SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING &

ELECTRONICS AND INSTRUMENTATION ENGINEERING

QUESTION BANK

III SEMESTER

1905305 – Circuit Theory (Common to EEE and EIE)

Regulation – 2019 Academic Year 2022–2023 (ODD SEM)

Prepared by

Dr. R. Arivalahan, Associate Professor/EEE Mr.N.Sowrirajan ,Assistant Professor/EIE

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203.

SUBJECT : 1905305-CIRCUIT THEORY

SEM / YEAR: III/II

UNIT I - BASIC CIRCUITS NALYSIS

Resistive elements - Ohm's Law Resistors in series and parallel circuits – Kirchhoff's laws – Mesh current and node voltage - methods of analysis.

	PART – A						
Q.No	Questions	СО	BT Level	Competence			
1.	A resistor of 3.6Ω is connected in series with another of 4.56Ω . What resistance should be connected across 3.6Ω resistor so that the total resistance of the circuit shall be 6Ω ?	CO1	BTL3	Apply			
2.	Define the terms (i) Resistance (ii) Resistivity.	CO1	BTL 1	Remember			
3.	State Ohm's Law. Mention the limitations of Ohm's Law?	CO1	BTL3	Apply			
4.	Two resistors 4 Ω and 6 Ω are connected in parallel. The total current flowing through the resistors is 5A. Find the current flowing through each resistor.	CO1	BTL3	Apply			
5.	How much current flows through a conductor of resistance 20 Ohm calculate when it is supplied with a potential difference of 200 V ?	CO1	BTL3	Apply			
6.	Define the terms (i) Mesh Analysis (ii) Nodal Analysis.	CO1	BTL 1	Remember			
7.	Define the terms (i) Electric Current (ii) Electric Potential.	CO1	BTL 1	Remember			
8.	How the series circuit is distinguished with parallel circuits?	CO1	BTL 2	Understand			
9.	Two capacitance C_1 , C_2 of the values 10 μ F and 5 μ F respectively are connected in series. Evaluate the equivalent capacitance.	CO1	BTL 5	Evaluate			
10.	Point out the difference between DC Current with AC Current.	CO1	BTL 4	Analyze			
11.	A Resistor of 50 Ohm has the potential difference of 100 Volts across DC supply for 1 Hour. Examine the value of (i) Current (ii) Conductance (iii) Power (iv) Energy.	CO1	BTL 5	Evaluate			
12.	Differentiate the following terms (i) Circuit or Network (ii) Parameters (iii) Node (iv) Loop.	CO1	BTL 4	Analyze			
13.	Two inductances $L_1=3mH$ and $L_2=6mH$ are connected in parallel. Analyse and infer L_{eq} .	CO1	BTL 4	Analyze			
14.	What is meant by inductor ? Formulate the voltage, current, power and energy formulae for inductor.	CO1	BTL 6	Create			
15.	Generalize the expressions for mesh current equations in matrix form.	CO1	BTL 6	Create			
16.	Estimate the resultant resistance produced by the parallel connection of two resistors of 10Ω and 30Ω .	CO1	BTL 4	Analyze			
17.	Express the formulae for 3-Resistors in Series and Parallel.	CO1	BTL 2	Understand			

18.	Write the mesh current equation in the circuit shown in figure and	CO1	BTL 1	Remember
	determine the currents.			
	5.			
	Lav 1 2 2102			
	<u> </u>			
19.	What is meant by Resistor ? Illustrate the formulae for (i) Voltage (ii)	CO1	BTL 3	Apply
• • •	Current (iii) Power (iv) Energy Formulae for Resistor.	001		
20.	What is meant by capacitor? Write the voltage, current, power and	COI	BTL 2	Understand
	energy formulae for capacitor.	CO1	DTI 1	Domonshon
21.	State Kirchhoff's Current Law and Voltage Law.	COI	BILI	Remember
22.	Two resistances when connected in series, the effective value of resistance	CO1	BTL 3	Apply
	are 100 Ohms. When connected in parallel the effective value is 24.			
23	Formulate the value of resistance R_1 and R_2 .	CO1	BTI 1	Remember
23.	State ideal voltage source and current source		BTL 1	Remember
27.	State ideal voltage source and current source.	001	DILI	Kemember
	PART – B	001	DTL 2	
1.	(i) The Four resistors 60hms,12 0hms,18 0hms and 24 0hms are	COI	BIL 3	Apply
	connected in parallel with 24 Voltage supply. Calculate (i) Current through			
	circuit (6)			
	$R_1 = 6\Omega$			
	I_2 $R_2 = 12\Omega$			
	$I_4 = R = 24\Omega$			
	L L			
	24 voit			
	(ii) Derive the expressions for the resistance in (i) Series Circuit (ii)	CO1	BTL 4	Analyze
	Parallel Circuit. (7)		212 .	1 Huly 20
2.	Find the value (i) Current supplied through each resistor (ii) Voltage drop	CO1	BTL 3	Apply
	across 3 Ohm Resistor (iii) Power delivered by 3 Ohm resistor. (13)			
	$I_1 = I_2 = 8\Omega$			
	ψ_1			
	$\mathbf{L}_{1} = \mathbf{L}_{1} = \mathbf{L}_{1}$			

5.	Use Nodal Voltage method and estimate the power dissipated in the CO1	BTL 2	Understand
	10Ω resistance on the circuit shown in the Fig. (13)		
	4n $5n$ $5n$ $5n$ mm mm mm mm mm mm mm		
	40V = 015A		
6.	(i) Distinguish between series and parallel circuits. (6) CO1	BTL 4	Analyze
	(ii) Two 50 ohms resistors are connected in series . When a resistor		
	ohms. Calculate the value of R . If the supply voltage across the		
	above circuit is 60V, find the current passing through individual CO1 resistance. (7)	BTL 3	Apply
7.	Illustrate the Loop currents I_1 , I_2 and I_3 by Mesh loop analysis as CO1	BTL 3	Apply
	shown in Fig. (13)		
	$14V = I_{1}$ I_{1} I_{1} I_{2}		

8.	For the circuit shown in Fig, Evaluate the (i) currents in different	CO1	BTL 5	Evaluate
	branches (ii) current supplied by the battery (iii) potential			
	difference between terminals A and B. (13)			
	2 stim It ugen			
	Ma 10VT- My			
	A			
	L ELP N			
	Why & NNS D			
	332 7			
9.	(i) Determine the current I_L in the circuit shown in Fig. (7)	CO1	BTL 4	Analyze
	IV a 24			
	4 Community			
	- inter interest			
	34			
	SV Ca SIA			
	The Sa			
	Last Z (7)			
	¥~6V			
	v			
		G ()		
	(ii) Estimate the voltage across A and B in the circuit shown in \mathbf{E}_{i}	COI	BTL 2	Understa
	Fig. (0)			na
	A +1,-			
	$6V^{-1}$ $4\Omega \lesssim 12V$ $12V$			
	$1 \qquad \qquad$			
10.	Analyze the mesh analysis to the circuit shown in Fig. and Find	CO1		
10.	Analyze the mesh analysis to the circuit shown in Fig. and Find voltage across the dependent source. (13)	CO1	BTL 4	Analyze
10.	Analyze the mesh analysis to the circuit shown in Fig. and Find voltage across the dependent source. (13)	CO1	BTL 4	Analyze
10.	Analyze the mesh analysis to the circuit shown in Fig. and Find voltage across the dependent source. (13)	CO1	BTL 4	Analyze
10.	Analyze the mesh analysis to the circuit shown in Fig. and Find voltage across the dependent source. (13)	CO1	BTL 4	Analyze
10.	Analyze the mesh analysis to the circuit shown in Fig. and Find voltage across the dependent source. (13)	CO1	BTL 4	Analyze
10.	Analyze the mesh analysis to the circuit shown in Fig. and Find voltage across the dependent source. (13)	CO1	BTL 4	Analyze
10.	Analyze the mesh analysis to the circuit shown in Fig. and Find voltage across the dependent source. (13)	CO1	BTL 4	Analyze
10.	Analyze the mesh analysis to the circuit shown in Fig. and Find voltage across the dependent source. (13)	CO1	BTL 4	Analyze
10.	Analyze the mesh analysis to the circuit shown in Fig. and Find voltage across the dependent source. (13)	CO1	BTL 4	Analyze

11.	(i) State Kirchhoff's Current Law (KVL) and Kirchhoff's Voltage	CO1	BTL 1	Remembe
	Law(KVL). (4)			r
	(ii)Calculate the value of (1) Load Current and Current supplied	CO1	BTL 3	
	by the Battery (2) Voltage at the Load Current (3) Power developed			Apply
	by the Load. (9)			
	I_1 3Ω B 4Ω I_2			
	\downarrow			
	$35V _$ I_1 $\geq 2\Omega$ I_2			
12.	(i) Determine the current I delivered by the source. (7)	CO1	BTL 6	Create
	- MA MA MA			
	10V \$6~ \$3~			
	(ii) Calculate the value of Loop or Mesh Current I_1 and I_2 for the			
	given circuit as shown in Fig. (6)			
	2Ω 4Ω	CO1	BTL 3	Apply
	9Volt $\overline{\underline{}}$ I_1 $\leq_{3\Omega}$ I_2 5Volt			
13.	Calculate the value of Nodal Voltages V_1 , V_2 and V_3 by Nodal	CO1		Apply
	Analysis Method as shown in Fig (13)		BIL 3	
	3A 54			
	$V_1 \land V_2 \land V_3$			
	$Z_{80} \leq Z_{80}$			
	V Reference Node			
	5A			
	5A			

14.	(i) State and explain Kirchoff's laws. (4)	CO1	BTL1	Remember
	(ii) Derive the Loop currents I_1 , I_2 and I_3 by Mesh loop analysis and	CO1	BTL 3	Apply
	also Find power dissipated by 8 Ohm resistor as shown in Fig.(9)			
	$10\Omega \qquad 4\Omega \qquad 12\Omega$			
	$100V - I_{1} \qquad \qquad$			
	T (1)			
15.	Find the value of current through 4Ω load resistor using mesh current	CO1		Apply
	analysis. (13)		BTL 3	
	50V			
	5Ω 4Ω Load 4Ω			
16	Find by nodal analysis, the current Ly and Ic in the circuit, as shown in	C01		Annly
10.	Fig. (13)	001	BTL 3	трру
	2Ω 1 10Ω 2 4Ω			
	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$			
	3			
17.	A wheat stone bridge consists of AB=10 Ω , BC=10 Ω , CD=4 Ω , DA=5 Ω . A galvanometer of resistance 20 Ω is connected across BD. Evaluate the	CO1	BTL 5	Evaluate
	current through the galvanometer when a p.d of 10V is maintained across AC (13)			
	ne. (15)			
1	PART-C		DTI <i>5</i>	
1.	Susting (1) v_1 and v_2 by Nodal Analysis (11) I_1 , I_2 and I_3 by Loop or Current Analysis Method for the network as shown in Fig. (15)		BIL 2	Evaluate
	$6\Omega V_1 18\Omega V_2$			
	\Box \Box Ξ \Box Ξ Ξ \Box Ξ Ξ \Box Ξ Ξ			

5.	Find the current through 18Ω resistor in the given circuit using	mesh CO1	BTL 3	Apply
	current analysis. ((15)		
	$10 \qquad 20 \\ I_1 \qquad I_2 \qquad 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$)V		

UNIT II - <u>NETWORK REDUCTION AND THEOREMS FOR DC</u> AND AC CIRCUITS

Network reduction: voltage and current division, source transformation – star delta conversion. Thevenins and Norton Theorems – Superposition Theorem – Maximum power transfer theorem – Reciprocity Theorem – Millman's theorem.

	PART – A				
Q.No	Questions	CO	BT Level	Competence	
1.	Distinguish linear and nonlinear elements with suitable example for each.	CO2	BTL 3	Apply	
2.	Define the terms (i) Electric circuit (ii) Electric network.	CO2	BTL 3	Apply	
3.	Illustrate the equivalent voltage source for a current source of 15A when connected in parallel with 5 ohm resistance	CO2	BTL 3	Apply	
4.	Given that the resistors R_a , R_b and R_c are connected electrically in star. Formulate the equations for resistors in equivalent delta	CO2	BTL 3	Apply	
5.	Three resistors R_{ab} , R_{bc} and R_{ca} are connected in delta. Re-write the expression for resistors in equivalent star.	CO2	BTL 6	Create	
6.	Write the formulae for voltage division rule with suitable circuit.	CO2	BTL 2	Understand	
7.	Write the formulae for current division rule with suitable circuit.	CO2	BTL 5	Evaluate	
8.	Draw the circuit of a practical voltage source and its equivalent current source	CO2	BTL 1	Remember	
9.	For the given circuit, apply voltage division rule and Find the values of V_1 and V_2 . R_1 R_2	CO2	BTL 3	Apply	
	$\mathbf{v} = \begin{bmatrix} \mathbf{v} & \mathbf{v}_1 & \mathbf{v}_2 \\ \mathbf{v} & \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix}$				
10.	Express Thevenin's Theorem.	CO2	BTL 5	Evaluate	

11.	A load is connected to a network of the terminals to which load is connected in which $R_{th}=10$ Ohms and $V_{th}=40$ Volts. Calculate the maximum power supplied to the load.	CO2	BTL 3	Apply
12.	State reciprocity theorem.	CO2	BTL 1	Remember
13.	Is reciprocity theorem applied to the circuit having resistors, capacitors and diodes? Give your reason.	CO2	BTL 4	Analyze
14.	State Superposition theorem.	CO2	BTL 1	Remember
15.	List out the applications of maximum power transfer theorem.	CO2	BTL 1	Remember
16.	Distinguish between DC Current and AC Current.	CO2	BTL 4	Analyze
17.	What is the condition for maximum power transfer in DC and AC circuits?	CO2	BTL 2	Understand
18.	A load is connected to a network of the terminals to which load is connected, $R_{th}=10$ ohms and $V_{th}=40$ Calculate the maximum power supplied to the load.	CO2	BTL 3	Apply
19.	State Millman's theorem.	CO2	BTL 1	Remember
20.	State Reciprocity theorem.	CO2	BTL 1	Remember
21.	State Norton's theorem.	CO2	BTL 1	Remember
22.	Mention the different types of dependent source.	CO2	BTL 1	Remember
23.	What is the condition for maximum power transfer in DC Circuit.	CO2	BTL 3	Apply
24.	State Maximum power theorem.	CO2	BTL 4	Analyze
	PART – B			
1.	State Maximum power transfer theorem and derive the conditions for maximum power transfer in a single source circuit. (13) 8Ω 10 Ω $R_L = 15\Omega$ $R_L = 15\Omega$	CO2	BTL 4	Analyze
2.	Using Thevenin's theorem, Evaluate the current through $R_L=10$ Ohm as shown in Figand Find power developed by Load. (13) 3Ω 48V 48V $R_L = 10\Omega$ B	CO2	BTL 3	Apply

8.	Estimate the current through 5 Ω resistor using superposition theorem,	CO2	BTL 5	Evaluate
	in the circuit shown in Fig. (13)			
	292 22			
	J			
	GA T SIDA TION			
9.	i) Briefly explain Reciprocity and Millman theorem with neat diagram. (7)			Remember
	ii)Using Thevenin's theorem. Evaluate the current through $R_1=10$ Ohm as	CO2	BTL 1	
	shown in Fig and Find power developed by Load. (6)			
		CO^{2}	BTL 5	T I (
	3Ω 2Ω _{2Ο} A	002	_	Evaluate
	≤ 60 ≤ 60 ≤ -100			
	$48V - > R_1 = 10\Omega$			
	B			
10.	(i) Determine the value of resistance that may be connected across A	~ ~ •		
	and B so that maximum power is transferred from the circuit to the	CO2	BTL4	Analyze
	resistance shown in Fig. (9)			
	22 th 5V			
	- MAA AMA AA			
	201(-) 28-2 210.2			
	T C C			
	B			
	(ii) Calculate the current I shown in figure using Milman's theorem			
	(h) Calculate the current i shown in figure using winnian's theorem.	CO2	BTL 3	Apply
	(4)			

14. (i) Find the power delivered by the 20 V Source using superposition CO2	BTL 3	Apply
(i) Verify Reciprocity theorem for the circuit below. (6) $CO2$	BTL 4	Analyze
15 State and explain Milliman's theorem with an example		
13. State and explain withinian s theorem with an example.	BTL 2	Understand
16. Determine the current flowing through 5Ω resistor by using Thevenin's theorem.	BTL 3	Apply
$20V$ $12V$ 2Ω 2Ω $12V$ 5Ω 17		
17. State and explain Superposition theorem with an example.	BTL 2	Understand

UNIT III - TRANSIENT RESPONSE ANALYSIS

PART – A

L and C elements -Transient response of RL, RC and RLC Circuits using Laplace transform for DC input and A.C. sinusoidal input.

Q.No	Questions	CO	BT Level	Competence
1.	In a series RLC circuit, L=2H and C= 5μ F. Calculate the value of R to give critical damping.	CO3	BTL 3	Apply
2.	What is the time constant for series RL and RC circuits?	CO3	BTL 2	Understand
3.	Distinguish between transient response and steady state response of a circuit.	CO3	BTL 2	Understand
4.	Generalize the frequency response of series RLC circuit.	CO3	BTL 5	Evaluate
5.	Define the term 'Time Constant'. And write formulae for R_L , R_C Circuit.	CO3	BTL 1	Remember
6.	Write Integral-differential equation of RLC Circuit with the supply voltage E.	CO3	BTL 1	Remember
7.	Classify the periodic inputs.	CO3	BTL 4	Analyze
8.	Define (i) transient response (ii) Exponential decay response. Write the formulae for RL Transient Response	CO3	BTL 1	Remember
9.	Distinguish between free and forced response.	CO3	BTL 2	Understand
10.	Illustrate the time constant of RL Circuit having the resistance R=10 Ohm and L=0.1mH.	CO3	BTL 3	Apply
11.	Define the terms (i) Transient Time (ii) Time Constant (iii) Natural response (iv) Steady state response.	CO3	BTL 1	Remember
12.	Develop an equivalent circuit for inductor and capacitor at $t=0+$ when there is no initial energy.	CO3	BTL 6	Create
13.	A DC Voltage of 100 Volts is applied to Series RL Circuit with R=25 Ohm. Calculate the value of current in which time constant is twice.	CO3	BTL 3	Apply
14.	Analyze the current given by $I(t) = 5 - 4e^{-20t}$	CO3	BTL 4	Analyze
15.	Define time constant for RL circuit. Draw the transient current characteristics.	CO3	BTL 1	Remember
16.	Sketch the transient response of I, V_R, V_L in Series RL Circuit.	CO3	BTL 1	Remember
17.	Describe about under damping.	CO3	BTL 2	Understand
18.	Draw the phasor diagram for a pure inductor	CO3	BTL 3	Apply
19.	State the expression for capacitive reactance and its unit.	CO3	BTL 2	Understand
20.	State the relationship between frequency and period.	CO3		

BTL 2

Understand

		CO3	BTL 5	Evaluate
21.	Calculate the time constant for series RLC circuit?	CO3	BTL 3	Apply
22.	Let a RL circuits has 50Ω and 1mHelements and free of source but,the inductor has initial current of 1 mA at time t=0 ⁻ s.Find the voltage across the resistor at time t= ∞	CO3	BTL 3	Apply
23.	Find the time constant of RL Circuit with R=100 Ohms and L=20 mH?	CO3	BTL 3	Apply
24.	Define instantaneous value of a.c voltage	CO3	BTL 1	Remember
	PART – B			
1.	A sinusoidal voltage of 10sin100t is connected in series with a switch and R=10 Ω and L=0.1H.If the switch is closed at t=0, Determine the transient current i(t). (13)	CO3	BTL 6	Create
2.	In the circuit shown, determine the transient current after switch is closed at time t=0, given that an initial charge of 100µC is stored in the capacitor. Derive the necessary equations. (13) $ \begin{array}{c} 15\Omega \\ 50V \\ \hline 1(t) \\ \hline 200\muF \\ \hline \end{array} $	CO3	BTL 4	Analyze
3.	In the RL circuit shown in fig, the switch is closed to position 1 at t=0. After t=100ms, the switch is changed to position 2.Find i(t) and sketch the transient. (13) $ \begin{array}{c} 2 \\ 5 \\ 7 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	CO3	BTL 6	Create

4.	(i) Obtain the expression for resonant frequency and bandwidth for a	CO3	BTL 4	Analyze
	series RLC resonant circuit (7)			j 20
	(ii) In the parallel RIC circuit of Fig. let $R=8kO$ $I=0.2$ mH and			
	(infinitive parallel REC circuit of Fig. (et R 0.822 , E 0.2 infinitiand C=84F Calculate c_{20} 0, half power frequencies and BW (6)	~~ •		
	$C = \delta \mu \Gamma$. Calculate $\omega_{0,Q}$, half power frequencies and D w. (0)	CO3	BTL 3	Apply
	io->			
	The side of the second			
	Ioshur (P P			
5	(i)Calculate O of the series RLC circuit with $R-10O I = 0.04H$ and C-I	CO3	BTL 3	Annly
	uF Find bandwidth resonant frequency and half nower frequencies (7)		DIES	¹ PPIJ
	(ii) For the perallel network shown in figure, determine the value of P for			
	(ii) for the parallel network shown in figure, determine the value of K for resonance (6)			
		CO3	BTL 3	Apply
	· · · · · · · · · · · · · · · · · · ·			
	PIOSE R			
	Bjlon 7-122			
		~~~		
6.	In the series circuit shown in Fig., the switch is closed on position 1 at	CO3	BTL 4	Analyze
	t=0.At t=1 milli second, the switch is moved to position 2 .Obtain the			
	equations for the current in both intervals. (13)			
	3			
	+ + <del>3</del> 0.2H			
	100V T T JOV			

7.	(i) A series RC circuit with R=5 K $\Omega$ and C=20 $\mu$ F as a constant voltage	CO3	BTL 1	Remember
	source of $100V$ applied at t=0; there is no initial charge on the			
	capacitor. Examine the current i and charge q for $t > 0$ . (7)			
	(ii) In the circuit given below, the switch has been in position 1 for			
	sufficient time to establish steady state conditions. The switch is then			
	moved to position 2. Show the current transient. (6)	CO3	BTL 3	Apply
	/ ₹400			
	1 2			
	50V 土 土 10V 餐 20mH			
		<b>G00</b>		
8.	Derive the transient response of series R-L-C circuit, with DC input,	003	BTL 2	Understand
	using Laplace transform.			
	(i) Derive the necessary differential equation and solve. (3)			
	(ii) Discuss the cases of over-damping, critical-damping and under-			
	damping. (5)			
	(iii) Express the solution in terms of underdamped natural frequency,			
	$ \begin{array}{c} \text{damped natural frequency and camping factor.} \\ \text{(3)} \\ \text{(b) Shot she the transient measurements for three events } \end{array} $			
0	(iv) Sketch the transfert response curve for three cases. (2) (i) In the circuit shown in fig. find the expression for $i(t)$ V ₋ (t) and	CO3	BTI 3	
9.	(i) In the circuit shown in fig, find the expression for $I(t)$ , $v_R(t)$ and $V_r(t)$ if the switch is closed ott=0. (7)	005	DILJ	Apply
	$V_{\rm L}(t)$ if the switch is closed att=0. (7)			
	ST ECR(C)			
	I lon 1			
	+1 E=0 7:(1) 35H (2(E)			
	20V - Critico p V			
	(ii) In the circuit shown in fig, find the value of current 'i' at $t=50\mu S$	CO3	BTL 3	Apply
	if the switch is closed at t=0 and $V_C(t=0)=0.$ (6)			
	$\sim$			
	+ + 102			
	50V T Dia Diana (14)			
	- 2 vie in topif y ever			
4.0		001		<b>T</b> T <b>T</b> ( <b>T</b>
10.	Derive the expression of Series RC Transient with a DC voltage	003	BTL 2	Understand
	applied through it obtain Current, Voltage, Power, Energy produced			
	and Decay transient of the circuit. (13)			
11.	Analyze the expression for current transient when series RL circuit is	CO3	BTL 4	Analyze
	excited by a sinusoidal source $v=V_m(\sin \omega t)$ at t=0. (13)			

12.	Consider a source free parallel RLC circuit and evaluate the voltage	CO3	BTL 5	Evaluate
	response of the circuit on different damping conditions. (13)			
12		<u> </u>		
13.	A series RL circuit with R=10 $\Omega$ and L=0.1 H is supplied by an input	COS	BTL 3	Apply
	voltage $V_s(t) = 10 \sin 100t$ Volts applied at t=0 as shown in fig.			
	Calculate the current i, voltage across inductor. Derive the necessary			
	expression and plot the respective curves. (13)			
	R X			
	NS (Q)			
	- Ξ v(ε)			
1.4	A sorias PLC aircuit with P-500 I-0 1H and C-50 - E as a walts as af	<u>(03</u>	PTI 5	Evolucto
14	A series RLC circuit with $R=50S2$ , L=0.1H and C=500F as a voltage of 100V applied to it at t=0 through a system. Evaluate the approacien for	005	DILJ	Lvaluate
	a current transient. Assume initially releved aircuit conditions (12)			
	a current transient. Assume initiarily relaxed circuit conditions. (15)			
15.	Derive the expression for transient response of RL series circuit excited	CO3	BTL 4	Analyze
	by DC voltage. (13)			·
16.	A coil of resistance $8\Omega$ and an inductance of 0.1 H is connected in series	CO3	BTL 3	Apply
	with a capacitance of 75 $\mu$ F with a voltage of 240V, 50Hz. Calculate (1) inductive reactance (ii) connective reactance (iii) impedance (iv) current (v)			
	number $(1)$ capacitive reactance (11) impedance (17) current (7) power factor (vi) power in the circuit (13)			
17.	Derive the expression for transient response of RC series circuit excited	CO3		
	by DC voltage. (13)		BIL 3	Apply
	PART-C			
1.	A coil of resistance $10\Omega$ and an inductance of 0.1 H is connected in series	CO3	BTL 5	<b></b>
	with a capacitance of 150µF with a voltage of 200V, 50Hz supply.			Evaluate
	Calculate (i) inductive reactance (ii) capacitive reactance (iii) impedance			
	(1v) current (v) power factor (v1) voltage across the co1l and capacitor. (15)			
2	Derive the expression for the RI Transient response and RI Decay	CO3	BTL 5	Evaluate
2.	Response for the DC Source Excitation. (8)			_ · uruate
	(ii) In Series RL Circuit with R=100 Ohms and L=20 Henry has a DC			
	Voltage of 200 Volts applied through a switch at t=0. Find (i) Current	CON	рті (	Create
	and Voltage across each element (ii) Current at time t=0.5 Seconds (iii)	003	BIL 0	Create
	Current at time t=1 Second (iv) Time at which $e_R=e_L$ .(7)			
3.	(i) Evaluate the Laplace Transform for the following Functions (i) Step	<b>CO3</b>	BTL 5	Evaluate
	Function (ii) Exponential Function (iii)Sine Function (iv)Cosine			
	(8) (ii) Define Lenlage Transform Evaluing the following theorems			
	Initial value Theorem (ii) Final value Theorem and explain with	CO3	BTL 5	Evaluate
	Mathematical Representation (5)			
	(5)			

4.	The circuit consists of a series RC elements with R=15 $\Omega$ and C=100 $\mu$ F.A sinusoidal voltage V=100sin(500t+ $\emptyset$ ) volts is applied to the circuit at time corresponding to $\emptyset$ =45 ⁰ .Obtain the current transient. (15)	CO3	BTL 5	Evaluate
	$\frac{3}{152}$ $\frac{152}{100 \text{ sin}(5000 \pm 10)}$ $(i(t))$ $i(t)$ $1000 \text{ sin}(5000 \pm 10)$ $(i(t))$ $(i(t$			
5.	Derive the expression for transient response of RLC series circuit excited by DC voltage. (15)	CO3	BTL 5	Evaluate

#### UNIT IV - THREE PHASE CIRCUITS

A.C. circuits – Average and RMS value - Phasor Diagram – Power, Power Factor and Energy. Analysis of three phase 3wire and 4-wire circuits with star and delta connected loads, balanced & un balanced – phasor diagram of voltages and currents – power measurement in three phasecircuits.

	PART – A			
Q.No.	Questions	CO	BT Level	Competence
1.	Point out the advantages of 3-phase system over 1phase system.	CO4	BTL 4	Analyze
2.	Assess the various methods of power measurement in $3\Phi$ circuits	CO4	BTL 5	Evaluate
3.	Define (i) Average value (ii) RMS value (iii) Crest factor (iv)Form factor.	CO4	BTL 1	Remember
4.	Evaluate the voltage across Y and B in a 3 $\Phi$ balanced delta system with voltage across R and Y is $400 \ge 0^0$ V. Assume RYBphase	CO4	BTL 5	Evaluate
5.	Distinguish between unbalanced source and unbalanced load.	CO4	BTL 2	Understand
6.	A $3\Phi$ 400V supply is given to a balanced star connected load of impedance 8+j6 ohms in each branch. Formulate the line current.	CO4	BTL 6	Create
7.	Define power factor in terms of impedance and power components.	CO4	BTL 2	Understand
8.	Define form factor. What is the value of Form factor for sinusoidal signal.	CO4	BTL 3	Apply
9.	Calculate the power factor if $V(t)=V_{m}\sin\omega t$ and $I(t)=I_{m}\sin(\omega t-45^{0})$ .	CO4	BTL 3	Apply
10.	Evaluate the formulae for two watt meter method for the measurement of power.	CO4	BTL 4	Analyze

11.	Compare star and delta connected system.	CO4	BTL 4	Analyze
12.	Define average value and RMS value.	CO4	BTL 1	Remember
13.	Define power factor.	CO4	BTL 1	Remember
14.	Describe the terms (i) Line voltage (ii) Line current .	CO4	BTL 2	Understand
15.	Differentiate active and reactive power in electrical circuits.	CO4	BTL 2	Understand
16.	How do you differentiate Power and Energy in ElectricalCircuits?	CO4	BTL 1	Remember
17.	Draw the phasor diagram of voltages derived from a 3phase source.	CO4	BTL 6	Create
18.	Distinguish between balanced supply and unbalanced load.	CO4	BTL 2	Understand
19.	In a reactive circuit, the current leads the voltage by angle 45°. Find whether the resultant reactive is either inductive or capacitive and power factor.	CO4	BTL 3	Apply
20.	Write the expression for determining reactive and apparent power in a three phase circuit.	CO4	BTL 1	Remember
21.	Define the terms : Phase and Phase difference.	CO4	BTL 1	Remember
22.	What are the three types of power in AC Circuits ?	CO4	BTL 2	Understand
23.	Define Phasor diagram	CO4	BTL 1	Remember
24.	What is the phase sequence of a three phase system?	CO4	BTL 2	Understand
	PART – B			
1.	<b>PART – B</b> (i) A symmetrical three phase three wire 440V supply to a star connected load. The impedance in each branch are $2+j3\Omega$ , $1-j2\Omega$ and $3+j4\Omega$ . Find its equivalent delta connected load. (7)	CO4	BTL 3	Apply
1.	PART – B(i) A symmetrical three phase three wire 440V supply to a star connectedload. The impedance in each branch are $2+j3\Omega$ , $1-j2\Omega$ and $3+j4\Omega$ . Findits equivalent delta connected load.(7)(ii) A three phase balanced delta-connected load of $4+j8\Omega$ is connectedacross a 400V, 3Ø balanced supply. Determine the phase currents and linecurrents (Phase sequence inRYB).(6)	CO4 CO4	BTL 3 BTL 3	Apply Apply
1. 2.	PART – B (i) A symmetrical three phase three wire 440V supply to a star connected load. The impedance in each branch are 2+j3Ω,1-j2Ω and 3+j4Ω. Find its equivalent delta connected load. (7) (ii) A three phase balanced delta-connected load of 4+j8Ω is connected across a 400V, 3Ø balanced supply. Determine the phase currents and line currents (Phase sequence inRYB). (6) (i) A symmetrical three phase ,three wire 400 V supply is connected to a delta-connected load .Impedances in each branch are ZRY=10∠30 ⁰ Ω, ZYB=10∠45 ⁰ Ω and ZBR=2.5∠60 ⁰ Ω. Find Equivalent star-connected load.(7) (ii) A balanced star connected load having an impedance 15+j20Ω per	CO4 CO4 CO4	BTL 3 BTL 3 BTL 3	Apply Apply Apply
1. 2.	PART – B (i) A symmetrical three phase three wire 440V supply to a star connected load. The impedance in each branch are 2+j3Ω,1-j2Ω and 3+j4Ω. Find its equivalent delta connected load. (7) (ii) A three phase balanced delta-connected load of 4+j8Ω is connected across a 400V, 3Ø balanced supply. Determine the phase currents and line currents (Phase sequence inRYB). (6) (i) A symmetrical three phase, three wire 400 V supply is connected to a delta-connected load .Impedances in each branch are ZRY=10∠30 ⁰ Ω, ZYB=10∠45 ⁰ Ω and ZBR=2.5∠60 ⁰ Ω. Find Equivalent star-connected load.(7) (ii) A balanced star connected load having an impedance 15+j20Ω per phase is connected to 3Ø,440V, 50Hz.Find the line current and power absorbed by the load. (6)	CO4 CO4 CO4 CO4	BTL 3 BTL 3 BTL 3 BTL 3	Apply Apply Apply Apply
1.	PART – B (i) A symmetrical three phase three wire 440V supply to a star connected load. The impedance in each branch are 2+j3Ω,1-j2Ω and 3+j4Ω. Find its equivalent delta connected load. (7) (ii) A three phase balanced delta-connected load of 4+j8Ω is connected across a 400V, 3Ø balanced supply. Determine the phase currents and line currents (Phase sequence inRYB). (6) (i) A symmetrical three phase, three wire 400 V supply is connected to a delta-connected load .Impedances in each branch are ZRY=10∠30 ⁰ Ω, ZYB=10∠45 ⁰ Ω and ZBR=2.5∠60 ⁰ Ω. Find Equivalent star-connected load.(7) (ii) A balanced star connected load having an impedance 15+j20Ω per phase is connected to 3Ø,440V, 50Hz.Find the line current and power absorbed by the load. (6) (i) A 3-phase balanced delta-connected load of (4+j8) Ω is connected across a 400V,3-phase supply. Determine the phase currents and line currents. Assume the RYB phase sequence. Also calculate the value of the power drawn by the load. (7) (ii) Three equal inductors connected in star, take 5kW at 0.7pf when connected to a 400V,50Hz, three phases, three wire supply. Calculate the line currents (1) if one of the inductors is disconnected (2) if one of the inductors is	CO4 CO4 CO4 CO4 CO4	BTL 3 BTL 3 BTL 3 BTL 3 BTL 3 BTL 2	Apply         Apply         Apply         Apply         Apply         Apply         Understand

4.	Discuss in detail about the three phase 3-wire circuits with (i) Star connected balanced loads (ii) Delta balanced Loads. (13)	CO4	BTL 1	Remember
5.	Explain three phase power measurement by 2 wattmeter method for star and delta connected load and determine the power equation and draw the phasor diagram. (13)	CO4	BTL 4	Analyze
6.	(i) A 400V (line to line) is applied to three star connected identical impedances each consisting of a 4 $\Omega$ resistance in series with 3 $\Omega$ inductive reactance. Find (1) line current and (2) total power supplied. (7) (ii) Three star connected impedances Z1= (20+j37.7) $\Omega$ per phase are in parallel with three delta-connected impedance Z2= (30-j159.3) $\Omega$ per phase. The line voltage is 398 volts. Find the line current, power factor, power and reactive volt- ampere taken by the combination. (6)	CO4 CO4	BTL 3 BTL 3	Apply Apply
7.	The two wattmeter produces wattmeter readings $P_1=1560W$ and $P_2=2100W$ When connected to delta connected load. If the line voltage is 220V,Calculate (1)the per phase average power (2) total reactive power. (3) Power factor (4) the phasor impedance. Is the impedance inductive or Capacitive?Justify. (13)	CO4	BTL 3	Apply
8.	<ul> <li>Explain the following Three Phase Loads for Balanced and Unbalanced Loads for (i) Star Connected Loads (ii)Delta Connected Loads. (7)</li> <li>(i) Determine the line current, power factor and total power when a 3- phase 400V supply is given to a balanced load of impedance(8+j6) Ω in each branch is connected instar. (6)</li> </ul>	CO4 CO4	BTL 2 BTL 3	Understand Apply
9. 10.	Discuss the method of measuring power in a three phase system with balanced and unbalanced load conditions.(13)(i) A delta connected balanced load is supplied from 3 phase 400V Supply. The line current is 20 A, total power taken by load is 10,000 Examine the impedance in each branch, the line current, power factor and total power consumption.(7)	CO4 CO4	BTL 1 BTL 5	Remember Evaluate
	(ii) Unbalanced four wire star connected load has balanced supply voltage of 400V. The load impedances are $ZR = (4+j8) \Omega$ , $ZY = (3+j4) \Omega$ , $ZB = (15++j10) \Omega$ . Examine line currents, neutral current and total power. (6)	CO4	BTL5	Evaluate
11.	Explain the measurement of power in 3 phase circuit using one wattmeter method. (13)	CO4	BTL 5	Evaluate
12.	<ul> <li>(i) Mention the Merits of Three Phase System compare with Single Phase System.</li> <li>(6)</li> <li>(ii) Explain the following connection wiring for Three Phase Systems</li> <li>(1)Interconnection of Winding (2) Star Connection (3) Delta Connection with Phasor Diagram.</li> </ul>	CO4 CO4	BTL 1 BTL 2	Remember Understand
13.	Determine the amplitude of the line current in a 3Ø system with a 300V line voltage that supplies 1200W to a Y connected load at lagging PF of 0.8. (13)	CO4	BTL 4	Analyze
14.	Derive the relationship between the phase voltage and the voltage of a 3 phase star connected balanced system.(13)Calculate the total power input and readings of the two wattmeter's connected to measure power in a three phase balanced load, if the reactive power input is 15 KVAR, and the load pf is 0.8.(13)	CO4	BTL 5	Evaluate

16.	Explain the power and power factor measuring in the three phase by two wattmeter method. (13)	CO4	BTL 5	Evaluate
17.	Two wattcmeters in three phase three wire system with an effective line voltage of 120 volts reads 1500 watts and 500 watts. Find the impedance of the balanced delta connected load. (13)	CO4	BTL 3	Apply
	PART-C			
1.	A 400V, three phase supply feeds an unbalanced three wire, star connected load. The branch impedances of the load are $Z_R = (4+j8)\Omega$ ; $Z_Y = (3+j4)\Omega$ and $Z_B = (15+j20)\Omega$ . Find the line currents and voltage across each phase impedance. Assume RYB phase sequence (15)	CO4	BTL 5	Evaluate
2.	(i) Explain the following connection wiring for Three Phase Systems (i)Interconnection of Winding (ii) Star Connection (iii) Delta Connectionwith Phasor Diagram.(8)	CO4	BTL 2	Understand
	<ul> <li>(ii)A balanced Star connected load of (4+j3)Ohm /Phase is connected to a 3-Phase,230 V,50 Hz Supply. Evaluate (i) Line Current (ii) Power Factor (iii) Reactive volt Amperes (iv) Power in VA.</li> </ul>	04	BTL 5	Evaluate
3.	Explain the following methods for the Three Phase Power Measurement Methods (i) Three Watt meter Method (ii) Two Wattmeter Method (iii) One Wattmeter Method. (15)	CO4	BTL 5	Evaluate
4.	Consider a series RLC circuit is energized by a sinusoidal signal source (assume amplitude of $A_m$ and frequency of $\omega$ ). (i) What would be the instantaneous and average power delivered by source. (ii)What would be the instantaneous and average power dissipated by elements R,L and C. (15)	CO4	BTL 6	Create
5.	Two wattcmeters used to measure the input to a balanced three phase circuit indicate 2000 watts and 500 watts respectively. Find the power factor of the circuit (i) when both wattcmeters are positive (ii) When the later is obtained after reversing in the connection to the current coil of one instrument. (15)	CO4	BTL 3	Apply

#### UNIT V - RESONANCE AND COUPLED CIRCUITS

Series and parallel resonance – their frequency response – Quality factor and Bandwidth - Self and mutual inductance – Coefficient of coupling – Tuned circuits – Single tuned circuits.

	PART – A			
Q.No	Questions	CO	BT	Competence
			Level	
1.	Define co-efficient of coupling. Give the expression for coefficient of coupling.	CO5	BTL 4	Analyze
2.	What is meant by Resonance?	CO5	BTL 5	Evaluate
3.	What is meant by anti resonance circuit? Illustrate the frequency	CO5	BTL 4	
	response curve for Parallel RLC Circuit?			Analyze

4.	Write the expression for resonant frequency for series RLC Circuit.	CO5	BTL 1	Remember
5.	Express the term tuned circuits. Mention the different of tuned circuits.	CO5	BTL 5	Evaluate
6.	Draw the series resonant circuit. And also draw the frequency response characteristics.	CO5	BTL 1	Remember
7.	Illustrate the expression of maximum energy stored in (i) Inductor (ii) Capacitor.	CO5	BTL 5	Evaluate
8.	Discuss about the quality factor of a series resonant circuit.	CO5	BTL 2	Understand
9.	Define bandwidth of the resonant circuit.	CO5	BTL 1	Remember
10.	Illustrate the quality factor of a coil for the series resonant circuit	CO5	BTL 3	Apply
	consisting of $R=10$ ohm, $L=0.1$ henry and $C=10$ microfarad.			
11.	Define bandwidth of a resonant circuit.	CO5	BTL 1	Remember
12.	Describe the expression which relates the self and mutual inductance.	CO5	BTL 2	Understand
13.	Examine the maximum possible mutual inductance of two	CO5	BTI 3	Apply
	inductively coupled circuits with self inductance $L_1 = 16$ H and $L_2 = 4$ H.		DILJ	
14.	Define the terms (i) Mutual inductance (ii) Coefficient of coupling.	CO5	BTL 1	Remember
15	What is an antiresonance circuit? Create the frequency response of	CO5		
	RLC Parallel Circuit.		DILO	Create
16.	Illustrate the expression for effective inductance of two series connected	CO5		
	magnetically coupled coils.		DIL 2	Understand
17.	Two coupled coils with L1=0.02 H, L2=0.01 H and K=0.5 are connected	CO5	BTL 3	
	in series aiding arrangement. Obtain the equivalent inductance.		DILS	Apply
18.	Define self-inductance and mutual inductance of a coil.	CO5	BTL 1	Remember
19.	What is meant by single tuned coupled circuits ?	CO5	BTL 5	Evaluate
20.	Define quality factor Q of a coil.	CO5	BTL 1	Remember
21.	Two identical coils with L=0.03H have a coupling coefficient of	CO5	BTI 3	
	K=0.8.Find the mutual inductance and the equivalent inductance with the			Apply
	coils connected in series opposing mode.			
22	What is meant by tuned circuits ? List some applications of tuned circuits.	CO5	BTL 1	Remember
23.	A resistor of 50 Ohm an inductor of 0.02 H and a capacitor of 5 $\mu F$ are	CO5	BTL 5	Evaluate
	connected in series. Find the resonant frequency and power factor at			
	resonance.			
24.	Compare the properties of series and parallel resonant circuits.	CO5	BTL 4	Analyze
	PART-B		I	
1.	Explain briefly about the concept of parallel resonance. (13)	CO5	BTL 4	Analyze

2.	(i) Derive the expression for equivalent inductance of the parallel	CO5	BTL 6	Create
	resonant circuit showninfig. (7)			
	t Er M.			
	$\begin{array}{c} \begin{array}{c} T_{1} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} T_{2} \\ \end{array} \\ \begin{array}{c} T_{2} \\ \end{array} \end{array} \\ \begin{array}{c} T_{2} \\ T_{2} \\ \end{array} \\ \begin{array}{c} T_{2} \\ T_{2} \\ \end{array} \\ \begin{array}{c} T_{2} \\ \end{array} \\ \begin{array}{c} T_{2} \\ \end{array} \\ \begin{array}{c} T_{2} \\ T_{2} \\ T_{2} \\ \end{array} \\ \begin{array}{c} T_{2} \\ T_{2} \\ T_{2} \\ \end{array} \\ \begin{array}{c} T_{2} \\ T_{2} \\ T_{2} \\ T_{2} \\ \end{array} \\ \begin{array}{c} T_{2} \\ T_{2} \\ T_{2} \\ \end{array} \\ \begin{array}{c} T_{2} \\ T_{2} \\ T_{2} \\ \end{array} \\ \begin{array}{c} T_{2} \\ T_{2} \\ T_{2} \\ T_{2} \\ \end{array} \\ \begin{array}{c} T_{2} \\ T_{2} \\ T_{2} \\ \end{array} \\ \begin{array}{c} T_{2} \\ T_{2} \\ T_{2} \\ \end{array} \\ \begin{array}{c} T_{2} \\ T_{2} \\ T_{2} \\ T_{2} \\ \end{array} \\ \begin{array}{c} T_{2} \\ T_{2} \\ T_{2} \\ \end{array} \\ \begin{array}{c} T_{2} \\ T_{2} \\ T_{2} \\ T_{2} \\ \end{array} \\ \begin{array}{c} T_{2} \\ T_{2} \\ T_{2} \\ \end{array} \\ \end{array} \\ \begin{array}{c} T_{2} \\ T_{2} \\ T_{2} \\ \end{array} \\ \begin{array}{c} T_{2} \\ T_{2} \\ T_{2} \\ \end{array} \\ \end{array} \\ \begin{array}{c} T_{2} \\ T_{2} \\ T_{2} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} T_{2} \\ T_{2} \\ \end{array} \\ \end{array} \\ \begin{array}{c} T_{2} \\ T_{2} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} T_{2} \\ T_{2} \\ T_{2} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}  \\ \begin{array}{c} T_{2} \\ T_{2} \\ T_{2} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}  \\ \begin{array}{c} T_{2} \\ T_{2} \\ T_{2} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}  \\ \end{array}  \\ \begin{array}{c} T_{2} \\ T_{2} \\ T_{2} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array}  \\ \end{array} \\ \\ \end{array}  \\ \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array} \\ \\ \end{array}  \\ \\ \end{array} \\ \end{array}			
		CO5	BTL 6	Create
	(II) Create the mesh equations and obtain the conductively coupled		2120	
	Figure. (6)			
	J6.JL			
	+ = = = = = = = = = = = = = = = = = = =			
	50/2° V Q II V 250			
	-+i			
3.	Impedance $Z_1$ and $Z_2$ are parallel and this combination is in series with an	CO5	BTL 3	Apply
	impedance Z3 connected to a 100V, 50 Hz ac supply. $Z_1 = (5-jXc)$ ohm, $Z_2 = (5+i0)$ ohm $Z_2 = (6.25+i1.25)$ ohm Calculate the value of capacitance			ff J
	impedance Z3 connected to a 100V, 50 Hz ac supply. $Z_1$ = (5-jXc) ohm, $Z_2$ = (5+j0) ohm, $Z_3$ = (6.25+j1.25) ohm. Calculate the value of capacitance such that the total current of the circuit will be inphase with the total			
	impedance Z3 connected to a 100V, 50 Hz ac supply. $Z_1$ = (5-jXc) ohm, $Z_2$ = (5+j0) ohm, $Z_3$ = (6.25+j1.25) ohm. Calculate the value of capacitance such that the total current of the circuit will be inphase with the total voltage. Find the circuit current and power. (13)			
4.	impedance Z3 connected to a 100V, 50 Hz ac supply. $Z_1$ = (5-jXc) ohm, $Z_2$ = (5+j0) ohm, $Z_3$ = (6.25+j1.25) ohm. Calculate the value of capacitance such that the total current of the circuit will be inphase with the total voltage. Find the circuit current and power. (13) For a Series RLC Circuit (13)	CO5	BTL 5	Evaluate
4.	impedance Z3 connected to a 100V, 50 Hz ac supply. $Z_1 = (5-jXc)$ ohm, $Z_2 = (5+j0)$ ohm, $Z_3 = (6.25+j1.25)$ ohm. Calculate the value of capacitancesuch that the total current of the circuit will be inphase with the totalvoltage. Find the circuit current and power.(13)For a Series RLC Circuiti)Derive the condition for resonance	CO5	BTL 5	Evaluate
4.	<ul> <li>impedance Z3 connected to a 100V, 50 Hz ac supply. Z₁= (5-jXc) ohm, Z₂= (5+j0) ohm, Z₃= (6.25+j1.25) ohm. Calculate the value of capacitance such that the total current of the circuit will be inphase with the total voltage. Find the circuit current and power. (13)</li> <li>For a Series RLC Circuit (13)</li> <li>i) Derive the condition for resonance</li> <li>ii) Explain the frequency response and</li> </ul>	CO5	BTL 5	Evaluate
4.	<ul> <li>impedance Z3 connected to a 100V, 50 Hz ac supply. Z₁= (5-jXc) ohm, Z₂= (5+j0) ohm, Z₃= (6.25+j1.25) ohm. Calculate the value of capacitance such that the total current of the circuit will be inphase with the total voltage. Find the circuit current and power. (13)</li> <li>For a Series RLC Circuit (13)</li> <li>i) Derive the condition for resonance</li> <li>ii) Explain the frequency response and</li> <li>iii) Obtain quality factor and bandwidth.</li> </ul>	CO5	BTL 5	Evaluate
4.	<ul> <li>impedance Z3 connected to a 100V, 50 Hz ac supply. Z₁= (5-jXc) ohm, Z₂= (5+j0) ohm, Z₃= (6.25+j1.25) ohm. Calculate the value of capacitance such that the total current of the circuit will be inphase with the total voltage. Find the circuit current and power. (13)</li> <li>For a Series RLC Circuit (13)</li> <li>i) Derive the condition for resonance</li> <li>ii) Explain the frequency response and</li> <li>iii) Obtain quality factor and bandwidth.</li> <li>(i) Derive the resonance frequency 'fr' for the circuit shown in Fig. (6)</li> </ul>	CO5 CO5	BTL 5 BTL 4	Evaluate
4.	<ul> <li>impedance Z3 connected to a 100V, 50 Hz ac supply. Z₁= (5-jXc) ohm, Z₂= (5+j0) ohm, Z₃= (6.25+j1.25) ohm. Calculate the value of capacitance such that the total current of the circuit will be inphase with the total voltage. Find the circuit current and power. (13)</li> <li>For a Series RLC Circuit (13)</li> <li>i) Derive the condition for resonance</li> <li>ii) Explain the frequency response and</li> <li>iii) Obtain quality factor and bandwidth.</li> </ul>	CO5	BTL 5 BTL 4	Evaluate
4.	<ul> <li>impedance Z3 connected to a 100V, 50 Hz ac supply. Z₁= (5-jXc) ohm, Z₂= (5+j0) ohm, Z₃= (6.25+j1.25) ohm. Calculate the value of capacitance such that the total current of the circuit will be inphase with the total voltage. Find the circuit current and power. (13)</li> <li>For a Series RLC Circuit (13)</li> <li>i) Derive the condition for resonance</li> <li>ii) Explain the frequency response and</li> <li>iii) Obtain quality factor and bandwidth.</li> </ul>	CO5 CO5	BTL 5 BTL 4	Evaluate
4.	<ul> <li>impedance Z3 connected to a 100V, 50 Hz ac supply. Z₁= (5-jXc) ohm, Z₂= (5+j0) ohm, Z₃= (6.25+j1.25) ohm. Calculate the value of capacitance such that the total current of the circuit will be inphase with the total voltage. Find the circuit current and power. (13)</li> <li>For a Series RLC Circuit (13)</li> <li>i) Derive the condition for resonance</li> <li>ii) Explain the frequency response and</li> <li>iii) Obtain quality factor and bandwidth.</li> </ul>	CO5 CO5	BTL 5 BTL 4	Evaluate
4.	<ul> <li>impedance Z3 connected to a 100V, 50 Hz ac supply. Z₁= (5-jXc) ohm, Z₂= (5+j0) ohm, Z₃= (6.25+j1.25) ohm. Calculate the value of capacitance such that the total current of the circuit will be inphase with the total voltage. Find the circuit current and power. (13)</li> <li>For a Series RLC Circuit (13)</li> <li>i) Derive the condition for resonance</li> <li>ii) Explain the frequency response and</li> <li>iii) Obtain quality factor and bandwidth.</li> </ul>	CO5 CO5	BTL 5 BTL 4	Evaluate
4.	<ul> <li>impedance Z3 connected to a 100V, 50 Hz ac supply. Z₁= (5-jXc) ohm, Z₂= (5+j0) ohm, Z₃= (6.25+j1.25) ohm. Calculate the value of capacitance such that the total current of the circuit will be inphase with the total voltage. Find the circuit current and power. (13)</li> <li>For a Series RLC Circuit (13)</li> <li>i) Derive the condition for resonance</li> <li>ii) Explain the frequency response and</li> <li>iii) Obtain quality factor and bandwidth.</li> </ul> (i) Derive the resonance frequency 'fr' for the circuit shown in Fig. (6)	CO5	BTL 5 BTL 4	Evaluate Analyze
4.	<ul> <li>impedance Z3 connected to a 100V, 50 Hz ac supply. Z₁= (5-jXc) ohm, Z₂= (5+j0) ohm, Z₃= (6.25+j1.25) ohm. Calculate the value of capacitance such that the total current of the circuit will be inphase with the total voltage. Find the circuit current and power. (13)</li> <li>For a Series RLC Circuit (13)</li> <li>i) Derive the condition for resonance</li> <li>ii) Explain the frequency response and</li> <li>iii) Obtain quality factor and bandwidth.</li> <li>(i) Derive the resonance frequency 'fr' for the circuit shown in Fig. (6)</li> <li>(ii) A series circuit with R=10 Ω. L=0.1 H and C=50 uF has an</li> </ul>	CO5	BTL 5 BTL 4	Evaluate
4.	<ul> <li>impedance Z3 connected to a 100V, 50 Hz ac supply. Z₁= (5-jXc) ohm, Z₂= (5+j0) ohm, Z₃= (6.25+j1.25) ohm. Calculate the value of capacitance such that the total current of the circuit will be inphase with the total voltage. Find the circuit current and power. (13)</li> <li>For a Series RLC Circuit (13)</li> <li>i) Derive the condition for resonance</li> <li>ii) Explain the frequency response and</li> <li>iii) Obtain quality factor and bandwidth.</li> <li>(i) Derive the resonance frequency 'f_r' for the circuit shown in Fig. (6)</li> <li>(ii) A series circuit with R=10 Ω, L=0.1 H and C=50 µF has an applied voltage V=501 0⁰ V with a variable frequency Find (1) the</li> </ul>	CO5	BTL 5 BTL 4	Analyze
4.	<ul> <li>impedance Z3 connected to a 100V, 50 Hz ac supply. Z₁= (5-jXc) ohm, Z₂= (5+j0) ohm, Z₃= (6.25+j1.25) ohm. Calculate the value of capacitance such that the total current of the circuit will be inphase with the total voltage. Find the circuit current and power. (13)</li> <li>For a Series RLC Circuit (13)</li> <li>i) Derive the condition for resonance</li> <li>ii) Explain the frequency response and</li> <li>iii) Obtain quality factor and bandwidth.</li> <li>(i) Derive the resonance frequency 'fr' for the circuit shown in Fig. (6)</li> <li>(ii) A series circuit with R=10 Ω, L=0.1 H and C=50 µF has an applied voltage V=50∟0⁰ V with a variable frequency. Find (1) the resonant frequency (2) the value of frequency at which maximum</li> </ul>	CO5 CO5	BTL 5 BTL 4 BTL 3	Evaluate Analyze Apply
4.	<ul> <li>impedance Z3 connected to a 100V, 50 Hz ac supply. Z₁= (5-jXc) ohm, Z₂= (5+j0) ohm, Z₃= (6.25+j1.25) ohm. Calculate the value of capacitance such that the total current of the circuit will be inphase with the total voltage. Find the circuit current and power. (13)</li> <li>For a Series RLC Circuit (13)</li> <li>i) Derive the condition for resonance</li> <li>ii) Explain the frequency response and</li> <li>iii) Obtain quality factor and bandwidth.</li> <li>(i) Derive the resonance frequency 'f_r' for the circuit shown in Fig. (6)</li> <li>(ii) A series circuit with R=10 Ω, L=0.1 H and C=50 µF has an applied voltage V=50∟0⁰ V with a variable frequency. Find (1) the resonant frequency (2) the value of frequency at which maximum voltage occurs across inductor (3) value of frequency at which</li> </ul>	CO5 CO5	BTL 5 BTL 4 BTL 3	Evaluate Analyze Apply

6.	For a series RLC circuit, Derive the condition for resonance. Explain	CO5	рті <i>5</i>	Evaluate
	the frequency response and Obtain quality factor and bandwidth. (13)		DIL 5	
7.	Draw the circuit diagram for Parallel Resonance Circuit. Describe how to derive Q factor and Bandwidth is obtained for parallel resonance circuit. (13)	CO5	BTL 3	Apply
8.	(i) For the given circuit the supply voltage V=100 Volts, Inductance	CO5	вті <i>э</i>	Understand
	L=50mH and Capacitance C= $0.01\mu$ F. Find the resonant frequency in an			
	ideal parallel LC Circuit. (7)			
	(ii) What are coupled circuits? Sketch the frequency response of a single tuned circuit and give the application of tuned circuits. (6)	CO5	BTL 3	Apply
9.	Derive the mutual inductance and the coupling coefficient of the	CO5		
	transformer with necessary illustration. (13)		BTL 1	Remember
10.	(i) Derive the expression for coefficient of coupling in terms of mutual and self inductances of the coils. (7)	CO5	BTL 4	Analyze
	(ii) Two coupled coils have self inductances of $L_1=100$ mH and			
	$L_2$ =400 mH. The coupling coefficient is 0.8. Find M. If N1 is 1000			
	turns, what is the value of $N_2$ ? If a current $i_1=2sin(500t)A$ through	CO5	BTL3	Apply
	coil 1, find the flux $\phi_1$ and the mutually induced voltage V ₂ M. (6)	000	DILS	мррту
11.	(i) Draw the conductively coupled equivalent circuit for the given	CO5	BTL 3	Apply
	circuit in fig. and also find the voltage drop across $12\Omega$ resistor. (7)			
	$\frac{12}{10^{\circ}} (\frac{1}{1}) \frac{1}{1} \frac{1}{10^{\circ}} \frac{1}{10^{\circ$			
	(ii)The number of turns in two coupled coils are500 turns and 1500	CO5	BTL 6	Create
	turns respectively. When 5A current flows in coil 1, the total flux in			
	this coil is 0.6 x $10^{-3}$ wb and flux linking in second coil is 0.3 x $10^{-3}$			
	wb. Determine $L_1, L_2, M$ and K. (6)			

12.	(i) A coil having an inductance of 100mH is magnetically coupled to another coil having an inductance of 900mH. The coefficient of coupling between the coils is 0.45. Calculate the equivalent inductance if the two coils are connected in 1) Series opposing and 2)Parallelopposing. (4) (ii) For the circuit shown in fig. determine the voltage ratio $V_1/V_2$ ,	CO5	BTL 3	Apply Understand
	which will make the current $I_1$ equal tozero. (9)		DIL 2	
13.	(i) In the circuit shown in Fig. , Find the phasor voltage V ₂ . (7)	CO5	BTL 3	Apply
	<ul> <li>(ii) Two identical coupled coils in series has an equivalent inductance of</li> <li>0.08 H and 0.0354 H when connected in series aiding and series</li> <li>opposing. Find the values of the inductance, mutual inductance and the</li> <li>co-efficient of coupling. (6)</li> </ul>	CO5	BTL 3	Apply
14.	Analyze the value of L at which the circuit resonates at a frequency of 1000 rad/s in the circuit shown in Fig. (13)	CO5	BTL 4	Analyze
	\$52 \$102 -j122			

15.	Two coupled coils of self inductance $L1 = 2H$ and $L2 = 4H$ are coupled	CO5	BTL 3	Apply
	in (i) series aiding (ii) series opposing (iii) parallel aiding (iv) parallel			
	opposing. If the mutual inductance is 0.5H, Find the equivalent			
	inductance in each case. (13)			
16.	Express the term self inductance and mutual inductance for the coupled	CO5	BTL 2	Understanding
	circuits. (13)	COS		
17.	What is magnetic coupling and its effect? Explain in detail in the	CO5	BTL 5	Evaluate
	concept of co-efficient coupling. (13)			
	PART-C	I		
1.	Derive the mutual inductance and the coupling coefficient of	C05	BTL 5	Evaluate
	transformer with necessary illustration. (15)			
2.	A voltage $v(t)=10\sin \omega t$ is applied to a series RLC circuit. At the resonant	CO5	BTL 3	Apply
	frequency of the circuit, the maximum voltage across the capacitor is	000		
	found to be 500V. The bandwidth is known to be 400 rad/s and the			
	impedance at resonance is $100\Omega$ . Find the resonant frequency. Also find			
	the values of L and C of the circuit. (15)			
3.	(i) What is meant by Resonance in AC Circuit ? In Series	CO5	DTI 5	
	Resonance Explain the following terms (i) Circuit Diagram (ii)		DIL 5	Evaluate
	Impendence (iii) Phasor Diagram (iv) Reactance Curve (v)			
	Variation of impedance (vi) Selectivity of Q-factor. (10)			
	(ii) Determine the quality factor of a coil the values $R=10\Omega$ ; L=0.1 H	CO5		
	and $C = 10\mu F$ . (5)		BTL 5	Evaluate
4.	Two coupled coils with $ L1 = 0.01H$ , $L2 = 0.04$ H and $K = 0.6$ can be	CO5	BTL 3	Apply
	connected in four different ways such as (i) series aiding, (ii) series			•
	opposing (iii) parallel aiding (iv) parallel opposing. Find the equivalent			
	inductance in each phase. (15)			
5.	Explain the phenomenon of resonance. Derive the formula for the	CO5	BTL 5	Evaluate
	resonance frequency of the series resonance circuits. And also obtain the			
	capacitance and resonance curve. (15)			

# **COURSE OUTCOMES:**

CO 1	Ability to analyse electrical circuits.
CO 2	Ability to apply circuit theorems.
CO 3	Ability to analyse transients
CO 4	Ability to analyse three phase circuits.
CO 5	Ability to analyse frequency response of resonance and coupled circuits.