)			
	111. $(56)_{10} = (___)_8$	(2)			
	$1V. (223)_{10} = (___)_{16}$	$\begin{pmatrix} (2) \\ (2) \end{pmatrix}$			
	V. $(D\Gamma)_{16} - (\underline{}_{10})_{10}$	$\begin{pmatrix} (2) \\ (2) \end{pmatrix}$			
2	VI. $(02.025)_{10}$ – $(2.025)_{10}$ –	(3)	DTI 2	Applying	CO1
5.	how to detect error and correct the message as	(13)	DILS	Apprying	
	well as determine hamming code for the hinary				
	word 1001 for odd parity				
4	Summarize the postulates of Boolean algebra and	(13)	BTL2	Understanding	CO1
	prove idempotency theorem and associative law.		DILL	onderstanding	
5.	Write involution theorem and prove the	(3)	BTL1	Remembering	CO1
	following			8	
	i. $A+A'B=A+B$	(5)			
	ii. AB+BC+B'C=AB+C	(5)			
6.	Apply the rules and convert the following SOP to		BTL3	Applying	CO1
	standard SOP.				
	i. $F(A,B,C)=AC+AB+BC$	(7)			
	ii. $F(A,B,C)=A+ABC$	(6)			
7.	Analyze the rules for converting POS to standard		BTL4	Analyzing	CO1
	POS.				
	i. $F(A,B,C)=(A+B).(B+C).(A+C)$	(7)			
	ii. $F(A,B,C)=(A+B+C).A$	(6)			
8.	State the rules for converting SOP & POS in its	(13)	BTL1	Remembering	CO1
	canonical form with examples.		DTLA	TT 1 . 1	0.01
9.	Indulge the min terms and max terms and express	(3)	BTL2	Understanding	
	the following in M-notation				
	1. $F(A,B,C) = ABC + ABC + ABC' + A'BC$	(5)			
	11. $\Gamma(A,B,C) = (A+B+C) \cdot (A+B+C) \cdot (A^{+}B+C) \cdot (A^{+}B$	(5)			
10	(A^+B^+U)	(12)	DTI 1	Domomboring	
10.	Obtain the trun table for the following function $f(x,y,z) = xy \pm y^2 z$ and write it in M notation and	(13)	DILI	Kennembering	
	I(x,y,z) - xy + x z and write it in NI-notation and				

	canonical form.				
11.	Minimize the following function	(13)	BTL4	Analyzing	CO1
	$F(a,b,c,d) = \pi M(0,3,4,7,8,10,12,14) + d(2,6)$				
	$F(a,b,c,d) = \sum m(0,4,6,8,9,10,12)$ with $d(2,13)$.				
12.	Make clear about the procedure to form hamming	(13)	BTL3	Applying	CO1
	code and how to detect error and correct the				
	message as well as determine hamming code for				
	the binary word 1001 for even parity.				
13.	Prove that F=A'B+AB' is exclusive OR	(13)	BTL5	Evaluating	CO1
	operation and it equals (((AB)'.A)'.((AB)'.B)')'			C	
14.	Reduce the following using K map	(13)	BTL6	Creating	CO1
	$f(A,B,C,D) = \sum M(4,5,6,7,8,10,11,14)$			C	
	F(x,y,z)=xy'z'+xyz+xyz'+xy'z+xy'z'				
15.	Recall the postulates of Boolean algebra and	(13)	BTL1	Remembering	CO1
	prove any two theorems.				
16.	Reduce using K-map	(13)	BTL2	Understanding	CO1
	$f(a,b,c,d) = \sum m(7,8,9) + d(2,3,10,11,12,13,14,15)$			_	
17.	Obtain the truth table for the following function	(13)	BTL3	Applying	CO1
	f(a,b,c)=ab+a'c and write it in M-notation and				
	canonical form.				
	PART-C				
1.	Interpret the general idea of number system with	(15)	BTL5	Evaluating	CO1
	suitable examples.				
2.	Evaluate error detection and correction code with	(15)	BTL5	Evaluating	CO1
	examples.				
3.	Compose the details of Boolean algebra with		BTL6	Creating	CO1
	postulates and prove				
	i. Absorption theorem	(5)			
	ii. Associative law	(5)			
	iii. Demorgan's theorem	(5)			
4.	With use of K-map find the simplest form of SOP	(15)	BTL6	Creating	CO1
	F=f.g where f=xy+z; g=yz+zx				
5.	Simplify the Boolean function using Quine	(15)	BTL4	Analyzing	CO1
	McCluskey's tabulation method:F(A,B,C,D)=				
	$\sum m(0,5,7,8,9,10,11,14,15)$				
	UNIT-II DESIGN OF COMBINATIONAL	LOG	IC CIRC	CUITS USING	
	GATES AND MSI DE	VICE	S		
Desig	gn of adder, subtractor, comparators, code converte	rs, end	oders, d	ecoders, multiplexe	ers and
demu	Iltiplexers, Realisation of Boolean Functions using N	ASI de	vices, me	emories and PLA.	
	PART-A			~	~ ~ ~
Q.	Questions		BT	Competence	CO
No			Level		
1.	Give the Gray code for the binary number $(1011)_2$.		BTL1	Remembering	CO2
2.	Infer the basic logic gates.		BTL2	Understanding	CO2
3.	What is gray code and mention its advantages.		BTL1	Remembering	CO2

4.	Annotate the block diagram of encoder.		BTL2	Understanding	CO2
5.	Articulate the merits of code converters?		BTL3	Applying	CO2
6.	Interpret about magnitude comparator.	BTL3	Applying	CO2	
7.	Bring out the applications of multiplexer.	BTL1	Remembering	CO2	
8.	Draw the logic diagram of a half adder.		BTL5	Evaluating	CO2
9.	Sketch the block diagram of decoder.		BTL2	Understanding	CO2
10.	Analyze half subtractor with logic diagram.		BTL4	Analyzing	CO2
11.	Recall the working of demultiplexer.		BTL1	Remembering	CO2
12.	Investigate the reason why multiplexer is called	data	BTL4	Analyzing	CO2
	selector.				
13.	Describe combinational logic circuit.		BTL2	Understanding	CO2
14.	Erect OR gate using only NAND gates.		BTL4	Analyzing	CO2
15.	Apply the function $F=\sum(0,2,3,7)$ to form a	logic	BTL3	Applying	CO2
	diagram.				
16.	Mention the dependency of the output in combinat	ional	BTL1	Remembering	CO2
	circuits.				
17.	Interpret the block diagram of encoder.		BTL1	Remembering	CO2
18.	Compare and compile the difference between de	coder	BTL6	Creating	CO2
	and demultiplexer.				
19.	Draw the NAND gate circuit using NOT, AND &	BTL6	Creating	CO2	
	gates.				
20.	Draw the truth table of 2:1 MUX	BTL5	Evaluating	CO2	
21.	Define multiplexer.	BTL1	Remembering	CO2	
22.	What is a PLA?	BTL2	Understanding	CO2	
23.	Outline about PLA.		BTL3	Applying	CO2
24.	Draft the block diagram of decoder.		BTL4	Analyzing	CO2
	PART-B			1	
1.	Design a half adder and half subtractor.	(13)	BTL1	Remembering	CO2
2.	Interpret full adder and full subtractor.	(13)	BTL2	Understanding	CO2
3.	Use two half adder to form a full adder.	(13)	BTL3	Applying	CO2
4.	Design a 4-bit gray to binary code converter and	(13)	BTL2	Understanding	CO2
	implement it using logic gates.				
5.	Recall the implementation procedure using	(13)	BTL1	Remembering	CO2
	multiplexer and also implement the switching				
	function using 8:1 multiplexer				
	$f(A,B,C,D) = \sum m(0,1,3,4,8,9,15)$	(1			
6.	Design a BCD to Excess 3 code converter and	(13)	BTL3	Applying	CO2
	implement it using logic gates.	(1.2)			
7.	Analyze and implement the switching function $\sum_{n=1}^{\infty} (2 + 57)^{n}$	(13)	BTL4	Analyzing	CO2
0	$f(a,b,c) = \sum m(3,4,5,7)$ using suitable multiplexer.				
8.	Outline short notes on		BILI	Kemembering	CO2
	1. Demultiplxer	(3)			
	11. Encoder	(4)			
	III. Decoder	(3)			
	iv. Magnitude comparator	(3)			

9.	Propose the combinational circuit for a half adder	(13)	BTL2	Understanding	CO2
	and half subtractor.				
10.	Form full subtractor employing half subtractor.	(13)	BTL1	Remembering	CO2
11.	Articulate the realization procedure using	(13)	BTL4	Analyzing	CO2
	multiplexer and also implement the switching				
	function using 8*1 multiplexer				
10	$f(A,B,C,D) = \sum m(0,2,3,4,8,9,14,15)$	(1.0)			
12.	Describe magnitude comparator and explain two	(13)	BTL3	Applying	CO2
12	Evaluate a DCD to Evaluate 2 and a converter and	(12)		Evolucting	<u> </u>
15.	evenue it using logic gates	(13)	DILJ	Evaluating	
1/	Create a combinational circuit for full adder and	(13)	RTI 6	Creating	CO^2
17.	full subtractor	(13)	DILU	Creating	
15	Design a full adder and half adder using 4*1	(13)	BTL1	Remembering	CO2
10.	multiplexer.	(15)	DILI	litemeting	
16.	Summarize the following	(13)	BTL2	Understanding	CO2
	v. Demultiplxer				
	vi. Encoder				
	vii. Decoder				
	viii. Magnitude comparator				
17.	Propose a 4-bit gray to binary code converter and	(13)	BTL3	Applying	CO2
	realize it using logic gates.				
	PART-C	(1-)			
1.	Implement $f(a,b,c,d)=\sum m(1,4,5,7,9,12,13)$ using three 2:1 multiplexer.	(15)	BTL5	Evaluating	CO2
2.	Design a combinational circuits with three inputs	(15)	BTL5	Evaluating	CO2
	x, y and z, and the three outputs A, B, C. when			-	
	the binary input is $0,1,2$ or 3, the binary output				
	is one greater than the input. When the binary				
	input is 4,5,6,7 the binary output is one less than				
	the input.				
3.	Assume a 3 input AND gate with output F and	(15)	BTL6	Creating	CO2
	one 3 input OR gate with G output. Show the				
	signals of the outputs F and G as functions of the				
	three inputs ABC. Use all 8 possible				
	Combinations of inputs ABC.			Creating	<u> </u>
4.	for the following function		DILO	Creating	
	$F_1 = \sum m(0, 1, 2, 3, 4, 7, 8, 11, 12, 15)$	(4)			
	$F_{2} = \sum m(2, 3, 6, 7, 8, 9, 12, 13)$	(ד) (4)			
	$F_{3}=\Sigma(1,3,7,8,11,12,15)$	(4)			
	$F4=\Sigma(0.1.4.8.11.12.15)$	(3)			
5.	Design a Binary to Excess-3 code converter and	(15)	BTL4	Analyzing	CO2
	implement it using logic gates.		•	J8	
	UNIT-III ANALYSIS AND DESIGN OF SYN	CHR	ONOUS	SEQUENTIAL	

CIRCUITS

Flip flops - SR, D, JK and T, shift registers, counters, state assignments analysis and design of synchronous sequential circuits, state diagram; state reduction.

	PART-A						
Q.	Questions	BT	Competence	CO			
No		Level	-				
1.	Convert T Flip Flop to D Flip Flop.	BTL1	Remembering	CO3			
2.	Infer the rules for state assignment.	BTL2	Understanding	CO3			
3.	State truth table for SR flip flop.	BTL1	Remembering	CO3			
4.	Interpret the benefits of state reduction.	BTL2	Understanding	CO3			
5.	Show how the JK flip-flop can be modified into a l flip-flop or a T flip-flop.	D BTL3	Applying	CO3			
6.	Give the characteristic equation and state diagram of JI flip-flop.	K BTL3	Applying	CO3			
7.	What is a self-starting counter?	BTL1	Remembering	CO3			
8.	Compare combinational and sequential circuits.	BTL5	Evaluating	CO3			
9.	Inspect the drawback of RS flip-flop.	BTL2	Understanding	CO3			
10.	Implement T flip-flop using JK flip-flop.	BTL4	Analyzing	CO3			
11.	What is a preset table counter and ripple counter?	BTL1	Remembering	CO3			
12.	Deduce the drawback of SR flip-flop.	BTL4	Analyzing	CO3			
13.	Describe synchronous sequential circuit.	BTL2	Understanding	CO3			
14.	Analyze state assignment.	BTL4	Analyzing	CO3			
15.	Identify the truth table for T flip-flop.	BTL3	Applying	CO3			
16.	Give the characteristic equation and characteristic tabl of T flip flop.	e BTL1	Remembering	CO3			
17.	Design the excitation table for JK flip-flop.	BTL1	Remembering	CO3			
18.	Give the characteristic equation and state diagram of flip-flop	T BTL6	Creating	CO3			
19.	Design the excitation table for T flip-flop.	BTL6	Creating	CO3			
20.	Design the excitation table for D flip-flop.	BTL5	Evaluating	CO3			
21.	Bring out truth table for SR flip flop.	BTL1	Remembering	CO3			
22.	Recognize the truth table for T flip-flop.	BTL2	Understanding	CO3			
23.	Realize T flip-flop using JK flip-flop.	BTL3	Applying	CO3			
24.	Contrast sequential and combinational circuits.	BTL4	Analyzing	CO3			
	PART-B	·	· · · ·				
1.	Propose a counter for the following state diagram (13) BTL1	Remembering	CO3			
2.	Explain the operation, state diagram and (13) BTL2	Understanding	CO3			

	characteristics of T flip flop and master slave JK flip flop				
3	Draw the logic diagram of 4-bit synchronous	(13)	BTI 3	Applying	CO3
5.	counter Explain the operation of the counter	(13)	DILJ	rippiying	005
	using the timing diagram				
4	Explain the types of shift register in detail	(13)	BTL2	Understanding	CO3
5	A sequential circuit has two IK flin-flon A and B	(13) (13)	BTL1	Remembering	CO3
5.	two inputs x and y and one output z the		DILI	Remembering	005
	equations are				
	$JA = Bx + B'y' \cdot KA = B'xy'$				
	JB = A'x; KB = A + xv'				
	Z = Ax'y' + Bx'y.				
	Draw the logic diagram and state table.				
6.	i. Estimate a sequential circuit with two D-	(7)	BTL3	Applying	CO3
	flip-flops A and B and one output x. When			11 5 6	
	x=0, the state of the circuit goes through				
	the state transitions from 00 01 11 10 00				
	and repeats.				
	ii. Estimate mod 7 counter using D flip-flops.	(6)			
7.	A sequential circuit has two JK flip-flops A and		BTL4	Analyzing	CO3
	B. The flipflop input functions are:				
	JA=B; JB=x				
	$KA=Bx; KB=A \oplus x$				
	i. Draw the logic diagram of the circuit	(5)			
	ii. Tabulate the state table	(4)			
	iii. Draw the state diagram	(4)			
8.	Design a counter for the following state diagram	(13)	BTL1	Remembering	CO3
	000 (111)				
	$\langle \rangle$				
	\downarrow \downarrow				
9.	Estimate a sequential circuit for the following	(13)	BTL2	Understanding	CO3
	state equations $A(t+1) = C \oplus D$: $B(t+1) = A$:			8	
	C(t+1) = B; D(t+1)=C.				
10.	Using JK flip-flops, design a synchronous	(13)	BTL1	Remembering	CO3
	counter which counts in the sequence,				
	000,001,010,011,100,101,110,111,000.				
11.	Design a 4-bit BCD ripple counters.	(13)	BTL4	Analyzing	CO3
12.	Design a 3 bit binary counter using T flip-flop.	(13)	BTL3	Applying	CO3
13.	Implement JK FF using SR FF.	(13)	BTL5	Evaluating	CO3
14.	Compile the logic diagram and state table for a	(13)	BTL6	Creating	CO3
	sequential circuit has two JK flip-flop A and B,				

	two inputs x and y, and one output z. the equations are $[A = D^{2} + D^{2} + C^{2}] \times [A = D^{2} + D^{2}]$				
	JA-BX+B y ; KA-B Xy $IB= A'y KB=A+yy'$				
	JD = A x, KD = A + xy Z = A x' y' + B x' y				
15.	Differentiate asynchronous and synchronous type	(13)	BTL1	Remembering	CO3
101	counters.	(10)	DILI		
16.	Design a 5-bit ring counter and mention its applications.	(13)	BTL2	Understanding	CO3
17.	Construct reduced state diagram for the following	(13)	BTL3	Applying	CO3
	state diagram.				
	0/0 a 1/0 0/0 b 0/0 b 0/0 c 1/0 1/0 0/0 c 1/0 0/0 c 1/0 0/0 c 1/0 0/0 c 1/1 0/0 c 1/1				
	PART-C	1		1	
1.	Design a clocked sequential circuit using T-FF	(15)	BTL5	Evaluating	CO3
	for the following state diagram. Use state				
	reduction if possible. Also use straight binary				
	assignment. $\sum_{0/0}$				
	$\begin{array}{c c} 1/0 & a \\ 0/1 & 1/1 \\ 0 & d \\ 1/0 & c \\ c \\ \end{array}$				
2.	b 1/0 0/1 0/1 0/1 0/1 0/1 0/1 0/1	(15)	BTL5	Evaluating	CO3
2.	Design a sequential circuits with two D flip flops A and B and one input x. When x=0,the state of	(15)	BTL5	Evaluating	CO3
2.	Design a sequential circuits with two D flip flops A and B and one input x. When x=0,the state of the circuit remains the same. When x=1, the	(15)	BTL5	Evaluating	CO3
2.	Design a sequential circuits with two D flip flops A and B and one input x. When x=0,the state of the circuit remains the same. When x=1, the circuits goes through the state transition from 00	(15)	BTL5	Evaluating	CO3
2.	Design a sequential circuits with two D flip flops A and B and one input x. When x=0,the state of the circuit remains the same. When x=1, the circuits goes through the state transition from 00 to 01 to 11 to 10 back to 00,and repeats.	(15)	BTL5	Evaluating	CO3
2.	1/0 $0/1$	(15)	BTL5 BTL6	Evaluating Creating	CO3
2. 3. 4.	Design a sequential circuits with two D flip flops A and B and one input x. When x=0,the state of the circuit remains the same. When x=1, the circuits goes through the state transition from 00 to 01 to 11 to 10 back to 00,and repeats. Explain the realization of JK flipflop from T flipflop Create reduced state diagram for the following	(15)	BTL5 BTL6 BTL6	Evaluating Creating Creating	CO3 CO3 CO3

		g 1/1 0/0							
5.	Design a s	sequenti	al circ	uit usi	ng T-flip-flop. The	(15)	BTL4	Analyzing	CO3
	Present	Of the C	state	is as gi	Output				
	state	x=0	x=1	x=0	x=1				
	a	f	b	0	0				
	b	d	c	0	0				
	c	f	e	0	0				
	d	g	a	1	0				
	e	d	с	0	0				
	f	f	b	1	1				
	g	g	h	0	1				
	h	g	а	1	0				
	· · ·	UNIT-I	VAN	ALYS	IS AND DESIGN (DF AS	YNCHR	ONOUS	
				SE	QUENCTIAL CIR	CUITS	5		
Latch	nes - SR -	D ,Asy	nchro	nous s	equential logic circ	uits-Ti	ransition	table, flow table	- race
condi	$t_{10} - c_{1}$	ircuits	with	latches	s, analysis of asyi	nchron	ous seq	uential logic circ	cuits –
muou		esign –	mpne		PART-A				
0.			C	uestia	ons		ВТ	Competence	CO
No							Level	I I I I I I I I I I	
1.	List the circuit?	disadva	intages	s of	asynchronous sequ	ential	BTL1	Remembering	CO4
2.	Infer race	around	condit	ion in :	flip-flops.		BTL2	Understanding	CO4
3.	Draw the	block	diagra	m of	asynchronous sequ	ential	BTL1	Remembering	CO4
	circuits.			-			D -		
4.	Illustrate t	ransitio	n table	<u>?</u>	1 4 01	4 1 1	BTL2		CO4
5.	compare a and transit	and com	ipile th e.	e diffe	erence between flow	table	BIL3	Applying	CO4
6.	Identify ra	ces in \overline{A}	Asynch	ronous	s sequential circuit.		BTL3	Applying	CO4
7.	Show fund sequential	damenta circuits	1 mod	e of o	peration in asynchro	onous	BTL1	Remembering	CO4
8.	Describe a	synchro	onous s	sequen	tial machine.		BTL5	Evaluating	CO4
9.	Compare of	critical r	ace an	d non	critical race.		BTL2	Understanding	CO4

10.	Analyze flow table with example.		BTL4	Analyzing	CO4
11.	Outline deadlock condition?	BTL1	Remembering	CO4	
12.	Deduce the demerits in designing asynchro	BTL4	Analyzing	CO4	
	sequential machines				
13.	Point out the definition for flow table in asynchro	BTL2	Understanding	CO4	
	sequential circuit.				
14.	Analyze about basic storage element.		BTL4	Analyzing	CO4
15.	Point out the characteristic table of SR latch.		BTL3	Applying	CO4
16.	Identify the meaning of latch.		BTL1	Remembering	CO4
17.	How many types of latches are?		BTL1	Remembering	CO4
18.	Compile the application of latches.		BTL6	Creating	CO4
19.	Compose the types of sequential circuits.		BTL6	Creating	CO4
20.	Evaluate the fastest circuit synchronous	or	BTL5	Evaluating	CO4
	asynchronous circuits.				
21.	Highlight the characteristic table of SR latch.		BTL1	Remembering	CO4
22.	Interpret he meaning of latch?		BTL2	Understanding	CO4
23.	Categorize types of latches are?		BTL3	Applying	CO4
24.	Investigate about basic storage element.		BTL4	Analyzing	CO4
	PART-B				
1.	Design an asynchronous sequential circuit has	(13)	BTL1	Remembering	CO4
	two inputs X_2 and X_1 and one output Z. When				
	$X_1=0$, the output Z is to remain as 0 as long as				
	X_1 is 0. The first change in X_2 that occurs while				
	X_1 is 1 will cause output Z to be 1. The output Z				
	will remain 1 until X_1 returns to 0.				
2.	An asynchronous sequential circuit is described	(13)	BTL2	Understanding	CO4
	by $Y=x1x'2+(x1 + x'2)$ y; z=y. Draw the logic				
	diagram, transition table and output map.				
3.	Explain the operation of SR FF, JK FF, D FF and	(13)	BTL3	Applying	CO4
	T FF.				
4.	Discover an asynchronous sequential circuit with	(13)	BTL2	Understanding	CO4
	two inputs T and C. The output attains a value of				
	1 when T=1 & C moves from 1 to 0. Otherwise				
	the output is 0.	(1.0)			
5.	Describe the steps involved in design of	(13)	BILI	Remembering	CO4
	asynchronous sequential circuit in detail with an				
(example.	(1.2)			004
6.	1. How do you get output	(13)	BIL3	Applying	CO4
	specifications from a flow table in				
	asynchronous sequential circuit operating				
	in rundamental mode?				
	II. when do you get the critical and				
	non-critical races? How Will you obtain				
7	race free conditions?			Analyzina	
/.	An asynchronous sequential circuit is described		DIL4	Anaryzing	LU4

	by the following excitation and the output				
	function $Y=x1x2+(x1+x2)y$.				
	i. Draw the logic diagram of the circuit.	(3)			
	ii. Derive the transition table and output map.	(3)			
	iii. (iii) Describe the behaviour of the circuit.	(7)			
8.	Check whether the given asynchronous	(13)	BTL1	Remembering	CO4
	sequential circuit is stable or unstable				
	y ₁				
	\mathbf{x}_2 \mathbf{Y}_1				
			DELA		
9.	Design a asynchronous sequential circuit with	(13)	BTL2	Understanding	CO4
	two input D and G and with one output Z.				
	whenever G is I input D is transferred to Z.				
	when G is 0 the output does not change for any				
	the circuit				
10	Propose on asynchronous sequential aircuit has	(12)	DTI 1	Domomboring	<u> </u>
10.	two inputs X and X and one output 7. When	(15)	DILI	Kemembering	04
	two inputs X_2 and X_1 and one output Z. when $X_1=0$ the output Z is to remain as 0 as long as				
	$X_1 = 0$, the bulput Z is to remain as 0 as long as X_2 is 0. The first change in X_2 that occurs while				
	X_1 is 1 will cause output Z to be 1. The output Z				
	will remain 1 until X_1 returns to 0				
11.	Analyze whether the given asynchronous	(13)	BTL4	Analyzing	CO4
	sequential circuit is stable or unstable	(10)			
	v_1				
	x ₁				
	\mathbf{x}_2 \mathbf{Y}_1				
12.	Derive the asynchronous sequential circuit	(13)	BTL3	Applying	CO4
	specified by the flow table				
	$y x_1 x_2$				
	a a,0 a,0 b,0				
13.	Evaluate and sketch the logic diagram, transition	(13)	BTL5	Evaluating	CO4
	table and output mapfor an asynchronous				
	sequential circuit described by $Y=x_1x_2+(x_1 + x_2)$				
	x' ₂) y; z=y.				
14.	Compile an asynchronous sequential circuit with	(13)	BTL6	Creating	CO4

	2 inputs T and C. The output attains a value of 1 when T=1 & C moves from 1 to 0. Otherwise the output is 0				
15.	Elucidate the operation of SR latch using NAND gate	(13)	BTL1	Remembering	CO4
16.	Implement D flipflop using JK FF	(13)	BTL2	Understanding	CO4
17.	Elaborate different Types of FF.	(13)	BTL3	Applying	CO4
	PART-C			11 5 8	
1.	Explain the operation of SR latch using NOR gate and discuss its operation with clocked SR latch.	(15)	BTL5	Evaluating	CO4
2.	Design a asynchronous sequential circuit with two input A and B and with one output Z. whenever B is 1 input A is transferred to Z. When B is 0 the output does not change for any charge in A.	(15)	BTL5	Evaluating	CO4
3.	Describe the procedure to design of asynchronous sequential circuit in detail with an example.	(15)	BTL6	Creating	CO4
4.	Derive the asynchronous sequential circuit	(15)	BTL6	Creating	CO4
	specified by the flow table				
	y $x_1 x_2$				
	a a,0 a,0 a,0 b,0				
	b a,0 a,0 b,1 b,0				
5.	Derive the transition table and primitive flow table for the functional mode asynchronous sequential circuit shown in fig	(15)	BTL4	Analyzing	CO4
	e tamilies: RTL and DTL Circuits, TTL ECL NM	OS an	d CMOS:	Introduction to V	/HDL:
Desig	gn – combinational logic – Types – Operators -	- Pack	ages – S	equential circuit	– Sub
progr	ams – Test benches. (Examples: adders, cou	nters,	tliptlops,	FSM, Multiple	xers /
Iviuit	PART-A				
0.	Ouestions		ВТ	Competence	CO
No			Level		
1.	Compare the totem-pole output with open-col	lector	BTL1	Remembering	CO5

	output?				
2.	List the factors used for measuring the performan	ce of	BTL2	Understanding	CO5
	digital logic families.				
3.	When can RTL be used to represent digital systems?		BTL1	Remembering	CO5
4.	State the important characteristics of TTL family		BTL2	Understanding	CO5
5.	Summarize the advantages of ECL as compared to	TTL	BTL3	Applying	CO5
	logic family.				
6.	Which is faster TTL or ECL?		BTL3	Applying	CO5
7.	Sketch the DTL based NAND gate.	Sketch the DTL based NAND gate.		Remembering	CO5
8.	Evaluate package in VHDL.		BTL5	Evaluating	CO5
9.	Inscribe the VHDL behavioral model for D-flip-flop.		BTL2	Understanding	CO5
10.	Write the VHDL code for a logical gate which gives		BTL4	Analyzing	CO5
	high output only when both the inputs are high.			8	
11.	Name any four hardware description language test		BTL1	Remembering	CO5
	benches.				
12.	Analyze the syntax for package declaration and package	Analyze the syntax for package declaration and package		Analyzing	CO5
	body in VHDL				
13.	Write VHDL code for 2*1 MUX using behavioral		BTL2	Understanding	CO5
	modeling				
14.	Illustrate the basic structure of MOS transistor.		BTL4	Analyzing	CO5
15.	Display the function of wait statement in V	HDL	BTL3	Applying	CO5
	package?				
16.	Compile VHDL code for half adder in data flow model.		BTL1	Remembering	CO5
17.	Analyze the merits of hardware languages.		BTL1	Remembering	CO5
18.	What is the function of wait statement in VHDL		BTL6	Creating	CO5
	package? Compose the operators used in VHDL.				
19.	Predict the need for VHDL.		BTL6	Creating	CO5
20.	Categorize different test bench.		BTL5	Evaluating	CO5
21.	Which requires more power to operate TTL or ECL?		BTL1	Remembering	CO5
22.	Estimate any hardware description language test		BTL2	Understanding	CO5
	benches.				
23.	Articulate DTL based NAND gate.		BTL3	Applying	CO5
24.	Deduce package in VHDL.		BTL4	Analyzing	CO5
	PART-B				
1.	Discuss about TTL parameters.	(13)	BTL1	Remembering	CO5
2.	i. With circuit schematic, explain the		BTL2	Understanding	CO5
	operation of a two port TTL NAND gate	(7)			
	with totem-pole output.				
	ii. Compare totem pole and open collector	(6)			
	outputs.				
3.	With neat sketch explain the circuit diagram of	(13)	BTL3	Applying	CO5
	CMOS NOR gate.				
4.	Explain the characteristics and implementation of		BTL2	Understanding	CO5
	the following digital logic families.				
	i. CMOS	(5)			

					1	
	ii. ECL iii TTL	(5)				
5.	Draw the MOS logic circuit for NOT gate and	(13)	BTL1	Remembering	CO5	
	explain its operation.	(10)				
6.	Write short notes on following:		BTL3	Applying	CO5	
	i. RTL	(5)				
	ii. DTL	(5)				
	iii. ECL	(3)				
7.	With neat sketch explain the operation of MOS family.	(13)	BTL4	Analyzing	CO5	
8.	Design a CMOS inverter and explain its operation. Comment on its characteristics such as Fan-in, Fan-out power dissipation, propagation delay and noise margin. Compare its advantages over other logic families.	(13)	BTL1	Remembering	CO5	
9.	Write the VHDL code to realize a full adder using behavioral modeling and structural modeling.	(13)	BTL2	Understanding	CO5	
10.	Write the VHDL code to realize a 3-bit gray code counter using case statement.	(13)	BTL1	Remembering	CO5	
11.	Write VHDL code for Binary UP/ DOWN counter using JK flip- flops.	(13)	BTL4	Analyzing	CO5	
12.	Design a 3 bit magnitude comparator and write the VHDL coding to realize it using structural modeling.	(13)	BTL3	Applying	CO5	
13.	Explain in detail the concept of Structural modeling in VHDL with an example of full adder.	(13)	BTL5	Evaluating	CO5	
14.	Design a VHDL code for full adder and 8*1 MUX	(13)	BTL6	Creating	CO5	
15.	Write the VHDL code to realize a half adder using behavioral modeling and structural modeling.	(13)	BTL1	Remembering	CO5	
16.	Represent with neat diagram about the MOS logic circuit for NOT gate and explicate its operation.	(13)	BTL2	Understanding	CO5	
17.	Establish the circuit diagram of CMOS NOR gate.	(13)	BTL3	Applying	CO5	
	PART-C					
1.	Engrave the VHDL code to realize a full adder using behavioral modeling and structural modeling.	(15)	BTL5	Evaluating	CO5	
2.	Explain with an aid of circuit diagram the operation of 2 input CMOS NAND gate and list out its advantages over other logic families.	(15)	BTL5	Evaluating	CO5	

3.	Compile a 4 X 4 array multiplier and write the	(15)	BTL6	Creating	CO5
	VHDL coding to realize it using structural				
	modeling.				
4	i Compose short notes on built-in operators	(8)	BTL6	Creating	CO5
	used in VHDL programming.		DILO		000
	ii. Compose VHDL coding for 4 X 1	(7)			
	Multiplexer				
5.	i. Discuss briefly the packages in VHDL.	(8)	BTL4	Analyzing	CO5
	ii. Write an VHDL coding for realization of	(7)			
	clocked S-R flipflop.				
Course Outcome:					
> To understand and examine the structure of various number systems and its application in					
digital design to solve real world problems.					
> Analyze and design combinational logic circuits using gates and MSI devices.					
> Analyze and Design synchronous sequential logic circuits using Flip flops and gates.					
> Analyze and Design Asynchronous sequential logic circuits using Latches and gates.					
> Selection of logic families and skill development for application specific digital circuit					
	design using VHDL.				