SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

III SEMESTER

1905304-ANALOG ELECTRONICS

Regulation – 2019

Academic Year 2022 - 2023

(ODD SEMESTER)

Prepared by

Mr.S.Balaji, Assistant Professor (O.G) /EEE

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603203.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

OUESTION BANK

SUBJECT : 1905304-ANALOG ELECTRONICS SEM/ YEAR: III / II YEAR EEE

UNIT I - ELECTRONIC DEVICES AND THEIR CHARACTERISTICS

PN junction diodes – structure, operation and VI characteristics: drift and diffusion current, transient capacitance – BJT, JFET, MOSFET: structure, operation and characteristics; biasing; UJT based relaxation oscillator.

PART - A						
Q. No	Questions	BT Level	Domain	COs		
1.	What is depletion region in PN junction?	BTL 1	Remembering	CO1		
2.	Draw the VI Characteristics of the PN Diode.	BTL 1	Remembering	CO1		
3.	What is Reverse saturation current?	BTL 1	Remembering	CO1		
4.	What is forward bias and reverse bias in a PN junction?	BTL 3	Applying	CO1		
5.	Define the term diffusion current.	BTL 1	Remembering	CO1		
6.	With suitable expression model transition capacitance and Diffusion capacitance?	BTL 3	Applying	CO1		
7.	What is break down? What are its types?	BTL 4	Analyzing	CO1		
8.	Collector region of transistor is larger than emitter. Why?	BTL 1	Remembering	CO1		
9.	Predict the diffusion capacitance for a silicon diode with a 10 mA forward current, if the charge carrier transit time is 60ns.	BTL 3	Applying	CO1		
10	Why BJT is called current controlled device?	BTL 1	Remembering	CO1		
11.	The transistor has $I_E = 10$ mA and $\alpha = 0.98$. Find the value of base and collector currents.	BTL 5	Evaluating	CO1		
12.	Draw the characteristics of CE configuration.	BTL 2	Understanding	CO1		
13.	Define current amplification factor in BJT.	BTL 2	Understanding	CO1		
14.	Discuss the major difference between a bipolar & unipolar device?	BTL6	Creating	CO1		
15.	Give some applications of BJT.	BTL 4	Analyzing	CO1		
16.	Compare JFET with BJT.	BTL 5	Evaluating	CO1		
17.	In which region JFET acts as a resistor & why?	BTL 1	Remembering	CO1		
18.	Draw the transfer characteristics curve for JFET.	BTL 2	Understanding	CO1		
19.	Write some applications for JFET.	BTL 2	Understanding	CO1		
20.	Discuss the N channel MOSFET with P channel MOSFET.	BTL 6	Creating	CO1		
21.	Why FET is called voltage controlled device?	BTL 4	Analyzing	CO1		
22.	Draw the V-I characteristics curve of MOSFET.	BTL 1	Remembering	CO1		
23.	Compare MOSFET with JFET.	BTL 5	Evaluating	CO1		
24.	Give the applications of UJT.	BTL 2	Understanding	CO1		
	PART - B	T	I	1		
1.	With neat sketch compose the construction, operationand its characteristics of PN junction diode. Also listits advantages, disadvantages and its applications.	BTL3	Applying	CO1		

2.	 (i) Summarize the effect of temperature on PN junction diode and draw its switching characteristics. (ii) The reverse saturation of a silicon PN junction diode is 10µA. Infer the diode current for the forward 	8	BTL 2	Understanding	CO1
	bias voltage of 0.6V at 25°.	5	BTL 2	Understanding	COI
3.	Explain the drift and diffusion currents for PN diode.	13	BTL 4	Analyzing	CO1
4.	Derive the quantitative theory of PN diode currents.	13	BTL 2	Understanding	CO1
5.	Explain details about the switching characteristics on PN diode with neat Sketch.	13	BTL 4	Analyzing	CO1
6.	Explain the operation of NPN and PNP transistors.	13	BTL 6	Creating	CO1
7.	(i) Explain the input and output characteristics of a transistor in CB configuration.(ii) Give the comparison of CE, CB, and CC	8	BTL 2	Understanding	CO1
	configuration.	5	BTL 2	Understanding	CO1
8.	Draw the circuit diagram of a NPN transistor CE configuration and the input and output characteristics. Also define its operating regions.	13	BTL 1	Remembering	CO1
9.	(i) Explain the input and output characteristics of a transistor in CC configuration. (ii) Give the relationship between α , β and γ of a	8	BTL 1	Remembering	CO1
	transistor.	5	BTL 1	Remembering	CO1
10.	The reverse leakage current of the transistor when connected in CB configuration is 0.2 mA and it is 18μ A when the same transistor is connected in CE configuration. Determine α dc & β dc of the transistor. Assume IB =30mA.	13	BTL 5	Evaluating	CO1
11.	With necessary circuit and waveform, explain the switching characteristics of a transistor in detail.	13	BTL3	Applying	CO1
12.	Explain the selection of Q point for a transistor bias circuit and discuss the limitations on the output voltage swing.	13	BTL 4	Analyzing	CO1
13.	Explain the operation of JFET and derive the drain and transfer characteristics.	13	BTL 5	Evaluating	CO1
14.	With neat diagram explain the working of Enhancement MOSFET & Depletion MOSFET with its necessary characteristics curve.	13	BTL3	Applying	CO1
15.	(i)Compare N-with P-channel MOSFETS.(ii)Compare P-channel JFET with N-channel JFET.	7 6	BTL 2	Understanding	CO1
16.	(i) Give some characteristics of MOSFET.(ii) Explain the operation of dual gate MOSFET.	7 6	BTL 1 BTL 1	Remembering Remembering	CO1 CO1
17.	 (i) The operation of UJT as a relaxation oscillator and derive its frequency of oscillation. (ii) Mention the advantages & applications of UJT. 	7 6	BTL 4 BTL 4	Analyzing Analyzing	CO1 CO1
1	Depletion region decreases during Forward bias and	1			
1.	increases during Reverse bias in the case of a p-n junction diodejustify	15	BTL 5	Evaluating	CO1
2.	(i) Summarize the input and output characteristics of an Emitter Follower.(ii) Compare and contrast between CE. CB	8	BTL 6	Creating	CO1
	and CC configurations.	7	BTL 6	Creating	CO1
3.	Explain in detail, different biasing methods for a transistor circuit with neat circuit diagram and obtain respective stability factors.	15	BTL 4	Analyzing	CO1

4.	Explain the working of a P channel JFET and draw the V-I characteristics of it.	15	BTL 4	Analyzing	CO1
5.	 (i)Explain the self-biasing of a JFET. (ii) In a self-bias n-channel JFET, the operating point is set to be at ID = 1.5mA and VDS = 10V the parameters are IDSS =5mA and VGS (off) = -2V. 	8	BTL 5	Evaluating	CO1
	Find the value of RS and Ro if VDD=20V.	7	BTL 5	Evaluating	CO1

UNIT II- AMPLIFIER CIRCUITS BJT small signal model – Analysis of CE amplifier, Gain and Frequency response – Differential Amplifier - Multi-stage amplifier - Common mode and Differential mode analysis - Current mirror circuits -Introduction to internal circuit of typical OPAMP. PART - A BT Q. No Domain Questions COs Level 1. Define h parameters? BTL 1 Remembering CO2 Sketch the hybrid model of BJT in CE and CB 2. BTL 1 Remembering CO2 configuration. 3. Write about amplifiers and mention its applications. BTL 1 Remembering CO2 Model the small signal equivalent circuit of a CE 4. BTL 6 Creating CO2 amplifier Express the term bandwidth and gain bandwidth product. BTL 1 CO2 5. Remembering State Miller's theorem. Remembering CO2 6. BTL 1 What are the limitations of h-parameters? BTL 2 Understanding CO₂ 7. Draw a small signal equivalent circuit of CE amplifiers 8. BTL 2 Understanding CO2 9. Define frequency response. BTL 3 Applying CO2 List the applications of differential amplifier. Remembering 10. BTL 1 CO2 Analyze how the differential amplifier can be used as an 11. BTL 4 Analyzing CO2 emitter coupled phase inverter A multistage amplifier employs five stages of which each has a power gain of 30. Determine the total gain of the 12. BTL 3 CO₂ Applying amplifier in dB. Define Multi-stage amplifier. BTL 3 CO2 13. Applying Distinguish common mode gain. BTL 4 Analyzing CO2 14. Define Common Mode Rejection Ratio BTL 2 Understanding CO2 15. Distinguish difference mode gain. Analyzing BTL 4 CO2 16. 17. What is common mode in differential amplifier? BTL 1 Remembering CO2 Why current mirror circuit is used in differential 18. BTL 5 **Evaluating** CO2 amplifier? 19. What is the use of current mirror circuit? BTL 6 Creating CO2 BTL 4 CO₂ 20. Distinguish current mirror in BJT? Analyzing 21. Write short note on Cascode current mirror circuit. BTL 2 Understanding CO2 22. Define Operational amplifier? BTL 3 Applying CO2 Draw the internal circuit of OPAMP. BTL 2 Understanding 23. CO2 What are the ideal characteristics of OPAMP? 24. BTL 5 Evaluating CO2 PART - B Illustrate the h-parameter model of a BJT-CE amplifier and derive the equations for voltage gain, BTL 2 1. 13 Understanding CO2 current gain, input impedance and output impedance. Analyze the operation of CE amplifier and derive the expression for h parameters of the same. Also derive 2. 13 BTL 4 Analyzing **CO2** the expression for gain, input impedance and output impedance of CE amplifier. The hybrid parameters of a transistor used as an amplifier in the CE configuration are hie = 800Ω , 3. 13 BTL 5 Evaluating CO₂ hfe = 46, hoe = $80 \times 10-6$ and hre = $5.4 \times 10-4$. If $R_L = 5k\Omega$ and $R_S = 500\Omega$. Find Ai, Ri, Av, Ro. 4. Determine the mid-band gain and bandwidth of a CE amplifier shown in the figure. Assume lower cutoff 13 BTL 5 Evaluating **CO2** frequency is 100Hz.Let hfe $=\beta =100$, cbe = 4pF, cbc=0.2pF and VA = ∞ .

	$20 \text{ k}\Omega \stackrel{5}{\leq} 5 \text{ k}\Omega \stackrel{5}{\leq} \text{ Cc2}$				
	$0.5k\Omega$ C _{c1}				
	$\bigotimes V_{in} \qquad \begin{cases} 5 \ k\Omega \end{cases} \qquad \int C_{r} \end{cases} 5 \ k\Omega$				
	후 물 힘 ?				
	-5V				
5.	(1) Show the low frequency n-equivalent model of a transistor amplifier operating in CE mode and write				
	why this circuit is not valid for high frequencies.	8	BTL 1	Remembering	CO2
	(ii) Define the trans conductance of BJT in the CE	Ū		8	001
	mode. How it is related to h parameters.	5	BTL 1	Remembering	CO2
6.	Demonstrate the mid band analysis of single stage	13	BTL 3	Applying	CO2
7	CE, CB and CC amplifiers.	12			000
/.	Explain in detail about cascaded amplifiers	13	BIL 4	Analyzing	CO2
8.	With neat sketch explain two stage cascaded	13	BTL 3	Applying	CO2
9.	Discuss in detail about multi-stage amplifier.	13	BTL 2	Understanding	CO2
10.	Derive the equation for differential mode gain and	13	BTL 4	Analyzing	CO2
	common mode gain of a differential amplifier			9	
11.	With neat sketch, explain the BJT differential amplifier				
	with active load and derive Ad, Ac and CMRR. How	13	BTL 1	Remembering	CO2
	CMRR can be improved?				
12.	Develop the equation for differential mode gain and				
	common mode gain of a differential amplifier using	13	BTL 3	Applying	CO2
	gain and common mode gain				
13.	Illustrate the circuit of emitter coupled BJT				
	differential amplifier, and derive expressions for	13	BTL 1	Remembering	CO2
	differential gain, common mode gain and CMRR.				
14.	The dual input balanced output differential amplifier				
	having $Rs=100\Omega$, $RC = 4.7k\Omega$, $R_E = 6.8k\Omega$,				
	hfe=100, Vcc=+15V, VEE=-15V. Find operating point	13	BTL 6	Creating	CO2
	values, differential & common mode gain, CMRR and output if $V_{s1}=70 \text{mV}(p_{-}p)$ at				
	1 kHz and $Vs2=40 mV(p-p)$.				
15	Implement Current mirror circuits using BIT	13	BTL 6	Creating	CO2
16.	Draw the circuit of a differential amplifier with	10			
	current Mirror load. Draw its equivalent circuit and	13	BTL 1	Remembering	CO2
	derive an expression for its gain				
17	Define CMRR. Draw the circuit of an Op-amp	10		The dependence 1'	
1/.	CMRR	13	BIL 2	Understanding	02
	PART - C	1	1	1	1
1.	Derive the expression for current gain, input				
	impedance and voltage gain of a CE Transistor	15	BTL 4	Analyzing	CO2
	Amplifier				
2.	Using the hybrid equivalent model, analyze and deduce the expression for the parameters using the circuit	15	BTI 5	Evaluating	CO^{2}
	sketch.	1.5			

3.	The following figure shows a common emitter amplifier. Determine the input resistance, ac load resistance, voltage gain and output voltage. $R_1 - 100 \text{ km}$ $R_2 - 10 \text{ km}$ $R_2 - 50 \text{ km}$ $R_2 - 10 \text{ km}$	15	BTL 5	Evaluating	CO2
4.	Evaluate the operating point, differential gain, common mode gain, CMRR and output voltage if $V_{S1}=70$ mV peak to peak at 1kHz and $V_{S2}=40$ mV peak to peak at 1kHz of dual input balanced output differential amplifier hie=2.8k Ω .	15	BTL 6	Creating	CO2
5.	Draw and Explain the internal block diagram of an	15	BTL 4	Analyzing	CO2
	op-amp circuit.				

UNIT III- OPAMP AND CHARACTERISTICS

Ideal OPAMP characteristics, DC characteristics, AC characteristics, Voltage -series feedback and voltage -shunt feedback - Frequency response of OPAMP - Basic applications: inverting, non-inverting and differential amplifier circuits, Adder- subtractor circuits - Differentiation and integrator circuits.

Q. No	Questions	BT	Domain	COs
1	What is an OP-Amp? Write the circuit symbol of an OP-	BTI 1	Remembering	CO3
1.	Amp.	DILI	Kemembering	005
2.	List out the ideal characteristics of an OP-AMP.	BTL 1	Remembering	CO3
3.	Compare the ideal and practical op-amp characteristics.	BTL 4	Analyzing	CO3
4.	A 100 pF capacitor has a maximum charging current of 100 micro amps. Calculate its slew rate.	BTL 3	Applying	CO3
5.	Define virtual ground concept	BTL 2	Understanding	CO3
6.	Write some applications of operational amplifier.	BTL 1	Remembering	CO3
7.	Analyze what happens when the common terminal of V+ and V- sources are not grounded?	BTL 4	Analyzing	CO3
8.	What do you mean by input offset current and offset voltage?	BTL 1	Remembering	CO3
9.	Compose Voltage series feedback.	BTL 5	Evaluating	CO3
10.	Compose Voltage shunt feedback.	BTL 5	Evaluating	CO3
11.	Differentiate between open loop gain and closed loop gain.	BTL 2	Understanding	CO3
12.	Draw the circuit diagram of a symmetrical emitter coupled differential amplifier.	BTL 2	Understanding	CO3
13.	Sketch an adder circuit to using an op-amp to get the output expression as $V0= -(0.1V_1+V_2+10V_3)$ where V1, V2 and V3 are the inputs.	BTL 3	Applying	CO3
14.	What is the drawback of IC 741?	BTL 1	Remembering	CO3
15.	Draw and write the output voltage equation of inverting amplifier.	BTL 2	Understanding	CO3
16.	Draw and write the output voltage equation of Non- inverting amplifier.	BTL 2	Understanding	CO3
17.	For the circuit diagram shown below determine the output voltage V_0 1k 4k 1k 4k 2k k 2k k k k k k k k	BTL 5	Evaluating	CO3
18.	Why IC 741 is not used for high frequency applications?	BTL 4	Analyzing	CO3
19.	Design an amplifier with a gain of -10 and input resistance of $10k\Omega$.	BTL 6	Creating	CO3
20.	compose how an op-amp can be used as a voltage follower?	BTL 6	Creating	CO3
21.	Determine the input impedance of 741 operational amplifier employed as voltage follower having Av =50,000 and Ri = 0.3Mega Ohm.	BTL 3	Applying	CO3
22.	Examine the circuit diagram of differentiator using Op- amp.	BTL 1	Remembering	CO3
23.	What is integrator?	BTL 1	Remembering	CO3
24.	Draw the circuit diagram of an integrator and give its output equation.	BTL 2	Understanding	CO3

PART – B						
1.	List the six characteristics of an ideal op-amp and explain in detail and give the practical op-amp equivalent circuit.	13	BTL 1	Remembering	CO3	
2.	 Explain the following terms in an op-amp (i) Bias current. (ii) Thermal drift. (iii) Input offset voltage and current. (iv) Virtual ground. 	3 3 4 3	BTL 1	Remembering	CO3	
3.	Discuss in detail about the DC and AC characteristics of opamp.	13	BTL 2	Understanding	CO3	
4.	 (i) What is input and output voltage and current offset? How are they compensated? (ii) With a neat diagram derive the AC performance close loop characteristics of Op-amp to discuss on the circuit Bandwidth. Frequency response and slew rate. 	7	BTL 1	Remembering	CO3	
5.	Discuss in detail about Voltage -series feedback and voltage -shunt feedback amplifier of opamp.	13	BTL 2	Understanding	CO3	
6.	(i) Determine the frequency response characteristics of an operational amplifier.	7	BTL 3	Applying	CO3	
	(ii) How common mode rejection ratio can be increased using constant current source?	6	BTL 3	Applying	CO3	
7	(i) Write a note on stability criterion applicable to op- amp circuit.	3	BTL 2	Understanding	CO3	
/.	(ii) Explain in detail about the methods of frequency compensation used in operational amplifiers.	10	BTL 2	Understanding	CO3	
8	(i) What is Slew rate? Analyze the causes of slew rate and explain its significance in applications.	9	BTL 4	Analyzing	CO3	
0.	(ii) Analyze how slew rate can be improved.	4	BTL 4	Analyzing	CO3	
9.	(i) Draw the inverting amplifier circuit and non-inverting amplifier circuit of an op-amp in closed loop configuration. Obtain the expression for the closed loop gain for both amplifiers.	10	BTL 3	Applying	CO3	
	(ii) For a non-inverting amplifier using an op-amp assume $R1 = 470$ ohm and $R2 = 4.7$ kohm. Calculate the closed loop voltage gain of the amplifier.	3	BTL 3	Applying	CO3	
10.	Draw and explain the working principle symmetrical emitter coupled differential amplifier and derive for CMRR.	13	BTL 1	Remembering	CO3	
11.	Explain the differential amplifier using opamp.	13	BTL 1	Remembering	CO3	
12.	(i) Examine the functions of all the basic building blocks of an Op-Amp.	7	BTL 4	Analyzing	CO3	
	(ii) Explain the application of op-amp as adder and Subtractor.	6	BTL 4	Analyzing	CO3	
13.	Compare and contrast Adder, Subtractor, and Averaging circuit using op-amp with equations.	13	BTL 2	Understanding	CO3	
14.	(i) Write the application of op-amp as differentiator.	7	BTL 1	Remembering	CO3	
	(11) Calculate Vo for the given circuit.	6	BTL 3	Applying	CO3	

15.	State and explain about CMRR, Ad, Ac and suggest a method to improve CMRR.	13	BTL 4	Analyzing	CO3
16.	(i) Deduce an op-amp circuit to give an output voltageV0 = $4V_{1}$ - $3V_{2}$ + $5V_{3}$ -V ₄ , Where V1, V2, V3 and V4 are inputs.	7	BTL 5	Evaluating	CO3
	(ii) Explain the application of op-amp as integrator.	6	BTL 4	Analyzing	CO3
17.	(i) For a max frequency of 100 Hz, Design a differentiator circuit and draw the frequency response for the same.	7	BTL 6	Creating	CO3
	(ii) What are the limitations of an ordinary op-amp differentiator? Modify the circuit of ordinary op-amp differentiator to obtain a practical differentiator that will eliminate these limitations.	6	BTL 6	Creating	CO3
	PART – C				
1.	How will you design an inverting amplifier circuit for a gain of 10 also include necessary compensation circuitry for minimizing, input bias current, offset current and offset voltage.	15	BTL 5	Evaluating	CO3
2.	Determine the output voltage for the following circuits.	7_	BTL 5	Evaluating	CO3
	1 ALE ALE VO 1 ALE	8			
	(i)Design a circuit to produce $V_0 = (V_3+V_4)-(V_1+V_2)$	8	BTL 6	Creating	CO3
3.	using Op-Amp. (ii)Redraw the above designed circuit for $V_2=V_3=V_4$	7	BTL 6	Creating	CO3
4.	Drive and Explain the Second order Differential amplifier	15	BTL 5	Evaluating	CO3
5.	Create a double integrator circuit from single integrator circuit and explain its operation.	15	BTL 6	Creating	CO3

UNIT IV- APPLICATION OF OPAMPS

Instrumentation amplifiers, First-order and Second order active filters, V to I and I to V converters, Comparators and multi-vibrators, Waveform generators, Clippers and Clampers, Peak detector, D/A converters (Weighted resistance type and R- 2R ladder type), A/D converters (Flash type, Dual slope type and Successive Approximation types).

PART - A							
Q. No	Questions		BT Level	Domain	COs		
1.	Illustrate some of the important features of instrumentation amplifier.	an	BTL 1	Remembering	CO4		
2.	What are the basic requirements of a good instrumentat amplifier?	tion	BTL 1	Remembering	CO4		
3.	Summarize the applications of an instrumentation amplifier.		BTL 2	Understanding	CO4		
4.	What is the need for converting a first order filter into a second order filter?		BTL 2	Understanding	CO4		
5.	Enumerate the advantages & disadvantages of passive filters?		BTL 1	Remembering	CO4		
6.	What is a V to I convertor?		BTL 1	Remembering	CO4		
7.	What is an I to V convertor?		BTL 1	Remembering	CO4		
8.	Analyze why active filters are preferred over passive filters?		BTL 4	Analyzing	CO4		
9.	Define comparator and function of a phase shift circuit	t?	BTL 1	Remembering	CO4		
10.	Compose the applications of comparators.		BTL 6	Creating	CO4		
11.	What is a Zero crossing detector?		BTL 1	Remembering	CO4		
12.	Sketch the circuit of an op-amp employed as a non- inverting zero crossing detector, along with input and output waveforms.		BTL 3	Applying	CO4		
13.	Summarize the difference between active clipper and passive clipper.		BTL 5	Evaluating	CO4		
14.	Infer the advantage of using active clipper over passive clipper?		BTL 4	Analyzing	CO4		
15.	Write any two applications of clipper and clamper.		BTL 1	Remembering	CO4		
16.	Draw a peak detector circuit using op-amp. Give the applications of peak detectors		BTL 6	Creating	CO4		
17.	What is sample and hold circuit? Point out where it is used? Why?		BTL 4	Analyzing	CO4		
18.	Draw the diagram of sample and hold circuit.		BTL 2	Understanding	CO4		
19.	List the types of DACs and ADCs.		BTL 1	Remembering	CO4		
20.	Draw the diagram of R- 2R ladder type DAC.		BTL 2	Understanding	CO4		
21.	Calculate the value of the LSB, MSB and full scale out for an 8 Bit DAC for the 0 to 12V range.	tput	BTL 3	Applying	CO4		
22.	Calculate the number of comparators required for realizing an 8 bit ADC.		BTL 3	Applying	CO4		
23.	Draw the diagram of Successive Approximation types ADC.		BTL 2	Understanding	CO4		
24.	Which is the fastest ADC? Why?		BTL 5	Evaluating	CO4		
	PART – B			~			
1.	(i) With a suitable circuit diagram, explain the operating principle of an instrumentation amplifier and	7	BTL 2	Understanding	CO4		
	derive its gain.(ii) Design a second order Butterworth low-pass filter having upper cut-off frequency of 2.1961 kHz.	6	BTL 6	Creating	CO4		

					1
2.	Draw and explain the circuit of a second order butterworth low pass filter and derive its transfer function.	13	BTL 6	Creating	CO4
3.	 (i) Discuss about sample and hold circuit and explain its operation. (ii) Design a circuit of a clipper which will clip the 	7	BTL 2	Understanding	CO4
	input signal below a reference voltage.	6	BTL 6	Creating	CO4
1	 (i) What are the advantages of continuous type A/D converter over counter type A/D converter? (ii) Illustrate the working of successive 	3	BTL 3	Applying	CO4
	approximation type A/D converter with a neat diagram.	10	BTL 5	Evaluating	CO4
5.	 (i) Sketch an instrumentation amplifier using 3 Op- Amp and derive its output voltage equation. (ii) Eucloin the first order law recently filter. 	7	BTL 3	Applying	CO4
	(ii) Explain the first order low pass butterworth filter with neat diagram. Derive its frequency response and plot the same.	6	BTL 3	Applying	CO4
6.	(i) Describe the second order high pass filter with its frequency response and design the circuit with the cut- off frequency of 5 KHz	7	BTL 1	Remembering	CO4
	(ii) With neat circuit diagram explain the working of Schmitt trigger using op-amp.	6	BTL 1	Remembering	CO4
7.	Explain the operation of multi-vibrators using Op-	13	BTL 4	Analyzing	CO4
	(i) Explain the application of Instrumentation	7	BTL 1	Remembering	CO4
8.	(ii) With neat circuit diagram, explain the operation of R-2R D/A converter.	6	BTL 1	Remembering	CO4
9.	Write a note on V to I and I to V converters using op-amp	13	BTL 3	Applying	CO4
10.	Analyze and design a RC phase shift oscillator for a frequency of 1 kHz.	13	BTL 4	Analyzing	CO4
11.	With neat sketch explain the working principle of Weighted resistor DAC using Op-Amp.	13	BTL 4	Analyzing	CO4
12.	(i) Explain the application of op-amp as clamper circuit.(ii) With neat sketch explain the operation of	7	BTL 4	Analyzing	CO4
12	triangular waveform generator using op-amp.	6	BTL 4	Analyzing	CO4
13.	Explain its characteristics.	7	BTL 1	Remembering	CO4
	(ii) Describe how an Op-Amp will be used as Peak detector.	6	BTL 1	Remembering	CO4
14.	(i) Explain the operation of dual slope ADC.(ii) Explain the following characteristics of	7	BTL 5	Evaluating	CO4
	ADC resolution, accuracy, settling time, linearity.	6	BTL 5	Evaluating	CO4
15.	Explain the operation of following applications of operational amplifiers:				
	(i) First order Band Pass Filter. (ii) Flash type A/D converter	7 6	BTL 4 BTL 4	Analyzing Analyzing	CO4 CO4
16.	Derive the expression for the analog multiplier and divider with necessary diagrams	13	BTL 1	Remembering	CO4
17.	Discuss multivibrators in detail with neat sketches.	13	BTL 2	Understanding	CO4
	PART – C				
1.	Construct an op-amp based instrumentation amplifier for industrial applications.	15	BTL 5	Evaluating	CO4

2.	(i) Design a second order butterworth low pass filter having upper cutoff frequency of 1kHz.	10	BTL 6	Creating	CO4
	(ii) Explain how to measure the phase difference between two signals.	5	BTL 6	Creating	CO4
_	Develop an op-amp based circuits to perform following mathematical operations:				
3.	(i)Integration	5	BTL 6	Creating	CO4
	(iii)Multiplication	5	BIL 6	Creating	CO4
	(iii)Multiplication	5	BTL 6	Creating	CO4
4.	Construct a First order High Pass Filter using IC 741 OpAmp. (Assume any cut off frequency of your choice) and explain its operation.	15	BTL 5	Evaluating	CO4
5.	Justify that how the circuit using Op-amps on the operation of.(i) Zero cross Detector, Clipper and Clamper circuit(ii) Schmitt Trigger.	8 7	BTL 5	Evaluating	CO4

UNIT V- SPECIAL ICS 555 Timer circuit: Functional block diagram, characteristics & applications –Astable and monostable multivibrator - 566 Voltage Controlled Oscillator circuits - PLL Phase Locked Loop applications - Function generator circuit – Linear Voltage regulators. PART - A

Q. No	Questions		BT Level	Domain	COs
1.	In what way VCO is different from other oscillators?		BTL 1	Remembering	CO5
2	Point out any two application of 555 Timer in Mono				005
2.	stable mode.		BTL 4	Analyzing	CO5
3.	Define duty cycle in astable multivibrator using IC 55	5.	BTL 1	Remembering	CO5
	If the supply voltage (Vcc) to 555 timers is 10V, Eval	uate		C	
4	the minimum and maximum value of the voltage acro	SS	DTI 5	Evoluting	COS
4.	the capacitor connected to trigger input, when it is		DILJ	Evaluating	COS
	configured in Astable mode.				
5.	Draw the Circuit Diagram of Astable multivibrator us	ing	BTL 2	Understanding	CO5
	555 Timer IC.				005
6. 7	Explain the different stages of operation in a PLL.		BIL 5	Evaluating	C05
/.	Draw the Pin diagram of 566 VCO IC		BIL 2	Understanding	C05
8.	Give the expression for the vCO free running frequen	cy.	BIL 2	Understanding	005
9.	Analyze why VCO is called voltage to freque	ency	BTL 4	Analyzing	CO5
	With reference to a VCO summarize voltage to freque	oneu			
10.	conversion factor Ky	citcy	BTL 6	Creating	CO5
11	Define lock range and capture range with respect to P	LL	BTL 1	Remembering	CO5
	State why the phase detector output in a PLL should h	<u>e</u>			
12.	followed by a low pass filter.		BIL 4	Analyzing	CO5
13.	Outline the applications of NE565.		BTL 3	Applying	CO5
14.	Draw the functional block of 555 timer IC.		BTL 3	Applying	CO5
15.	Define PLL.		BTL 1	Remembering	CO5
16.	What is Pull-in time?		BTL 1	Remembering	CO5
17.	List the applications of PLL.		BTL 2	Understanding	CO5
18	Give the advantages of variable transconducta	nce	BTL 3	Applying	CO5
10.	technique.		DILS	r ppijing	005
	A PLL frequency multiplier has an input frequency of	f'f'		Remembering	CO5
19.	and a decade counter is included in the loop. What wi	ll be	BTL 1		
20	the frequency of the PLL output?			Q i	005
20.	Enlist the important features of 555 timer circuit.		BIL 0	Creating	C05
21.	Draw the Circuit Diagram of monostable multivibrato	r	BIL 2	Understanding	005
	Draw the circuit diagram of a DL circuit used as an	лл			
22.	modulator	-111	BTL 2	Understanding	CO5
23	List the applications of Function generator		BTL 2	Understanding	CO5
23.	What are the different types of Linear Voltage regulat	ors?	BTL 1	Remembering	CO5
	PART – B	.015.		Ttermenteering	000
	(i) Discuss the functional diagram of 555 timer and				
1	explain in detail	7	BTL 2	Understanding	CO5
	(ii) Discuss the operation of PWM using 555 timer.	-		•• • ··	a a a
		6	BTL 2	Understanding	CO5
2.	Explain with near diagram of Astable multivibrator using 555 Timer IC	10	BTL 4	Analyzing	CO5
2	Evaloin with post discrem of morestable	13			
5.	multivibrator using 555 Timer IC	10	BTL 4	Analyzing	CO5
		13	1		1

4.	Describe the block diagram of a VCO and explain its operation.	13	BTL 2	Understanding	CO5	
5.	With the help of schematic diagram, explain the operation of IC-566. Also derive an expression for the output frequency.	13	BTL 3	Applying	CO5	
6.	(i) Design and draw the waveform of a 1kHz square wave generator using 555 timer for duty cycle of	4	BTL 6	Creating	CO5	
	(ii) Explain the astable operation of IC555 with necessary waveforms.	9	BTL 6	Creating	CO5	
7.	(i) Evaluate the various phases in the operation of a PLL.	7	BTL 5	Evaluating	CO5	
	(11) In Astable multivibrator using 555 timer Ra=2.2Kohm, Rb=6.8Kohm and C=0.01microfarad. Calculate T_{high} , T_{low} , free running frequency and duty cycle.	6	BTL 5	Evaluating	CO5	
8.	Briefly explain the functional block diagram of NE565 PLL IC to operate as a frequency divider.	13	BTL 1	Remembering	CO5	
9.	(i) For the astable circuit, derive the expression for high state time interval, low state time interval, period, frequency and duty cycle.	7	BTL 3	Applying	CO5	
	(ii) Explain the operation of Function generator.	6	BTL 3	Applying	CO5	
10.	Explain the working of PLL using appropriate block diagram and analyze how it can be used as frequency translator.	13	BTL 4	Analyzing	CO5	
11.	(i) Discuss the operation of a FSK generator using 555 timer	7	BTL 1	Remembering	CO5	
	(ii) Describe any two applications of PLL.	6	BTL 1	Remembering	CO5	
12.	Examine the operation of a free running oscillator and Monostable multivibrator using IC555 with necessary waveforms.	13	BTL 3	Applying	CO5	
13.	Illustrate the operation of VCO with neat block diagram. Also derive an expression for f_0 .	13	BTL 2	Understanding	CO5	
14.	What is PLL? How frequency multiplication is done using PLL?	13	BTL 4	Analyzing	CO5	
15.	 (i) Explain functional block diagram of NE565 phase locked loop. (ii) Narrate the process of FSK demodulation using 	7	BTL 2	Understanding	CO5	
	PLL.	6	BTL 2	Understanding	CO5	
16.	Write short notes on					
	(i) LM 317 Voltage Regulator.	7	BTL 1	Remembering	CO5	
17	With block diagram explain the principle of	13	BILI BTI 2	Understanding	C05	
17.	operation of Linear voltage regulators	13	DILZ	Understahlung	005	
$\mathbf{PART} - \mathbf{C}$						
1.	(1) Design a monostable multivibrator with pulse duration of 1ms using 555 timer IC.	7	BTL 6	Creating	CO5	
	(ii) Briefly explain the difference between the two operating modes of 555 timer.	8	BTL 6	Creating	CO5	

2.	With neat figures design a PLL with free running frequency of 500KHz and the bandwidth of LPF is 50kHz. Will the loop acquire lock for an input signal of 600kHz. Justify your answer. Assume that phase detector needs to produce sum and difference frequency components.	15	BTL 5	Evaluating	CO5
3.	Design a frequency synthesizer circuit using PLL IC 565. Explain in detail about the operation and applications of it.	15	BTL 6	Creating	CO5
4.	 (i) Discuss the basic analog multiplication techniques. (ii) Develop the expression for free running frequency of voltage-controlled oscillator. 	7 8	BTL 6	Creating	CO5
5.	Draw the functional diagram of ICL 8038 function generator IC and Explain its operation.	15	BTL 5	Evaluating	CO5

Course Outcomes:

Cos	Course Outcome
CO1	Ability to understand the structure and underlying semiconductor physics concepts.
CO2	Ability to design circuits employing electronic devices.
CO3	Analyze, comprehend and design of analog electronic circuits involving OPAMP.
CO4	Analyze, comprehend and design of analog electronic circuits involving timer 555.
CO5	Analyze, comprehend and design of analog electronic circuits involving PLL, voltage regulator & other specializes.