
SRM VALLIAMMAI ENGINEERING

COLLEGE
(An Autonomous Institution)

SRM NAGAR, KATTANKULATHUR-603203

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

ENGINEERING

 LAB MANUAL

1905507 -MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

Prepared By

Mrs. S.Vanila, A.P. (Sel.G) / EEE

V SEMESTER

(Academic Year – 2022-2023-ODD sem)

1905507 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY LTPC

 0 0 4 2

SYLLABUS
OBJECTIVES:

➢ To perform simple arithmetic operations using assembly language program
and study the addressing modes & instruction set of 8085 & 8051.

➢ To develop skills in simple program writing in assembly languages.
➢ To write an assembly language program to convert Analog input to Digital

output and Digital input to Analog output.
➢ To perform interfacing experiments with μP8085 and μC8051.
➢ To study various digital integrated circuits used in simple system

configuration.

LIST OF EXPERIMENTS
Programming exercises / Experiments with μP8085:

1. Simple arithmetic operations: Multi precision addition / subtraction/multiplication /

division.

2. Programming with control instructions: Increment / Decrement, Ascending Descending

order, Maximum / Minimum of numbers, Rotate instructions, Hex /ASCII / BCD code

conversions.

3. Interface Experiments:

A/D Interfacing.

D/A Interfacing.

Traffic light controller.

4. Stepper motor controller interface.

Programming exercises / Experiments with μC8051:

5. Simple arithmetic operations with 8051: Multi precision addition / subtraction

/multiplication / division.

6. Programming with control instructions: Increment / Decrement, Ascending

/Descending order, Maximum / Minimum of numbers, Rotate instructions, Hex /ASCII

/ BCD code conversions.

7. Interface Experiments:

A/D Interfacing.

D/A Interfacing.

Traffic light controller

8. Stepper motor controller interface.

Experiments with Digital ICs:

9. Study of Basic Digital IC’s.(Verification of truth table for AND, OR, EXOR, NOT,

NOR, NAND, JK FF, RS,FF, D FF)

10. Implementation of Boolean Functions, Adder/ Subtractor circuits; Realizing

given function with minimum number of gates by minimization methods.

11. Study of binary / BCD counters, modulo-n counters.

12. Design and implementation of Synchronous sequential counters.

13. Programming ARM architecture with software tools.

CONTENTS

S. NO. EXPERIMENT NAME
PAGE

NO.

8085 Experiments
1A 8 bit data addition

1B 8 bit data subtraction

1C 8 bit data multiplication

1D 8 bit data divison

2A Largest element in an array

2B Smallest element in an array

2C Sorting an array of data in Ascending order

2D Sorting an array of data in Descending order

2E Decimal to Hexadecimal conversion

2F Hexadecimal to decimal conversion

2G Hexa decimal TO ASCII conversion

2H ASCII to Hexa decimal conversion

3A Traffic light controller - Interfacing 8255 with 8085

3B Interfacing Analog to Digital converter 8085 microprocessor

3C Interfacing Digital to Analog converter 8085 microprocessor

4 Stepper motor controller interface

8051 Experiments
5A 8 bit data addition

5B 8 bit data subtraction

5C 8 bit data multiplication

5D 8 bit data divison

6A Largest element in an array

6B Smallest element in an array

6C ASCII to Hexa decimal conversion

7A Interfacing A/D and D/A converter with 8051 microcontroller

7B Traffic light controller - Interfacing with 8051

8 Interfacing stepper motor with 8051 microcontroller

 Experiments with Digital ICs

9

Study of Basic Digital IC’s.

(Verification of truth table for AND, OR, EXOR, NOT, NOR,

NAND, JK FF, RS,FF, D FF)

10

Implementation of Boolean Functions, Adder/ Subtractor circuits;

Realizing given function with minimum number of gates by

minimization methods.

11 Study of binary / BCD counters, modulo-n counters

12 Design and implementation of Synchronous sequential counters.

13 Programming ARM architecture with software tools.

ADDITIONAL EXPERIMENTS

14 Programs to verify timer and interrupts in 8051 Microcontroller

15 2x2 matrix multiplication

FLOW CHART:

 NO

 YES

START

[HL] 4200H

[A] [M]

[A] [A]+[M]

[HL] [HL]+1

STOP

[HL] [HL]+1

[M] [A]

[C] 00H

[M] [C]

[HL] [HL]+1

Is there a

 Carry ?

[C] [C]+1

1(A) 8-BIT DATA ADDITION

AIM:

To add two 8 bit numbers stored at consecutive memory locations and also to verify the

result.

APPARATUS REQUIRED:

 8085 microprocessor kit ,key board

ALGORITHM:

1. Initialize memory pointer to data location.

2. Get the first number from memory in accumulator.

3. Get the second number and add it to the accumulator.

4. Store the answer at another memory location.

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

4100 START MVI C, 00 Clear C reg.

4101

4102 LXI H, 4200 Initialize HL reg. to

4500 4103

4104

4105 MOV A, M Transfer first data to

accumulator

4106 INX H Increment HL reg. to

point next memory

Location.

4107 ADD M Add first number to

acc. Content.

4108 JNC L1 Jump to location if

result does not yield

carry.
4109

410A

410B INR C Increment C reg.

410C L1 INX H Increment HL reg. to

point next memory

Location.

410D MOV M, A Transfer the result from

acc. to memory.

410E INX H Increment HL reg. to

point next memory

Location.

410F MOV M, C Move carry to memory

4110 HLT Stop the program

OBSERVATION:

INPUT OUTPUT

4200 40 4202 60

4201 20 4203 00

RESULT:

Thus the two 8 bit numbers stored at 4200 &4201 are added and the result is stored at

4202 & 4203.

VIVA QUESTIONS:

1. What is the function of LXI H, 4000 H instruction?

2. How you can store a data in a memory location?

3. What is the meaning of INX

3. How you can read a data from a memory location?

4. What are flags available in 8085 ?

5. What is the function of RESET key of a 8085 microprocessor kit

6. What is the function of JNC instruction?

 7. What is the difference between conditional and unconditional jump instruction?

8. What is multi byte?

FLOW CHART:

 NO

 YES

START

[HL] 4200H

[A] [M]

Is there a

 Borrow ?

[A] [A]-[M]

[HL] [HL]+1

[C] 00H

[C] [C]+1

STOP

[HL] [HL]+1

[M] [A]

[M] [C]

[HL] [HL]+1

Complement [A]

Add 01H to [A]

1(B) 8-BIT DATA SUBTRACTION

AIM:

 To subtract two 8 bit numbers stored at consecutive memory locations and also to

verify the result.

APPARATUS REQUIRED:

 8085 microprocessor kit, key board

ALGORITHM:

1. Initialize memory pointer to data location.

2. Get the first number from memory in accumulator.

3. Get the second number and subtract from the accumulator.

4. If the result yields a borrow, the content of the acc. is complemented and 01H is added

to it (2’s complement). A register is cleared and the content of that reg. is incremented

in case there is a borrow. If there is no borrow the content of the acc. is directly taken as

the result.

5. Store the answer at next memory location.

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

4100 START MVI C, 00 Clear C reg.

 4102

4102 LXI H, 4200 Initialize HL reg. to

4500 4103

4104

4105 MOV A, M Transfer first data to

accumulator

4106 INX H Increment HL reg. to

point next mem.

Location.

4107 SUB M Subtract first number

from acc. Content.

4108 JNC L1 Jump to location if

result does not yield

borrow.
4109

410A

410B INR C Increment C reg.

410C CMA Complement the Acc.

Content

410D ADI 01H Add 01H to content of

acc. 410E

410F L1 INX H Increment HL reg. to

point next mem.

Location.

4110 MOV M, A Transfer the result from

acc. to memory.

4111 INX H Increment HL reg. to

point next mem.

Location.

4112 MOV M, C Move carry to mem.

4113 HLT Stop the program

OBSERVATION:

INPUT OUTPUT

4200 04 4202 03

4201 01 4203 00

RESULT:

Thus the 8 bit numbers stored at 4200 &4201 are subtracted and the result is stored at

4202 & 4203.

VIVA QUESTIONS:

1. What is meant by ADI instruction

2. What is an instruction?

3. What is Mnemonic?

4. What is the purpose of CMA instruction?

5. What is the function of stack pointer?

6. Why ADI 01H is used in two’s complement of an 8-bit number.

7. How many memory locations can be addressed by a microprocessor with 14 address lines?

FLOW CHART:

 NO

 YES

 NO

 YES

[HL] 4200

 B  M

 A  00

 C  00

Is there

any

carry ?

 C  C+1

 B  B-1

 [A]  [A] +[M]

[HL]  [HL]+1

IS B=0

A

START

A

STOP

[HL] [HL]+1

[M] [A]

[M] [C]

[HL] [HL]+1

1(C) 8-BIT DATA MULTIPLICATION

AIM:

 To multiply two 8 bit numbers stored at consecutive memory locations and also to

verify the result .

 APPARATUS REQUIRED:

 8085 microprocessor kit ,key board

ALGORITHM:

1. Initialize memory pointer to data location.

2. Move multiplicand to a register.

3. Move the multiplier to another register.

4. Clear the accumulator.

5. Add multiplicand to accumulator

6. Decrement multiplier

7. Repeat step 5 till multiplier comes to zero.

8. The result, which is in the accumulator, is stored in a memory location.

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

 4100 START LXI H, 4200 Initialize HL reg. to

4500

Transfer first data to

reg. B

4101

4102

4103 MOV B, M

4104 INX H Increment HL reg. to

point next mem.

Location.

4105 MVI A, 00H Clear the acc.

 4106

4107 MVI C, 00H Clear C reg for carry

4108

4109 L1 ADD M Add multiplicand

multiplier times.

410A JNC NEXT Jump to NEXT if there

is no carry 410B

410C

410D INR C Increment C reg

410E NEXT DCR B Decrement B reg

410F JNZ L1 Jump to L1 if B is not

zero. 4110

4111

4112 INX H Increment HL reg. to

point next mem.

Location.

4113 MOV M, A Transfer the result from

acc. to memory.

4114 INX H Increment HL reg. to

point next mem.

Location.

4115 MOV M, C Transfer the result from

C reg. to memory.

4116 HLT Stop the program

OBSERVATION:

INPUT OUTPUT

4200 02 4202 08

4201 04 4203 00

RESULT:

Thus the 8-bit multiplication was done in 8085p using repeated addition method and

also the result is verified.

VIVA QUESTION:

1. Define two’s complement of an 8-bit numbers.

2. What is meant by instruction ADC M?

3. What is the use of the instruction MOV A,M

4. What is the function of program counter?

5. Mention the types of 8085 instruction set.

 6. How will you perform multiplication using ADD instruction?

 7. Describe about DAD B instruction.

 8. What is the purpose of the instruction MOV M,A

FLOWCHART:

 NO

 YES

B  00

M  A-M

 [B]  [B] +1

IS A<0

 A  A+ M

 B  B-1

[HL] 4200

 A  M

[HL]  [HL]+1

START

STOP

[HL] [HL]+1

[M] [A]

[M] [B]

[HL] [HL]+1

1(D) 8-BIT DIVISION

AIM:

 To divide two 8-bit numbers stored in memory and also to verify the result.

APPARATUS REQUIRED:

 8085 microprocessor kit ,key board

ALGORITHM:

1. Load Divisor and Dividend.

2. Subtract divisor from dividend .

3. Count the number of times of subtraction which equals the quotient.

4. Stop subtraction when the dividend is less than the divisor .The dividend now becomes

the remainder. Otherwise go to step 2.

5. Stop the program execution.

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAN

D

COMMENTS

4100 MVI B,00 Clear B reg for quotient

4101

4102 LXI H,4200 Initialize HL reg. to

4200H 4103

4104

4105 MOV A,M Transfer dividend to acc.

4106 INX H Increment HL reg. to point

next mem. Location.

4107 LOOP SUB M Subtract divisor from

dividend

4108 INR B Increment B reg

4109 JNC LOOP Jump to LOOP if result

does not yield borrow 410A

410B

410C ADD M Add divisor to acc.

410D DCR B Decrement B reg

410E INX H Increment HL reg. to point

next mem. Location.

410F MOV M,A Transfer the remainder from

acc. to memory.

4110 INX H Increment HL reg. to point

next mem. Location.

4111 MOV M,B Transfer the quotient from

B reg. to memory.

4112 HLT Stop the program

OBSERVATION:

RESULT:

 Thus an ALP was written for 8-bit division and also the result is also verified.

VIVA QUESTIONS:

1. What SUB M instruction will do?

2. Describe SBB M instruction

3. Express the use of SUI with an example

4. Where SBI can be used?

5. Give the purpose of the instruction LDAX D

6. How will you perform Division using ADD instruction ?

7. What is the need of ALE signal in 8085?

8. What are the addressing modes of 8085?

9. List the interrupt signals of 8085?

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

4200 06 4202 00

4201 02 4203 03

FLOW CHART:

 NO

 YES

 NO

 YES

[B]  04H

[HL]  [4200H]

[A]  [HL]

[HL  [HL] + 1

IS

[A] < [HL]?

[A] [HL]

[4205]  [A]

 START

[B]  [B]-1

IS

[B] = 0?

 STOP

2(A) LARGEST ELEMENT IN AN ARRAY

AIM:

To find the largest element in an array of data stored in memory and also to verify the

result.

APPARATUS REQUIRED:

 8085 microprocessor kit ,key board

ALGORITHM:

1. Place all the elements of an array in the consecutive memory locations.

2. Fetch the first element from the memory location and load it in the accumulator.

3. Initialize a counter (register) with the total number of elements in an array.

4. Decrement the counter by 1.

5. Increment the memory pointer to point to the next element.

6. Compare the accumulator content with the memory content (next element).

7. If the accumulator content is smaller, then move the memory content

(largest element) to the accumulator. Else continue.

8. Decrement the counter by 1.

9. Repeat steps 5 to 8 until the counter reaches zero

10. Store the result (accumulator content) in the specified memory location.

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENTS

4100 LXI H,4200 Initialize HL reg. to

8100H 4101

4102

4103 MVI B,04 Initialize B reg with no.

of comparisons(n-1) 4104

4105 MOV A,M Transfer first data to acc.

4106 LOOP1 INX H Increment HL reg. to

point next memory

location

4107 CMP M Compare M & A

4108 JNC LOOP If A is greater than M

then go to loop 4109

410A

410B MOV A,M Transfer data from M to

A reg

410C LOOP DCR B Decrement B reg

410D JNZ LOOP1 If B is not Zero go to

loop1 410E

410F

4110 STA 4205 Store the result in a

memory location. 4111

4112

4113 HLT Stop the program

OBSERVATION:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

4200 01 4205 07

4201 06

4202 03

4203 07

4204 02

RESULT:

Thus the largest number in the given array is found and it is stored at location 4205.

VIVA QUESTIONS:

1. What is meant by the instruction CMP M

2. What the instruction JNZ will do

3. State the logic behind the finding of largest element

4. List out the similarities b/w the CALL-RET and PUSH-POP instructions?

5. What is the need of ALE signal in 8085?

6. What are the addressing modes of 8085?

FLOW CHART:

 YES

 NO

 NO

 YES

[B]  04H

[HL]  [4200H]

[A]  [HL]

[HL  [HL] + 1

IS

[A] < [HL]?

[A] [HL]

[4205]  [A]

 START

[B]  [B]-1

IS

[B] = 0?

 STOP

2(B) SMALLEST ELEMENT IN AN ARRAY

AIM:

To find the smallest element in an array of data stored in memory and also to verify the

result.

APPARATUS REQUIRED:

 8085 microprocessor kit ,key board

ALGORITHM:

1. Place all the elements of an array in the consecutive memory locations.

2. Fetch the first element from the memory location and load it in the accumulator.

3. Initialize a counter (register) with the total number of elements in an array.

4. Decrement the counter by 1.

5. Increment the memory pointer to point to the next element.

6. Compare the accumulator content with the memory content (next element).

7. If the accumulator content is smaller, then move the memory content

(largest element) to the accumulator. Else continue.

8. Decrement the counter by 1.

9. Repeat steps 5 to 8 until the counter reaches zero

10. Store the result (accumulator content) in the specified memory location.

PROGRAM:

ADDRE

SS

OPCODE LABEL MNEMONICS OPERAND COMMENTS

4100 LXI H,4200 Initialize HL reg. to

8100H 4101

4102

4103 MVI B,04 Initialize B reg with no. of

comparisons(n-1) 4104

4105 MOV A,M Transfer first data to acc.

4106 LOOP1 INX H Increment HL reg. to point

next memory location

4107 CMP M Compare M & A

4108 JC LOOP If A is lesser than M then go

to loop 4109

410A

410B MOV A,M Transfer data from M to A

reg

410C LOOP DCR B Decrement B reg

410D JNZ LOOP1 If B is not Zero go to loop1

410E

410F

4110 STA 4205 Store the result in a memory

location. 4111

4112

4113 HLT Stop the program

OBSERVATION:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

4200 01 4205 01

4201 06

4202 03

4203 07

4204 02

RESULT:

Thus the smallest number in the given array is found and it is stored at location 4205.

VIVA QUESTION:

1. What is meant by instruction JC ?

2. Tell about the instruction SHLD .

3. Summarize the instruction STAX B.

4. State the logic behind the finding of smallest element .

5. Why address bus is unidirectional?

6. List few instructions to clear accumulator?

7. What is the function of NOP instruction?

FLOWCHART:

YES

NO

C B

[B]  04H

[HL]  [4200H]

[A]  [HL]

[HL  [HL] + 1

IS

[A] < [HL]?

[D] [HL]

[HL]  [A]

[HL]  [HL] - 1

[HL]  [D]

[HL]  [HL] + 1

[C]  [C] – 01 H

A

[C]  04H

 START

2(C) ASCENDING ORDER

AIM:

 To sort the given numbers in the ascending order using 8085 microprocessor.

APPARATUS REQUIRED:

 8085 microprocessor kit ,key board

ALGORITHM:

 1. Get the numbers to be sorted from the memory locations.

 2. Compare the first two numbers and if the first number is larger than second then

 interchange the number.

3. If the first number is smaller, go to step 4

 4. Repeat steps 2 and 3 until the numbers are in required order

 NO

 YES

 NO

 YES

IS

[C] = 0?

A

[B]  [B]-1

IS

[B] = 0?

 STOP

C B

PROGRAM:

ADDRES

S

OPCODE LABEL MNEMONICS OPERAND COMMENTS

4100 MVI B,04 Initialize B reg with

number of comparisons

(n-1)
4101

4102 LOOP 3 LXI H,4200 Initialize HL reg. to

8100H 4103

4104

4105 MVI C,04 Initialize C reg with no.

of comparisons(n-1) 4106

4107 LOOP2 MOV A,M Transfer first data to

acc.

4108 INX H Increment HL reg. to

point next memory

location

4109 CMP M Compare M & A

410A JC LOOP1 If A is less than M then

go to loop1 410B

410C

410D MOV D,M Transfer data from M

to D reg

410E MOV M,A Transfer data from acc

to M

410F DCX H Decrement HL pair

4110 MOV M,D Transfer data from D to

M

4111 INX H Increment HL pair

4112 LOOP1 DCR C Decrement C reg

4113 JNZ LOOP2 If C is not zero go to

loop2 4114

4115

4116 DCR B Decrement B reg

4117 JNZ LOOP3 If B is not Zero go to

loop3 4118

4119

411A HLT Stop the program

OBSERVATION:

INPUT OUTPUT

MEMORY

LOCATION

DATA MEMORY

LOCATION

DATA

4200 01 4200 01

4201 06 4201 02

4202 03 4202 03

4203 07 4203 06

4204 02 4204 07

RESULT:

 Thus the ascending order program is executed and the numbers are arranged in

ascending order.

VIVA QUESTION:

1. Explain INX operation

2. State the logic behind the Sorting an array of data in Descending order

3. What are the advantages of using memory segmentation 8085?

4. What is the macro & when it is used?

5. What is the function of direction flag?

6. What is DMA?

7. Define machine cycle and instruction cycle?

FLOWCHART:

 NO

 YES

 YES

C B

[B]  04H

[HL]  [4200H]

[A]  [HL]

[HL  [HL] + 1

IS

[A] < [HL]?

[D] [HL]

[HL]  [A]

[HL]  [HL] - 1

[HL]  [D]

[HL]  [HL] + 1

[C]  [C] – 01 H

A

[C]  04H

 START

2(D) DESCENDING ORDER

AIM:

 To sort the given numbers in the descending order using 8085 microprocessor.

APPARATUS REQUIRED:

 8085 microprocessor kit ,key board

ALGORITHM:

 1. Get the numbers to be sorted from the memory locations.

 2. Compare the first two numbers and if the first number is smaller than second then

 interchange the number.

 3. If the first number is larger, go to step 4

 4. Repeat steps 2 and 3 until the numbers are in required order

 NO

 YES

 NO

 YES

IS

[C] = 0?

A

[B]  [B]-1

IS

[B] = 0?

 STOP

C B

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENTS

4100 MVI B,04 Initialize B reg

with number of

comparisons (n-1)
4101

4102 LOOP

3

LXI H,4200 Initialize HL reg.

to

8100H 4103

4104

4105 MVI C,04 Initialize C reg

with no. of

comparisons(n-1)
4106

4107 LOOP2 MOV A,M Transfer first data

to acc.

4108 INX H Increment HL reg.

to point next

memory location

4109 CMP M Compare M & A

410A JNC LOOP1 If A is greater than

M then go to loop1 410B

410C

410D MOV D,M Transfer data from

M to D reg

410E MOV M,A Transfer data from

acc to M

410F DCX H Decrement HL

pair

4110 MOV M,D Transfer data from

D to M

4111 INX H Increment HL pair

4112 LOOP1 DCR C Decrement C reg

4113 JNZ LOOP2 If C is not zero go

to loop2 4114

4115

4116 DCR B Decrement B reg

4117 JNZ LOOP3 If B is not Zero go

to loop3 4118

4119

411A HLT Stop the program

OBSERVATION:

INPUT OUTPUT

MEMORY

LOCATION

DATA MEMORY

LOCATION

DATA

4200 01 4200 07

4201 06 4201 06

4202 03 4202 03

4203 07 4203 02

4204 02 4204 01

RESULT:

 Thus the descending order program is executed and the numbers are arranged in

descending order.

VIVA QUESTION:

1. Give out the purpose of the instruction DCX

2. What is meant by CALL instruction?

3. Briefly give out the LHLD instruction

4. State the logic behind the Sorting an array of data in Descending order

5. Name the various flag bits available in 8085 microprocessor?

6. Give the significance of SIM and RIM instructions available in 8085?

7. How do the address and data lines are demultiplexed in 8085?

FLOWCHART:

 NO

 YES

 START

HL 4200H

A 00

B 00H

A A +1

Decimal adjust

accumulator

B B+1

A B

Is

A=M?

4201 A

Stop

2(E) CODE CONVERSION - DECIMAL TO HEXADECIMAL

AIM:

 To convert a given decimal number to hexadecimal number.

APPARATUS REQUIRED:

 8085 microprocessor kit ,key board

ALGORITHM:

1. Initialize the memory location to the data pointer.

2. Increment B register.

3. Increment accumulator by 1 and adjust it to decimal every time.

4. Compare the given decimal number with accumulator value.

5. When both matches, the equivalent hexadecimal value is in B register.

6. Store the resultant in memory location.

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENTS

4100 LXI H,4200 Initialize HL reg.

to 4200H 4101

4102

4103 MVI A,00 Initialize A

register. 4104

4105 MVI B,00 Initialize B

register.. 4106

4107 LOOP INR B Increment B reg.

4108 ADI 01 Increment A reg

4109

410A DAA Decimal Adjust

Accumulator

410B CMP M Compare M & A

410C JNZ LOOP If acc and given

number are not

equal, then go to

LOOP

410D

410E

410F MOV A,B Transfer B reg to

acc.

4110 STA 4201 Store the result in a

memory location. 4111

4112

4113 HLT Stop the program

OBSERVATION:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

 4200 21 4201 15

RESULT:

Thus an ALP program for conversion of decimal to hexadecimal was written and

executed.

VIVA QUESTION:

1. What is meant by ADI instruction?

2. What is the function of DAA instruction?

3. What is the function of XCHG instruction?

4. How you can load 16-bit data in 8500H and 8501H memory locations?

5. What is the difference between LHLD and SHLD instructions?

6. What is physical address?

7. Define OFFSET address.

FLOWCHART:

NO

 NO

 YES

 NO

 YES

YES

 Stop

 START

HL 4200H

A 00

B 00H

A A +1

Decimal adjust

accumulator

B B+1

D A, A B,

 Is

A=M?

4201 A, A C

4202 A

C 00H

C C+1

 Is there

carry?

2(F) CODE CONVERSION - HEXADECIMAL TO DECIMAL

AIM:

 To convert a given hexadecimal number to decimal number and also to verify the result.

APPARATUS REQUIRED:

 8085 microprocessor kit ,key board.

ALGORITHM:

1. Initialize the memory location to the data pointer.

2. Increment B register.

3. Increment accumulator by 1 and adjust it to decimal every time.

4. Compare the given hexadecimal number with B register value.

5. When both match, the equivalent decimal value is in A register.

6. Store the resultant in memory location.

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENTS

4100 LXI H,4200 Initialize HL reg.

to

8100H

4103 MVI A,00 Initialize A

register.

4105 MVI B,00 Initialize B

register. 4106

4107 MVI C,00 Initialize C

register for carry. 4108

4109 LOOP INR B Increment B reg.

410A ADI 01 Increment A reg

410B

410C DAA Decimal Adjust

Accumulator

410D JNC NEXT If there is no carry

go to NEXT.

4110 INR C Increment c

register.

4111 NEXT MOV D,A Transfer A to D

4112 MOV A,B Transfer B to A

4113 CMP M Compare M & A

4114 MOV A,D Transfer D to A

4115 JNZ LOOP If acc and given

number are not

equal, then go to

LOOP

4118 STA 4201 Store the result in

a memory

location.

411B MOV A,C Transfer C to A

411C STA 4202 Store the carry in

another memory

location.

411F HLT Stop the program

OBSERVATION:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

4200 D5 4201 13

4202 02

RESULT:

Thus an ALP program for conversion of hexadecimal to decimal was executed and the

result is verified.

VIVA QUESTIONS:

1. What is meant by instruction DAA ?

2. Why data bus is bi-directional?

3. Specifies the function of address bus and the direction of address bus?

4. How many memory location can be addressed by a microprocessor with the 14 address

lines?

5. List various instructions that can be used to clear accumulator in 8085?

6. When the Ready signal of 8085 is sampled by the processor?

7. List out the similarities b/w the CALL_RET and PUSH_POP instructions?

FLOWCHART:

START

Load the Hexadecimal number

Convert each nibble into ASCII

equivalent

Display the result

STOP

2(G). CODE CONVERSION –HEXADECIMAL TO ASCII

Aim

To write an assembly language program to covert the given Hexadecimal number into

its ASCII equivalent and to verify the result.

APPARATUS REQUIRED:

 8085 microprocessor kit ,key board.

Algorithm:

Step 1: Load the Hexadecimal number from the location

Step 2: Separate the nibbles

Step 3: Convert each nibble to its ASCII Equivalent.

Step 4: Add the two converted values

Step 5: Display the result

Step 6: Stop

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMEN

TS

4100 LDA 4200 Get the data

4101

4102

4103 MOV B,A

4104 ANI OF Mask upper

nibble 4105

4106 CALL SUB Get ASCII

code for

upper nibble
4107

4108

4109 STA 4201 Store the

value of

accumulator
410A

410B

410C MOV A,B Mov B reg

content to

Acc

410D ANI F0 Mask lower

nibble 410E

410F RLC Rotate left

with out

carry 4

times

4110 RLC

4111 RLC

4112 RLC

4113 CALL SUB Get the

ASCII code 4114

4115

4116 STA 4202 Store the

accumulator 4117

4118

4119 HLT Stop

411A SUB CPI 0A Compare

with OA 411B

411C JC SKP Skip if carry

411D

411E

411F ADI 07 Add 07 to

Acc 4120

4121 SKP ADI 30 Add 30 to

Acc 4122

4123 RET Return

OBSERVATION:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

4200 A5 4201 35

4202 41

Result :

Thus assembly language program to covert the given Hexadecimal number into its

ASCII equivalent is completed and also the result is verified.

VIVA QUESTIONS:

 1. What is ASCII number for OAH?

2. What is difference between byte and word?

3. What is the immediate addressing mode?

4. What are data transfer instructions?

5. What is the use of immediate addressing mode?

6. What are branching instructions?

7. What is DMA ?

FLOW CHART:

START

Load the ASCII number

Convert ASCII into Hexadecimal

equivalent

Display the result

STOP

2(H). CODE CONVERSION –ASCII TO HEXADECIMAL

AIM :

To write an assembly language program to covert the given ASCII number into its

Hexadecimal equivalent and to verify the result.

APPARATUS REQUIRED:

 8085 microprocessor kit ,key board.

ALGORITHM:

Step 1: Load the ASCII number from the location

Step 2: Check for the digit or alphabet

Step 3: Using suitable logic and instructions convert the ASCIII number into Hexadecimal

Step 4: Add the two converted values

Step 5: Display the result

Step 6: Stop

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENTS

4100 LDA 4500 Load the

memory

content to

Accumulator

4102

4102

4103 SUI 30 Subtract with

30
4104

4105 CPI 0A Compare with

OA
4106

4107 JC SKP If carry skip

4108

4109

410A SUI 07 Subtract with

07

410B

410C SKP STA 4201 Store

Accumulator

content
410D

410E

410F HLT Stop

OBSERVATION:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

4200 41 4201 0A

Result :

Thus assembly language program to covert the given ASCII number into its

Hexadecimal equivalent is completed and also the result is verified.

VIVA QUESTIONS:

 1. What is the Hexadecimal for (35)ASCII ?

 2. What is the purpose of branch instructions in 8085 microprocessor?

 3. Define one’s complement of an 8-bit numbers

 4. What is the function of CMA instruction?

 5. What is the logic behind the conversion of ASCII number into Hexadecimal number.

 6. Give example for Machine control instruction?

 7. What is the need of code conversion?

FLOW CHART:

Delay Subroutine:

 start

Write control word to initialize

8255

Call delay program

Initialize the counter

Decrement the counter

stop

Yes

Yes

No

No

 Delay

Move 09 to B

register

Move FF to C

register

Decrement C register

If Z=1

Decrement B Register

return

If Z=1

FLOW CHART:

START

SELECT THE CHANNEL AND LATCH

ADDRESS

SEND THE START CONVERSION PULSE

READ THE DIGITALOUTPUT

STORE THE DIGITAL VALUE IN THE

MEMORY LOCATION SPECIFIED

IS EOC = 1?

STOP

NO

YES

3A INTERFACING ANALOG TO DIGITAL CONVERTER

AIM:

To write an assembly language program to convert an analog signal into a digital signal

using an ADC interfacing.

APPARATUS REQUIRED:

SL.NO ITEM SPECIFICATION QUANTITY

1. Microprocessor kit 8085 1

2. Power Supply +5 V dc,+12 V dc 1

3. ADC Interface board - 1

PROBLEM STATEMENT:

 The program is executed for various values of analog voltage which are set with the help

of a potentiometer. The LED display is verified with the digital value that is stored in a memory

location.

THEORY:

 An ADC usually has two additional control lines: the SOC input to tell the ADC when to

start the conversion and the EOC output to announce when the conversion is complete. The

following program initiates the conversion process, checks the EOC pin of ADC 0809 as to

whether the conversion is over and then inputs the data to the processor. It also instructs the

processor to store the converted digital data at RAM location.

ALGORITHM:

1. Select the channel and latch the address.

2. Send the start conversion pulse.

3. Read EOC signal.

4. If EOC = 1 continue else go to step (3)

5. Read the digital output.

6. Store it in a memory location.

PROGRAM:

ADDRESSS LABEL OPCODE MNEMONICS COMMENTS

4100 MVI A,10H Select channel

4102 OUT C8 Send through output port

4103 MVI A,18H Load accumulator with

value for ALE low

4105 OUT C8 Send through output port

4106 MVI A,01H Store the value to make

SOC high in the

accumulator

4108 OUT 00H Send through output port

4109 XRA A

Introduce delay 410A XRA A

410B XRA A

410C MVI A,00 Store the value to make

SOC low the accumulator

410E OUT D0H Send through output port

410F L1 IN D8H

Read the EOC signal

from port & check for

end of conversion

4110 ANI 01

4112 CPI 01

4114 JNZ L1 If the conversion is not

yet completed, read EOC

signal from port again

4117 IN C0H Read data from port

4118 STA 4150H Store the data

411B HLT Stop

OBSERVATION:

ANALOG

VOLTAGE (V)

DIGITAL DATA ON LED

DISPLAY

HEX CODE IN MEMORY

LOCATION

 5 1111 1111 FF

0 0000 0000 00

2.5 1000 0000 80

RESULT:

Thus the ADC was interfaced with 8085and the given analog inputs were converted into

its digital equivalent.

VIVA QUESTIONS:

1. What is the name given to time taken by the ADC from the active edge of SOC(start of

 conversion) pulse till the active edge of EOC(end of conversion) signal ?

2. What are the popular technique that is used in the integration of ADC chips ?

3. The procedure of algorithm for interfacing ADC contain _____________.

4. Which is the ADC among the following?

 a) AD 7523 b) 74373 c) 74245 d) ICL7109

5. The conversion delay in successive approximation of an ADC 0808/0809 is ____________.

6. The number of inputs that can be connected at a time to an ADC that is integrated with

 successive approximation is __________.

7. ADC 7109 integrated by Dual slope integration technique is used for

8. Which of the following is not one of the phase of total conversion cycle?

9. Which of the following phase contain feedback loop in it?_______________

 a) auto zero phase b) signal integrate phase

 c) deintegrate phase d) none

10. In the signal integrate phase, the differential input voltage between IN LO(input low) and

IN

 HI(input high) pins is integrated by the internal integrator for a fixed period of

__________.

FLOWCHART:

MEASUREMENT OF ANALOG VOLTAGE TRIANGULAR WAVE FORM

SQUARE WAVE FORM

START

SEND THE

DIGITALVALUE TO

ACCUMULATOR

TRANSFER THE ACCUMULATOR

CONTENTS TO DAC

READ THE CORRESPONDING

ANALOG VALUE

STOP

INTIALISE THE

ACCUMULATOR SEND ACC

CONTENT TO DAC

LOAD THE ACC WITH MAX

VALUE SEND ACC CONTENT

TO DAC

START

NO

YES

YES

NO

INITIALIZE

ACCUMULATOR

SEND ACCUMULATOR

CONTENT TO DAC

INCREMENT

ACCUMULATOR

CONTENT

DECREMENT

ACCUMULATOR CONTENT

SEND ACCUMULATOR

CONTENT TO DAC

IS ACC 

FF

IS ACC

00

START

T

DDD DELAY DELAY

DDD D
DELAYLAY

DELAY

3B INTERFACING DIGITAL TO ANALOG CONVERTER

AIM:

1. To write an assembly language program for digital to analog conversion

2. To convert digital inputs into analog outputs & to generate different waveforms

APPARATUS REQUIRED:

SL.NO ITEM SPECIFICATION QUANTITY

1. Microprocessor kit 8086 Vi Microsystems 1

2. Power Supply +5 V, dc,+12 V dc 1

3. DAC Interface board - 1

PROBLEM STATEMENT:

The program is executed for various digital values and equivalent analog voltages are

measured and also the waveforms are measured at the output ports using CRO.

THEORY:

 Since DAC 0800 is an 8 bit DAC and the output voltage variation is between –5v and

+5v. The output voltage varies in steps of 10/256 = 0.04 (approximately). The digital data input

and the corresponding output voltages are presented in the table. The basic idea behind the

generation of waveforms is the continuous generation of analog output of DAC. With 00 (Hex)

as input to DAC2 the analog output is –5v. Similarly with FF H as input, the output is +5v.

Outputting digital data 00 and FF at regular intervals, to DAC2, results in a square wave of

amplitude 5v.Output digital data from 00 to FF in constant steps of 01 to DAC2. Repeat this

sequence again and again. As a result a saw-tooth wave will be generated at DAC2 output. Output

digital data from 00 to FF in constant steps of 01 to DAC2.Output digital data from FF to 00 in

constant steps of 01 to DAC2. Repeat this sequence again and again. As a result a triangular wave

will be generated at DAC2 output.

ALGORITHM:

Measurement of analog voltage:

1. Send the digital value of DAC.

2. Read the corresponding analog value of its output.

Waveform generation:

Square Waveform:

1. Send low value (00) to the DAC.

2. Introduce suitable delay.

3. Send high value to DAC.

4. Introduce delay.

5. Repeat the above procedure.

Saw-tooth waveform:

1. Load low value (00) to accumulator.

2. Send this value to DAC.

3. Increment the accumulator.

4. Repeat step (2) and (3) until accumulator value reaches FF.

5. Repeat the above procedure from step 1.

SAWTOOTH WAVEFORM

PROGRAM: Measurement of Analog Voltage

PROGRAM COMMENTS

MOV A,7FH Load digital value 00 in accumulator

OUT C0 Send through output port

HLT Stop

OBSERVATION: Measurement of Analog Voltage

DIGITAL DATA ANALOG VOLTAGE

FF 5V

00 0V

Triangular waveform:

1. Load the low value (00) in accumulator.

2. Send this accumulator content to DAC.

3. Increment the accumulator.

4. Repeat step 2 and 3 until the accumulator reaches FF, decrement the accumulator

and

send the accumulator contents to DAC.

5. Decrementing and sending the accumulator contents to DAC.

6. The above procedure is repeated from step (1)

START

INITIALIZE

ACCUMULATOR

SEND ACCUMULATOR CONTENT

TO DAC

INCREMENT

ACCUMULATOR

CONTENT

IS ACC 

FF

YES
NO

PROGRAM: Square Wave

ADDRESSS LABEL PROGRAM COMMENTS

4100 START MVI A,00H Load 00 in accumulator

4102 OUT C8 Send through output port

4103 CALL DELAY Give a delay

4105 MVI A,0FH Load 0F in accumulator

4107 OUT C8 Send through output port

4108 CALL DELAY Give a delay

4109 JMP START Go to starting location

410A DELAY MVI B,05 Load count value 05 in B

register

410B L1 MVI C,0F Load count value 0F in B

register

410C L2 DCR C Decrement C register

410E JNZ L2 Return to loop2

410F DCR B Decrement B register

4110 JNZ L1 Return to loop1

4112 RET Return to main program

PROGRAM: Saw tooth Wave

ADDRESSS LABEL PROGRAM COMMENTS

4100 START MVI A,00H Load 00 in accumulator

4102 L1 OUT C0 Send through output port

4103 INR A Increment contents of

accumulator

4104 JNZ L1 Send through output port

until it reaches FF

4107 JMP START Go to starting location

PROGRAM: Triangular Wave

ADDRESSS LABEL PROGRAM COMMENTS

4100 START MVI L,00H Load 00 in accumulator

4102 L1 MOV A ,L Move contents of L to A

4103 OUT C8 Send through output port

4104 INR C Increment contents of

accumulator

4105 JNZ L1 Send through output port until

it reaches FF

4108 MVI C,FFH Load FF in accumulator

4109 L2 MOV A,L Move contents of L to A

410A OUT C8 Send through output port

410B DCR C Decrement contents of

accumulator

410C JNZ L2 Send through output port until

it reaches 00

410F JMP START Go to starting location

MODEL GRAPH:

Square Waveform Saw-tooth waveform

Amplitude Amplitude

t

t

Triangular waveform

Amplitude

t

RESULT OF WAVEFORM GENERATION:

WAVEFORMS AMPLITUDE TIMEPERIOD

Square

Waveform

Saw-tooth

waveform

Triangular

waveform

RESULT:

Thus digital to analog conversion is done and different waveforms such as square wave,

sawtooth wave and triangular wave are generated by interfacing DAC with 8085

VIVA QUESTIONS:

1. DAC (Digital to Analog Converter) finds application in (digitally controlled

 gains,motor speed controls, programmable gain amplifiers)

2. To save the DAC from negative transients the device connected between OUT1 and

 OUT2 of AD 7523 is ______________

 3. An operational amplifier connected to the output of AD 7523 is used (to convert

current

 output to output voltage , to provide additional driving capability, as current-to-voltage

 converter)

 4. The DAC 0800 has a settling time of (100 milliseconds).

 5. What is meant by the instruction OUT C8

 6. Give examples for various DAC ICs?

3C . TRAFFIC LIGHT CONTROLLER - INTERFACING PPI 8255 WITH

8085

AIM:

 To design traffic light controller using 8085 microprocessor through programmable

peripheral interface 8255.

APPARATUS REQUIRED:

 8085 p kit, 8255 Interface board, DC regulated power supply, VXT parallel bus,

Traffic light controller interface board.

 I/O MODES:

MODE 0 – SIMPLE I/O MODE:

 This mode provides simple I/O operations for each of the three ports and is suitable for

synchronous data transfer. In this mode all the ports can be configured either as input or output

port.

 Let us initialize port A as input port and port B as output port

 Control Word:

PROGRAM:

ADDRESS OPCODES LABEL MNEMONICS OPERAND COMMENTS

4100 LXI H,

Data

Load the data in HL

register pair

4103 MVI C,04 Move 04 to c register

4105 MOV A,M Move M to A

4106 OUT CNT Out tocontrol register

4108 INX H Increment HL register

pair

4109 LOOP1 MOV A,M Move M to A

410A OUT CPRT Send control status

word

410C INX H Increment h register

410D MOV A,M Move M to A

410E OUT BPRT Send control status

word

4110 INX H Increment h register

4111 MOV A,M Move M to A

4112 OUT APRT Send control status

word

4114 CALL DELAY Call subroutine

4117 INX H Increment h register

4118 DCR C Decrement C register

4119 JNZ LOOP1 Jump on nozero to

loop1

411C JMP START Jump to start

411F DELAY PUSH B

4120 MVI C.0D Move OD to C

register

4122 LOOP3 LXI D,FF,FF Load Dregister with FF

4125 LOOP2 DCX D Decrement Dregister

4126 MOV A,D Move D contents to A

register

4127 ORA E OR the content of A

with E

4128 JNZ LOOP2 Jump on nozero to

loop2

412C JNZ LOOP3 Jump on nozero to

loop3

412F POP B Do pop operation

4130 RET Return to main

program

MODE 1 STROBED I/O MODE:

 In this mode, port A and port B are used as data ports and port C is used as control

signals for strobed I/O data transfer.

 Let us initialize port A as input port in mode1

BSR MODE (Bit Set Reset mode

Any lines of port c can be set or reset individually without affecting other lines using this mode.

Let us set PC0 and PC3 bits using this mode.

ALGORITHM:-

1. Start.

2. Write the control word to initialize 8255.Obtain the data for each direction and store in

 the memory.

3. Initialize a counter to indicate the number of directions.

4. Initialize HL Pair to the starting address of the data..

5. Check the result.

6. Decrement the counter and repeat step 3 till counter becomes 0

7. Stop

RESULT:

 Thus the design of traffic light controller using 8085 microprocessor through

programmable peripheral interface 8255is done and also the output is verified.

VIVA QUESTIONS:

1. When the 82C55 is reset, its I/O ports are all initializes as what?

2. If the programmable counter timer 8254 is set in mode 1 and is to be used to count six

events,

 the output will remain at logic 0 for how many number of counts ?

3. The devices that provide the means for a computer to communicate with the user or other

 computers are referred to as:

4. What is the maximum number of I\o devices which can be interfaced in the memory

mapped

 I\O technique?

5. Interaction between a CPU and a peripheral device that takes place during and input output

 operation is known as what?

6. What is the other name for Programmable peripheral input-output port?

7. All the functions of the ports of 8255 are achieved by programming the bits of an internal

 register called what?

8. What is the port that is used for the generation of handshake lines in mode 1 or mode 2 ?

9. What is the pin that clears the control word register of 8255 when enabled?

10. In 8255 if A1=0, A0=1 then the input read cycle is performed from where?

4 STEPPER MOTOR INTERFACING WITH 8085

AIM:

To operate stepper motor by interfacing with 8085 microprocessor.

THEORY:

 Stepper Motor

A stepper motor is a device that translates electrical pulses into mechanical movement in steps of

fixed step angle.

 The stepper motor rotates in steps in response to the applied signals.

 It is mainly used for position control.

 It is used in disk drives, dot matrix printers, plotters and robotics and process control circuits.

Structure

Stepper motors have a permanent magnet called rotor (also called the shaft) surrounded by a stator.

The most common stepper motors have four stator windings that are paired with a center-tap. This

type of stepper motor is commonly referred to as a four-phase or unipolar stepper motor. The center

tap allows a change of current direction in each of two coils when a winding is grounded, thereby

resulting in a polarity change of the stator.

Interfacing

Even a small stepper motor require a current of 400 mA for its operation. But the ports of the

microcontroller cannot source this much amount of current. If such a motor is directly connected to

the microprocessor/microcontroller ports, the motor may draw large current from the ports and

damage it. So a suitable driver circuit is used with the microprocessor/microcontroller to operate the

motor.

Motor Driver Circuit (ULN2003)

Stepper motor driver circuits are available readily in the form of ICs. ULN2003 is one such driver

IC

 Motor Driver Circuit (ULN2003)

Stepper motor driver circuits are available readily in the form of ICs. ULN2003 is one such driver

IC which is a High-Voltage High-Current Darlington transistor array and can give a current of

500mA.This current is sufficient to drive a small stepper motor. Internally, it has protection diodes

used to protect the motor from damage due to back emf and large eddy currents. So, this ULN2003

is used as a driver to interface the stepper motor to the microprocessor.

Operation

The important parameter of a stepper motor is the step angle. It is the minimum angle through

which the motor rotates in response to each excitation pulse. In a four phase motor if there are 200

steps in one complete rotation then then the step angle is 360/200 = 1.8O . So to rotate the stepper

motor we have to apply the excitation pulse. For this the controller should send a hexa decimal code

through one of its ports. The hex code mainly depends on the construction of the stepper motor.

So, all the stepper motors do not have the same Hex code for their rotation. (refer the operation

manual supplied by the manufacturer.)

For example, let us consider the hex code for a stepper motor to rotate in clockwise direction is 77H

, BBH , DDH and EEH. This hex code will be applied to the input terminals of the driver through

the assembly language program. To rotate the stepper motor in anti-clockwise direction the same

code is applied in the reverse order.

PROGRAM :

Address Label
Mnemoni

cs
Operand Comments

 Main MVI A, 80 ;
80H → Control word to

configure PA,PB,PC in O/P

 OUT CWR_Address ;
Write control word in CWR

of 8255

 MVI A, 77 ;
Code for the Phase 1

 OUT PortA_Address ;
sent to motor via port A of

8255 ;

 CALL DELAY ; Delay subroutine

 MVI A, BB ; Code for the Phase II

 OUT PortA_Address ;
sent to motor via port A of

8255

 CALL DELAY ; Delay subroutine

 MVI A, DD ; Code for the Phase III

 OUT PortA_Address ;
sent to motor via port A of

8255;

 CALL DELAY ; Delay subroutine

 MVI A, EE H ; Code for the Phase 1

 OUT PortA_Address
sent to motor via port A of

8255

 CALL DELAY ; Delay subroutine

 JMP MAIN
; Keep the motor rotating

continuously.

 DELAY
MVI C, FF

; Load C with FF -- Change it

for the speed variation

 LOOP1:
 MVI D,FF ;

Load D with FF

 LOOP2:
DCR D

 JNZ LOOP2

 DCR C

 JNZ LOOP1

 RET ;. Return to main program

PROCEDURE:

• Enter the above program starting from location 4100 and execute the same. The

stepper motor rotates.

• By varying the count at C and D register can vary the speed.

• By entering the data in the look-up TABLE in the reverse order can vary

direction of rotation.

RESULT:

 Thus a stepper motor was interfaced with 8085 and run in forward and reverse

directions at various speeds.

VIVA QUESTIONS:

1. What are the application of stepper motor?

2. What is meant by step angle?

3. What are the methods to control the speed of stepper motor?

4. What is the formula for steps per revolution?

5. How a stepper motor differs from DC motor?

FLOW CHART:

 IF YES

CF= 1

 NO

LOAD THE ADDRESS IN DPTR

MOVE THE 1ST DATA TO A – REG AND

SAVE IT IN R1 REG

INCREMENT DPTR AND MOVE THE 2ND DATA TO

A – REG , CLEAR R0 REGISTER

ADD A – REG WITH R1 REG TO GET

SUM

INCREMENT R0 REG

INCREMENT DPTR AND SAVE A – REG

CONTENT IN MEMORY

INCREMENT DPTR

MOVE R0 TO A – REG AND THEN SAVE

A – REG CONTENT IN MEMORY

STOP

START

5(A) 8-BIT ADDITION

AIM:

To write a program to add two 8-bit numbers using 8051 microcontroller and also to

verify the result.

APPARATUS REQUIRED:

 8051 microcontroller kit ,key board.

ALGORITHM:

 1. Clear Program Status Word.

 2. Select Register bank by giving proper values to RS1 & RS0 of PSW.

 3. Load accumulator A with any desired 8-bit data.

 4. Load the register R 0 with the second 8- bit data.

 5. Add these two 8-bit numbers.

 6. Store the result.

 7. Stop the program.

PROGRAM:

ADDRESS LABEL MNEMONIC OPERAND HEX CODE COMMENTS

4100

CLR C Clear CY Flag

4101

MOV A, data1 Get the data1 in

Accumulator

4103

ADDC A, # data 2 Add the data1 with

data2

4105

MOV DPTR, #

4500H

 Initialize the memory

location

4108

MOVX @ DPTR, A Store the result in

memory location

4109 L1

SJMP L1 Stop the program

OBSERVATION:

OUTPUT

MEMORY LOCATION

DATA

Data1: 08,data2: 07 4500

0F

RESULT:

Thus the 8051 ALP for addition of two 8 bit numbers is executed and the result is

verified.

VIVA QUESTIONS:

1. Which type of addressing mode is MOV A, data1 ?

2. Explain SJMP ?

4. Explain ADDC A, data1 ?

5. If RS1=1, RS0=0, then the register bank selected is (register bank 2) ?

6. What are the various ways to clear the carry flag?

FLOWCHART:

LOAD THE ADDRESS IN DPTR

MOVE THE 1ST DATA TO A – REG AND

SAVE IT IN B REG

INCREMENT DPTR AND MOVE

THE 2ND DATA TO A – REG

MULTIPLY A AND B

INCREMENT DPTR

INCREMENT DPTR

MOVE B (HIGHER BYTE OF PRODUCT)

TO A – REG AND THEN SAVE A – REG

CONTENT IN MEMORY

SAVE A – REG CONTENT (LOWER BYTE

OF PRODUCT) IN MEMORY

START

STOP

5(B) 8-BIT SUBTRACTION

AIM:

To perform subtraction of two 8 bit data using the 8051 microcontroller and store the

result in memory.

APPARATUS REQUIRED:

 8051 microcontroller kit ,key board.

ALGORITHM:

1. Clear the carry flag.

2. Initialize the register for borrow.

3. Get the first operand into the accumulator.

4. Subtract the second operand from the accumulator.

5. If a borrow results increment the carry register.

6. Store the result in memory.

PROGRAM:

ADDRESS LABEL MNEMONIC OPERAND HEXCODE COMMENTS

4100

CLR C Clear CY flag

4101

MOV A, # data1 Store data1 in

accumulator

4103

SUBB A, # data2 Subtract data2 from

data1

4105

MOV DPTR, # 4500 Initialize memory

location

4108

MOVX @ DPTR, A Store the difference

in memory location

4109 L1

SJMP L1 Stop

OBSERVATION:

OUTPUT

MEMORY LOCATION

DATA

Data 1,2 : 08,07 4500 01

RESULT:

Thus the 8051 ALP for subtraction of two 8 bit numbers is executed and the result is

verified.

VIVA QUESTIONS:

1. How SUBB instruction works?

2. The instruction, ADD A, R7 is an example of ____________________ instruction

3. What is meant by PSW ?

4. List out the difference between MOV and MOVX instructions

5. What is the use of DPTR

6. Tell about counter mode in8051.

7. What is the SCON register in 8051?

FLOWCHART:

LOAD THE ADDRESS IN DPTR

LOAD THE DIVIDEND TO A – REG AND

SAVE IT IN R0 REG

INCREMENT DPTR

LOAD THE DIVISOR IN A – REG AND SAVE IT IN B -

REG

INCREMENT DPTR

INCREMENT DPTR

MOVE B (REMAINDER) TO A – REG AND

THEN SAVE A – REG CONTENT IN

MEMORY

SAVE A – REG CONTENT (QUOTIENT) IN

MEMORY

MOVE THE DIVIDEND FROM R0 TO A - REG

DIVIDE A – REG CONTENT BY B – REG

START

STOP

5(C) 8-BIT MULTIPLICATION

AIM:

To perform multiplication of two 8 bit data using 8051 microcontroller and to store the

result in memory.

APPARATUS REQUIRED:

 8051 microcontroller kit ,key board.

ALGORITHM:

1. Get the multiplier in the accumulator.

2. Get the multiplicand in the B register.

3. Multiply A with B.

4. Store the product in memory.

PROGRAM:

ADDRESS LABEL MNEMONIC OPERAND HEX CODE COMMENTS

4100

MOV A ,#data1 Store data1 in

accumulator

4102

MOV B, #data2 Store data2 in B reg

4104

MUL A,B Multiply both

4106

MOV DPTR, # 4500H Initialize memory

location

4109

MOVX @ DPTR, A Store lower order

result

401A

INC DPTR Go to next memory

location

410B

MOV A,B

Store higher order

result 410D

MOV @ DPTR, A

410E STOP

SJMP STOP Stop

Data1:04

Data 2:02

OBSERVATION:

OUTPUT

MEMORY LOCATION DATA

4500 08

4501 00

RESULT:

Thus the 8051 ALP for multiplication of two 8 bit numbers is executed and the result is

verified.

VIVA QUESTIONS:

1. Give the syntax of multiplication instruction.

2. What is the use of INC DPTR instruction ?

3. What is the use of EA signal in 8051?

4. What is the role of RS0,RS1 bits?

5. What is the use of PSEN pin in 8051?

6. What is the syntax of Division instruction?

7. What is the difference between the SJMP and LJMP?

FLOWCHART:

LOAD THE ADDRESS IN DPTR

LOAD THE VALUE TO A – REG

INCREMENT DPTR

INCREMENT DPTR

SAVE A – REG CONTENT IN MEMORY

SAVE A – REG CONTENT IN MEMORY

TAKE ONES COMPLEMENT OF A

ADD ONE TO A FOR TWOS

COMPLEMENT

START

T

STOP

5(D) 8-BIT DIVISION

AIM:

To perform division of two 8 bit data using 8051 microcontroller and to store the result

in memory.

APPARATUS REQUIRED:

 8051 microcontroller kit ,key board.

ALGORITHM:

1. Get the Dividend in the accumulator.

2. Get the Divisor in the B register.

3. Divide A by B.

4. Store the Quotient and Remainder in memory.

PROGRAM:

ADDRESS LABEL MNEMONIC OPERAND HEX

CODE

COMMENTS

4100

MOV A, # data1 Store data1 in

accumulator

4102

MOV B, # data2 Store data2 in B reg

4104

DIV A,B Divide

4015

MOV DPTR, # 4500H Initialize memory

location

4018

MOVX @ DPTR, A Store remainder

4109

INC DPTR Go to next memory

location

410A

MOV A,B

Store quotient

410C

MOV @ DPTR, A

410D STOP

SJMP STOP Stop

Data 1: 08

Data 2 :02

OBSERVATION:

OUTPUT

MEMORY LOCATION DATA

4500 (remainder) 00

4501 (quotient) 04

RESULT:

Thus the 8051 ALP for division of two 8 bit numbers is executed and the result is

verified.

VIVA QUESTIONS:

1. How division is performed in microcontroller?

2. In which register quotient and remainder is stored?

3. What is SJMP?

4. What is the syntax of Division instruction?

5. What are control and status register?

6. DIV AB is an_____________ bit instruction?

7. What is the meant by the instruction DPTR, # 4500H ?

FLOW CHART:

YES

NO

NO

YES

 START

STOP

 INITIALISE POINTER

 COUNT=COUNT-1

TMP=PTR

PTR=PTR+1

PTR+1=TEMP

STORE THE POINTER RESULT

IS

COUNT=

0

IS

POINTE

R≥POINT

ER+1

6(A) LARGEST ELEMENT IN AN ARRAY

AIM:

To write an assembly language program to find the largest element in an array and to

execute it using 8051 .

APPARATUS REQUIRED:

 8051 microcontroller kit ,key board.

.

 ALGORITHM

1. Start.

2. Load the array count in a register

3. Get the first two numbers.

4. Compare the numbers and swap them so that the two numbers are in ascending order.

5. Repeat steps 3 and 4 till the array is completed.

6. Repeat the steps 3, 4 and 5 and store the largest number as the result in memory.

7. Stop.

PROGRAM:

MEMORY

ADDRESS

OPCODE LABEL MNEMONICS COMMENTS

4100 MOV DPTR,#4200 Load location 4200 to DPTR

4103 MOV 40,#00 Load zero to memory 40H

4106 MOV R5, #07 Move array size to R5

4108 LOOP2 MOVX A,@DPTR Accumulator is moved to16

bit External Memory address

indicated by DPTR

4109 CJNE A,40 LOOP1 Compare A with contents of

location 40H and Jump if

Not Equal to LOOP1

410C LOOP3 INC DPTR Increment DPTR content

410D DJNZ R5,LOOP2 Decrement Register R5 and

Jump if Not Zero to LOOP2

410F MOV A,40 Move value in location 40H

to Accumulator

4111 MOVX @DPTR,A Accumulator is moved to16

bit External Memory address

indicated by DPTR

4112 HLT SJMP HLT Stop the execution

4114 LOOP1 JC LOOP3 Jump if Carry Set to LOOP3

4116 MOV 40,A Move A to location 40H

4118 SJMP LOOP2 Perform short jump to

location LOOP2

OUTPUT:

RESULT:

Thus an assembly language program written to find the largest element in an array was

executed using 8051 microcontroller and the output was verified.

VIVA QUESTIONS:

1. Explain CJNE A,40 LOOP1

2. The instruction, RLA performs -------------------------------

3. What does the instruction, ADD A, #100 performs?

4. What does the instruction, DJNZ performs?

5. Give example for jump instruction ?

6. What is use of the instruction MOVX @DPTR,A

7. What are one byte instruction in 8051 ?

MEMORY

ADDRESS

INPUT VALUES MEMORY

ADDRESS

OUTPUT VALUES

4200 07 4207 09

4201 08

4202 02

4203 01

4204 04

4205 03

4206 09

FLOW CHART:

YES

NO

NO

YES

 START

STOP

 INITIALISE POINTER

 COUNT=COUNT-1

TMP=PTR

PTR=PTR+1

PTR+1=TEMP

STORE THE POINTER RESULT

IS

COUNT

=0

IS

POINTE

R≤POINT

ER+1

6(B) SMALLEST ELEMENT IN AN ARRAY

AIM:

To write an assembly language program to find the largest element in an array and to

execute it using 8051 microprocessor.

APPARATUS REQUIRED:

 8051 microcontroller kit ,key board.

ALGORITHM

1. Start.

2. Load the array count in a register

3. Get the first two numbers.

4. Compare the numbers and swap them so that the two numbers are in ascending order.

5. Repeat steps 3 and 4 till the array is completed.

6. Repeat the steps 3, 4 and 5 and store the largest number as the result in memory.

7. Stop.

PROGRAM:

MEMORY

ADDRESS

OPCODE LABEL MNEMONICS COMMENTS

4100 MOV DPTR,#4200 Load location 4200 to DPTR

4103 MOV 40,#00 Load zero to memory 40H

4106 MOV R5,#07 Move Array size to R5

4108 LOOP2 MOVX A,@DPTR Accumulator is moved to16

bit External Memory address

indicated by DPTR

4109 CJNE A,40 LOOP1 Compare A with contents of

location 40H and Jump if

Not Equal to LOOP1

410C LOOP3 INC DPTR Increment DPTR content

410D DJNZ R5,LOOP2 Decrement Register R5 and

Jump if Not Zero to LOOP2

410F MOV A,40 Move value in location 40H

to Accumulator

4111 MOVX @DPTR,A Accumulator is moved to16

bit External Memory address

indicated by DPTR

4112 HLT SJMP HLT Stop the execution

4114 LOOP1 JC LOOP3 Jump if Carry Set to LOOP3

4116 MOV 40,A Move A to location 40H

4118 SJMP LOOP2 Perform short jump to

location LOOP2

OUTPUT:

RESULT:

Thus an assembly language program written for finding the smallest element in an array

was executed using 8051 microcontroller and the output was verified.

VIVA QUESTIONS:

1. Explain the instruction MOVX DPTR,A

2. How internal RAM is accessed?

3. Which location is used for bit manipulation instruction?

4. What happens upon execution of the instruction MOV 40,A ____________

5. What is the need of the instruction INC DPTR?

6. Expand IP and IE ?

7. How many ports are available in 8051?

MEMORY

ADDRESS

INPUT VALUES MEMORY

ADDRESS

OUTPUT VALUES

4200 07 4207 01

4201 08

4202 02

4203 01

4204 04

4205 03

4206 09

START

Load the ASCII number

Convert ASCII into Hexadecimal

equivalent

Display the result

STOP

6(C) ASCII to Hexadecimal conversion

AIM:

To add two 8 bit numbers stored at consecutive memory locations and also to verify the

result.

APPARATUS REQUIRED:

 8085 microprocessor kit ,key board

ALGORITHM:

1)Initialize R0 with number which is required to find equivalent Hexadecimal number code.

2)Compare it with 40H and jump to label1 if it is equal.

3)Compare the carry bit to find which is greater and lesser.

4)If the carry bit is not set(it implies it is greater)jump to label2.

5)If it is lesser subtract the number with 30H.

6)If it is greater subtract the number with 37H.

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

 START MOV R0,#41H Move the numbers

to be converted MOV A,R0

 CJNE A,#40H,LABEL1 Compare the no

with 40H

 LABEL1 JNC LABEL2 If the number is

greater than 40H

jump to LABEL2

 CLR C

 SUBB A,#30H If the number is

less than 40

subtract with 30H

 SJMP STOP

 LABEL2 CLR C

 SUBB A,#37H If the number is

less than 40

subtract with 37H

 STOP END

OBSERVATION:

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

4200 41 4201 0A

Result :

Thus assembly language program to covert the given ASCII number into its

Hexadecimal equivalent is completed and also the result is verified.

VIVA QUESTIONS:

 1. What is the Hexadecimal for (35)ASCII ?

 2. What is the purpose of branch instructions in 8085 microprocessor?

 3. Define one’s complement of an 8-bit numbers

 4. What is the function of CMA instruction?

 5. What is the logic behind the conversion of ASCII number into Hexadecimal number.

 6. Give example for Machine control instruction?

 7. What is the need of code conversion?

FLOW CHART:

 START

STOP

 SET ORIGIN AT 4100H

MOVE 4500H TO

DATA POINTER

SEND DATA TO RESPECTIVE PORT

ADDRESS FOR ROTATING THE

MOTOR

THE MOTOR SPINS ACCORDINGLY

FLOWCHART:

SQUARE WAVE FORM:

SAWTOOTH WAVE FORM:

INTIALISE DPTR with DAC

PORT address

LOAD THE ACC WITH MAX VALUE

SEND ACC CONTENT TO DAC

START

LOAD THE ACC WITH MIN VALUE

SEND ACC CONTENT TO DAC

INTIALISE DPTR with DAC

PORT address

INCREMENT ACC CONTENT

START

LOAD THE ACC WITH MIN VALUE

SEND ACC CONTENT TO DAC

DELAY

DELAY

7 INTERFACING DAC WITH 8051

AIM:

To interface DAC with 8051 to demonstrate the generation of square wave, triangular

wave and sawtooth wave

APPARATUS REQUIRED:

 8051 microcontroller kit ,key board.

APPARATUS REQUIRED:

8051 Trainer Kit, DAC interface board

ALGORITHM:

SQUARE WAVE GENERATION:

1. Move the port address of DAC to DPTR

2. load the initial value 00 TO accumulator and move it to DAC

3. CALL THE DELAY PROGRAM

4. Load the final value FF to accumulator and move it to DAC

5. Call the delay program

6. Repeat steps 2 to 5

SAWTOOTH WAVE GENERATION:

1. Move the port address of DAC to DPTR

2. Load the initial value 00 TO accumulator

3. Move the accumulator content to DAC

4. Increment the accumulator content by 1.

5. Repeat Steps 3 and 4

TRIANGULAR WAVE GENERATION

1. Move the port address of DAC to DPTR

2. Load the initial value (00) to Accumulator

3. Move the accumulator content to DAC

4. Increment the accumulator content by 1.

5. If accumulator content is zero proceed to next step. Else go to step 3.

TRIANGULAR WAVEFORM

 No

 Yes

 Yes No NO

6. Load value (FF) to Accumulator

7. Move the accumulator content to DAC

8. Decrement the accumulator content by 1.

9. If accumulator content is zero go to step2. Else go to step 7.

INITIALIZE DPTR with DAC

PORT Address

LOAD ACCUMULATOR

WITH 00H

SEND ACCUMULATOR

CONTENT TO DAC

LOAD ACCUMULATOR

SEND ACCUMULATOR

CONTENT TO DAC

CONTENT

DECREMENT

ACCUMULATOR CONTENT

IS ACC 

FF

IS ACC

00

START

INCREMENT

ACCUMULATOR CONTENT

LOAD ACCUMULATOR

WITH FFH

PROGRAM:

(A) Square Wave Generation

Address Label Mnemonics Opcode Comments

 ORG 4100H

 MOV DPTR,PORT

MOV DPTR,PORT

ADDRESS OF DAC

4100 START MOV A,#00 Clear Accumulator

4102 MOVX @DPTR,A Move A DPTR

4103 LCALL DELAY

 Call delay

4104 MOV A,#FF

 Load FF A

4106 MOVX @DPTR,A

 Move A DPTR

4107 LCALL DELAY

 Call delay

410A LJUMP START

 Jump to start

410D DELAY: MOV R1,#05

Delay loop

410F LOOP: MOV R2,#FF

4111 HERE: DJNZ R2,HERE

4114 DJNZ R1,LOOP

4117 RET

 Return and jump to start

4118 SJMP START

(B) Saw tooth Wave Generation

Address Label Mnemonics Opcode Comments

 ORG 4100H

 MOV DPTR,PORT

MOV DPTR,PORT

ADDRESS OF DAC

4100 START MOV A,#00 Clear Accumulator

4103 LOOP MOVX @DPTR,A Move A DPTR

4105 INC A Increment A

 SJMP LOOP Jump to location loop

 (C) Triangular Wave Generation

Address Label Mnemonics Opcode Comments

 ORG 4100H

 MOV DPTR,PORT

MOV DPTR,PORT

ADDRESS OF DAC

4100 START MOV A,#00 Clear Accumulator

4102 LOOP1 MOVX @DPTR,A Move A DPTR

4103 INC A

 Increment A

4104 JNZ LOOP1

 Jump not zero to location

loop1

4107 MOV A,#FF

 Load FF A

4109 LOOP2: MOVX @DPTR,A

 Move A DPTR

410A DEC A

 Decrement A

410B JNZ LOOP2

 Jump not zero to location

loop2

Delay loop
411E

 LJMP START

RESULT:

Thus the square, triangular and saw tooth wave form were generated by interfacing

DAC with 8051 trainer kit.

VIVA QUESTIONS:

1. Briefly give the principle behind the triangular wave generation

2. What is settling or conversion time in DAC?

3. What are the internal devices of a typical DAC?.

4. What are Program and data memory size in 8051

5. How many 16 bit timers are available in 8051?

6. What is meant by SBUF?

7C . TRAFFIC LIGHT CONTROLLER - INTERFACING WITH 8051

AIM:

 To design traffic light controller using 8051 microcontroller

APPARATUS REQUIRED:

 8051 kit, DC regulated power supply, Traffic light controller interface board.

 PROGRAM:

ADDRESS OPCODES LABEL MNEMONICS OPERAND COMMENTS

 ORG 0000h

 MOV P0 #0D4H

 ACALL DELAY1

 MOV P0 #53H

 ACALL DELAY1

 MOV P0 #04DH

 ACALL DELAY1

 MOV P0 #35H

 ACALL DELAY1

 DELAY1 MOV R2 #42D

 MOV R1 #40D

 MOV R0 #30D

 LOOP1 DJNZ R0,LOOP1

 LOOP2 DJNZ R1,LOOP2

 LOOP3 DJNZ R2,LOOP3

 RET

ALGORITHM:-

1. Start.

2. Write the data for each direction and load it into the P0

3. Initialize a counter to indicate the number of directions.

4. call the delay program and repeat the process.

RESULT:

 Thus the design of traffic light controller using 8085 microprocessor through

programmable peripheral interface 8255is done and also the output is verified.

8 STEPPER MOTOR INTERFACING WITH 8051

AIM:

To operate stepper motor by interfacing with 8051 microcontroller.

THEORY:

 A motor in which the rotor is able to assume only discrete stationary angular position is

a stepper motor. The rotary motion occurs in a step-wise manner from one equilibrium position

to the next. Stepper Motors are used very wisely in position control systems like printers, disk

drives, process control machine tools, etc.

The basic two-phase stepper motor consists of two pairs of stator poles. Each of the four

poles has its own winding. The excitation of any one winding generates a North Pole. A South

Pole gets induced at the diametrically opposite side. The rotor magnetic system has two end faces.

It is a permanent magnet with one face as South Pole and the other as North Pole.

The Stepper Motor windings A1, A2, B1, B2 are cyclically excited with a DC current to

run the motor in clockwise direction. By reversing the phase sequence as A1, B2, A2, B1,

anticlockwise stepping can be obtained.

2-PHASE SWITCHING SCHEME:

 In this scheme, any two adjacent stator windings are energized. The switching scheme is

shown in the table given below. This scheme produces more torque.

ANTICLOCKWISE CLOCKWISE

STEP A1 A2 B1 B2 DATA STEP A1 A2 B1 B2 DATA

1 1 0 0 1 9h 1 1 0 1 0 Ah

2 0 1 0 1 5h 2 0 1 1 0 6h

3 0 1 1 0 6h 3 0 1 0 1 5h

4 1 0 1 0 Ah 4 1 0 0 1 9h

ADDRESS DECODING LOGIC:

The 74138 chip is used for generating the address decoding logic to generate the device

select pulses, CS1 & CS2 for selecting the IC 74175.The 74175 latches the data bus to the stepper

motor driving circuitry.

Stepper Motor requires logic signals of relatively high power. Therefore, the interface

circuitry that generates the driving pulses use silicon darlington pair transistors. The inputs for

the interface circuit are TTL pulses generated under software control using the Microcontroller

Kit. The TTL levels of pulse sequence from the data bus is translated to high voltage output

pulses using a buffer 7407 with open collector.

PROGRAM :

Address Label
Mnemo

nics
Operand Comments

 ORG 4100h

4100 START: MOV DPTR, #TABLE Load the start

address of switching

scheme data TABLE

into Data Pointer

(DPTR)

4103 MOV R0, #04 Load the count in R0

4105 LOOP: MOVX A, @DPTR Load the number in

TABLE into A

4106 PUSH DPH Push DPTR value to

Stack 4108 PUSH DPL

410A MOV DPTR, #0FFC0h Load the Motor port

address into DPTR

410D MOVX @DPTR, A Send the value in A

to stepper Motor port

address

410E MOV R4, #0FFh Delay loop to cause

a specific amount of

time delay before

next data item is sent

to the Motor

4110 DELAY: MOV R5, #0FFh

4112 DELAY1: DJNZ R5, DELAY1

4114 DJNZ R4, DELAY

4116 POP DPL POP back DPTR

value from Stack 4118 POP DPH

411A INC DPTR Increment DPTR to

point to next item in

the table

411B DJNZ R0, LOOP Decrement R0, if not

zero repeat the loop

411D SJMP START Short jump to Start

of the program to

make the motor

rotate continuously

411F TABLE: DB 09 05 06 0Ah Values as per two-

phase switching

scheme

PROCEDURE:

• Enter the above program starting from location 4100 and execute the same. The

stepper motor rotates.

• By varying the count at R4 and R5 can vary the speed.

• By entering the data in the look-up TABLE in the reverse order can vary

direction of rotation.

RESULT:

 Thus a stepper motor was interfaced with 8051 and run in forward and reverse

directions at various speeds.

VIVA QUESTIONS:

1. What are the application of stepper motor?

2. What is meant by step angle?

3. What are the methods to control the speed of stepper motor?

4. What is the formula for steps per revolution?

 5. What is the use of DB instruction?

6. What is the use of PUSH and POP operation ?

7. How a stepper motor differs from DC motor?

Ex,No: 9. STUDY OF BASIC DIGITAL ICs AND FLIPFLOPS

Date:

AIM:

To verify the truth table of basic digital ICs of AND, OR, NOT, NAND, NOR, EX-OR

 gates.

APPARATUS REQUIRED:

S.No Name of the Apparatus Range Quantity

1. Digital IC trainer kit 1

2. AND gate IC 7408 1

3. OR gate IC 7432 1

4. NOT gate IC 7404 1

5. NAND gate IC 7400 1

6. NOR gate IC 7402 1

7. EX-OR gate IC 7486 1

8. Connecting wires As required

THEORY:

a. AND gate:

An AND gate is the physical realization of logical multiplication operation. It

is an electronic circuit which generates an output signal of ‘1’ only if all the input

signals are ‘1’.

b. OR gate:

An OR gate is the physical realization of the logical addition operation. It

is an electronic circuit which generates an output signal of ‘1’ if any of the input

signal is ‘1’.

c. NOT gate:

A NOT gate is the physical realization of the complementation operation. It

is an electronic circuit which generates an output signal which is the reverse of the

input signal. A NOT gate is also known as an inverter because it inverts the input.

d. NAND gate:

A NAND gate is a complemented AND gate. The output of the NAND gate will

be ‘0’ if all the input signals are ‘1’ and will be ‘1’ if any one of the input signal is ‘0’.

 e. NOR gate:

A NOR gate is a complemented OR gate. The output of the OR gate will be ‘1’ if

all the inputs are ‘0’ and will be ‘0’ if any one of the input signal is ‘1’.

 f. EX-OR gate:

An Ex-OR gate performs the following Boolean function,

A B = (A B’) + (A’B)

It is similar to OR gate but excludes the combination of both A and B being equal

to one. The exclusive OR is a function that give an output signal ‘0’ when the two input

signals are equal either ‘0’ or ‘1’.

PROCEDURE:

1. Connections are given as per the circuit diagram

1. For all the ICs 7th pin is grounded and 14th pin is given +5 V supply.

2. Apply the inputs and verify the truth table for all gates.

AND GATE

LOGIC DIAGRAM:

PIN DIAGRAM OF IC 7408:

7

CIRCUIT DIAGRAM:

TRUTH TABLE:

S.No
INPUT OUTPUT

A B Y = A. B

1. 0 0 0

2. 0 1 0

3. 1 0 0

4. 1 1 1

OR GATE

LOGIC DIAGRAM:

 PIN DIAGRAM OF IC 7432 :

8

 TRUTH TABLE:

S.No
INPUT OUTPUT

A B Y = A + B

1. 0 0 0

2. 0 1 1

3. 1 0 1

4. 1 1 1

NOT GATE

LOGIC DIAGRAM:

PIN DIAGRAM OF IC 7404 :

9

CIRCUIT DIAGRAM

TRUTH TABLE:

S.No
INPUT OUTPUT

A Y = A’

1. 0 1

2. 1 0

NAND GATE

LOGIC DIAGRAM:

PIN DIAGRAM OF IC 7400 :

10

CIRCUIT DIARAM:

TRUTH TABLE:

S.No
INPUT OUTPUT

A B Y = (A. B)’

1. 0 0 1

2. 0 1 1

3. 1 0 1

4. 1 1 0

NOR GATE

LOGIC DIAGRAM:

PIN DIAGRAM OF IC 7402 :

11

CIRCUIT DIAGRAM:

TRUTH TABLE:

S.No
INPUT OUTPUT

A B Y = (A + B)’

1. 0 0 1

2. 0 1 0

3. 1 0 0

4. 1 1 0

EX-OR GATE

LOGIC DIAGRAM

PIN DIAGRAM OF IC 7486:

CIRCUIT DIAGRAM:

12

TRUTH TABLE:

S.No
INPUT OUTPUT

A B Y = A B

1. 0 0 0

2. 0 1 1

3. 1 0 1

4. 1 1 0

DISCUSSION QUESTIONS:

1. What is Integrated Circuit?

2. What is a Logic gate?

3. What are the basic digital logic gates?

4. What are the gates called universal gates?

5. Why NAND and NOR gates are called universal gates?

6. What are the properties of EX-NOR gate?

RESULT:

The truth tables of all the basic digital ICs were verified.

13

: 10 STUDY OF FLIP FLOPS

Date:

AIM:

To verify the characteristic table of RS, D, JK, and T Flip flops .

APPARATUS REQUIRED:

S.No Name of the Apparatus Range Quantity

1. Digital IC trainer kit 1

2. NOR gate IC 7402

3. NOT gate IC 7404

4. AND gate (three input) IC 7411

5. NAND gate IC 7400

6. Connecting wires As required

THEORY:

A Flip Flop is a sequential device that samples its input signals and changes its output

states only at times determined by clocking signal. Flip Flops may vary in the number of

inputs they possess and the manner in which the inputs affect the binary states.

RS FLIP FLOP:

The clocked RS flip flop consists of NAND gates and the output changes its state

with respect to the input on application of clock pulse. When the clock pulse is high the S

and R inputs reach the second level NAND gates in their complementary form. The Flip

Flop is reset when the R input high and S input is low. The Flip Flop is set when the S input

is high and R input is low. When both the inputs are high the output is in an indeterminate

state.

D FLIP FLOP:

To eliminate the undesirable condition of indeterminate state in the SR Flip Flop when

both inputs are high at the same time, in the D Flip Flop the inputs are never made equal at the

same time. This is obtained by making the two inputs complement of each other.

JK FLIP FLOP:

The indeterminate state in the SR Flip-Flop is defined in the JK Flip Flop. JK

inputs behave like S and R inputs to set and reset the Flip Flop. The output Q is ANDed with

K input and the clock pulse, similarly the output Q’ is ANDed with J input and the Clock

pulse. When the clock pulse is zero both the AND gates are disabled and the Q and Q’ output

retain their previous values. When the clock pulse is high, the J and K inputs reach the NOR

gates. When both the inputs are high the output toggles continuously. This is called Race

around condition and this must be avoided.

T FLIP FLOP:

This is a modification of JK Flip Flop, obtained by connecting both inputs J and K

14

inputs together. T Flip Flop is also called Toggle Flip Flop.

RS FLIP FLOP

LOGIC SYMBOL:

CIRCUIT DIAGRAM:

CHARACTERISTIC TABLE:

CLOCK

PULSE

INPUT PRESENT

STATE (Q)

NEXT

STATE(Q+1)

STATUS

S R

1 0 0 0 0

2 0 0 1 1

3 0 1 0 0

4 0 1 1 0

5 1 0 0 1

6 1 0 1 1

7 1 1 0 X

8 1 1 1 X

15

D FLIP F LOP

LOGIC SYMBOL:

CIRCUIT DIAGRAM:

CHARACTERISTIC TABLE:

CLOCK

PULSE

INPUT

D

PRESENT

STATE (Q)

NEXT

STATE(Q+1)

STATUS

1 0 0 0

2 0 1 0

3 1 0 1

4 1 1 1

16

JK FLIP FLOP

LOGIC SYMBOL:

CIRCUIT DIAGRAM:

CHARACTERISTIC TABLE:

CLOCK

PULSE

INPUT PRESENT

STATE (Q)

NEXT

STATE(Q+1)

STATUS

J K

1 0 0 0 0

2 0 0 1 1

3 0 1 0 0

4 0 1 1 0

5 1 0 0 1

6 1 0 1 1

7 1 1 0 1

8 1 1 1 0

17

T FLIPFLOP

LOGIC SYMBOL:

CIRCUIT DIAGRAM:

CHARACTERISTIC TABLE:

CLOCK

PULSE

INPUT

T

PRESENT

STATE (Q)

NEXT

STATE(Q+1)

STATUS

1 0 0 0

2 0 1 0

3 1 0 1

4 1 1 0

18

PROCEDURE:

1. Connections are given as per the circuit diagrams.

2. For all the ICs 7th pin is grounded and 14th pin is given +5 V supply.

 3. Apply the inputs and observe the status of all the flip flops.

DISCUSSION QUESTIONS:

1. Define flip-flop

2. What is race around condition?

3. Explain the flip-flop excitation tables for D flip-flop

4. Explain the flip-flop excitation tables for JK flip-flop

5. What is a master-slave flip-flop?

6. What is edge-triggered flip-flop?

7. What is the operation of D flip-flop?

8. What are the different types of flip-flop?

RESULT:

The Characteristic tables of RS, D, JK, T flip flops were verified.

19

Ex.No:

10A IMPLEMENTATION OF BOOLEAN FUNCTIONS

Date:

AIM:

To design the logic circuit and verify the truth table of the given Boolean

expression, F (A,B,C,D) = Σ (0,1,2,5,8,9,10)

APPARATUS REQUIRED:

S.No Name of the Apparatus Range Quantity

1. Digital IC trainer kit 1

2. AND gate IC 7408

3. OR gate IC 7432

4. NOT gate IC 7404

5. NAND gate IC 7400

6. NOR gate IC 7402

7. EX-OR gate IC 7486

8. Connecting wires As required

DESIGN:

Given , F (A,B,C,D) = Σ (0,1,2,5,8,9,10)

The output function F has four input variables hence a four variable Karnaugh Map is used

to obtain a simplified expression for the output as shown,

From the K-Map,

F = B’ C’ + D’ B’ + A’ C’ D

Since we are using only two input logic gates the above expression can be re-written

as, F = C’ (B’ + A’ D) + D’ B’

Now the logic circuit for the above equation can be drawn.

20

CIRCUIT DIAGRAM:

TRUTH TABLE:

S.No
INPUT OUTPUT

A B C D F=D’B’+C’(B’+A’D)

1. 0 0 0 0 1

2. 0 0 0 1 1

3. 0 0 1 0 1

4. 0 0 1 1 0

5. 0 1 0 0 0

6. 0 1 0 1 1

7. 0 1 1 0 0

8. 0 1 1 1 0

9. 1 0 0 0 1

10. 1 0 0 1 1

11. 1 0 1 0 1

12. 1 0 1 1 0

13. 1 1 0 0 0

14. 1 1 0 1 0

15. 1 1 1 0 0

16. 1 1 1 1 0

21

PROCEDURE:

1. Connections are given as per the circuit diagram

2. For all the ICs 7
th

pin is grounded and 14
th

pin is given +5 V supply.

3. Apply the inputs and verify the truth table for the given Boolean expression.

DISCUSSION QUESTIONS:

1. What is variable mapping?

2. Define Demorgans theorem.

3. What do you mean by don’t care functions?

4. State two absorption properties of Boolean function.

5. What are the two methods of Boolean function minimization?

RESULT:

The truth table of the given Boolean expression was verified.

22

Ex.No:
 10B DESIGN AND IMPLEMENTATION OF ADDER/SUBTRACTOR

Date:

AIM:

To design and construct half adder, full adder, half subtractor and full subtractor circuits

and verify the truth table using logic gates.

APPARATUS REQUIRED:

S. No

Name

Specification

Quantity

1. IC 7432, 7408, 7486, 7483 1

2. Digital IC Trainer Kit 1

3. Patch chords -

THEORY:

The most basic arithmetic operation is the addition of two binary digits. There are four

possible elementary operations, namely,

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 102

The first three operations produce a sum of whose length is one digit, but when the last

operation is performed the sum is two digits. The higher significant bit of this result is called a

carry and lower significant bit is called the sum.

HALF ADDER:

A combinational circuit which performs the addition of two bits is called half adder. The

input variables designate the augend and the addend bit, whereas the output variables produce

the sum and carry bits.

FULL ADDER:

A combinational circuit which performs the arithmetic sum of three input bits is called

full adder. The three input bits include two significant bits and a previous carry bit. A full adder

circuit can be implemented with two half adders and one OR gate.

15

HALFA DDER

TRUTH TABLE:

S.No
INPUT OUTPUT

A B S C

1. 0 0 0 0

2. 0 1 1 0

3. 1 0 1 0

4. 1 1 0 1

DESIGN:

From the truth table the expression for sum and carry bits of the output can be

obtained as, Sum, S = A B ; Carry, C = A . B

CIRCUIT DIAGRAM:

FULL ADDER

TRUTH TABLE:

S.No
INPUT OUTPUT

A B C SUM CARRY

1. 0 0 0 0 0

2. 0 0 1 1 0

3. 0 1 0 1 0

4. 0 1 1 0 1

5. 1 0 0 1 0

6. 1 0 1 0 1

7. 1 1 0 0 1

8. 1 1 1 1 1

16

DESIGN:

From the truth table the expression for sum and carry bits of the output can be obtained

as,SUM = A’B’C + A’BC’ + AB’C’ + ABC;CARRY = A’BC + AB’C + ABC’ +ABC

Using Karnaugh maps the reduced expression for the output bits can be obtained as,

SUM

SUM = A’B’C + A’BC’ + AB’C’ + ABC = A B C

CARRY

 CARRY = AB + AC + BC

CIRCUIT DIAGRAM:

17

HALF SUBTRACTOR:

A combinational circuit which performs the subtraction of two bits is called half

subtractor. The input variables designate the minuend and the subtrahend bit, whereas the output

variables produce the difference and borrow bits.

FULL SUBTRACTOR:

A combinational circuit which performs the subtraction of three input bits is called full

subtractor. The three input bits include two significant bits and a previous borrow bit. A full

subtractor circuit can be implemented with two half subtractors and one OR gate.

HALF SUBTRACTOR

TRUTH TABLE:

S.No
INPUT OUTPUT

A B DIFF BORR

1. 0 0 0 0

2. 0 1 1 1

3. 1 0 1 0

4. 1 1 0 0

DESIGN:

From the truth table the expression for difference and borrow bits of the output can

be obtained as, Difference, DIFF = A B; Borrow, BORR = A’ . B

CIRCUIT DIAGRAM:

18

FULL SUBTRACTOR

TRUTH TABLE:

S.No
INPUT OUTPUT

A B C DIFF BORR

1. 0 0 0 0 0

2. 0 0 1 1 1

3. 0 1 0 1 1

4. 0 1 1 0 1

5. 1 0 0 1 0

6. 1 0 1 0 0

7. 1 1 0 0 0

8. 1 1 1 1 1

DESIGN:

From the truth table the expression for difference and borrow bits of the output can be

obtained as,

Difference, DIFF= A’B’C + A’BC’ + AB’C’ + ABC

Borrow, BORR = A’BC + AB’C + ABC’ +ABC

Using Karnaugh maps the reduced expression for the output bits can be obtained as,

DIFFERENCE

 A’B’C + A’BC’ + AB’C’ + ABC = A B C

 BORROW

 BORROW = A’B + A’C + BC

19

CIRCUIT DIAGRAM:

PROCEDURE:

 The connections

are given as pe

r the circuit diagram.

 Two 4 – bit numbers added or subtracted

depend upon the control input and the output

is obtained.

 Apply the inputs and verify the truth table for thehalf adder or s subtractor and full adder or

subtractor circuits.

DISCUSSION QUESTIONS:

1. What is a combinational circuit?

2. What is different between combinational and

sequential circuit?

3. What are the gates involved for binary adder?

4. List the properties of Ex-Nor gate?

5. What is the expression for sum and carry in half

and full adder?

RESULT:

Thus the half adder, full adder, half subtractor and full

20

subtractor circuits were

designed and their truth table

were verified.

Ex. No: Date:

11 CODE CONVERTER

AIM:

To construct and verify the performance of binary to gray and gray to binary.

APPARATUS REQUIRED:

S. No

Name

Specification

Quantity

1. IC 7404, 7486 1

2. Digital IC Trainer Kit 1

3. Patch chords -

THEORY:

BINARY TO GRAY:

The MSB of the binary code alone remains unchanged in the Gray code. The remaining

bits in the gray are obtained by EX-OR ing the corresponding gray code bit and previous bit in

the binary code. The gray code is often used in digital systems because it has the advantage that

only one bit in the numerical representation changes between successive numbers.

GRAY TO BINARY:

The MSB of the Gray code remains unchanged in the binary code the remaining bits are

obtained by EX – OR ing the corresponding gray code bit and the previous output binary bit.

PROCEDURE:

 Connections are given as per the logic diagram.

 The given truth tables are verified.

21

BINARY TO GRAY:

TRUTH TABLE

Decimal Binary code Gray code

 D C B A D’ C’ B’ A’

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 1

3 0 0 1 1 0 0 1 0

4 0 1 0 0 0 1 1 0

5 0 1 0 1 0 1 1 1

6 0 1 1 0 0 1 0 1

7 0 1 1 1 0 1 0 0

8 1 0 0 0 1 1 0 0

9 1 0 0 1 1 1 0 1

10 1 0 1 0 1 1 1 1

11 1 0 1 1 1 1 1 0

12 1 1 0 0 1 0 1 0

13 1 1 0 1 1 0 1 1

14 1 1 1 0 1 0 0 1

15 1 1 1 1 1 0 0 0

Logic diagram

22

GRAY TO BINARY

TRUTH TABLE

Decimal Binary code Gray code

 D’ C’ B’ A’ D C B A

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 0 1 1 0 0 1 0

3 0 0 1 0 0 0 1 1

4 0 1 1 0 0 1 0 0

5 0 1 1 1 0 1 0 1

6 0 1 0 1 0 1 1 0

7 0 1 0 0 0 1 1 1

8 1 1 0 0 1 0 0 0

9 1 1 0 1 1 0 0 1

10 1 1 1 1 1 0 1 0

11 1 1 1 0 1 0 1 1

12 1 0 1 0 1 1 0 0

13 1 0 1 1 1 1 0 1

14 1 0 0 1 1 1 1 0

15 1 0 0 0 1 1 1 1

Logic diagram

23

BCD TO EXCESS-3

TRUTH TABLE

Logic diagram

24

EXCESS-3 TO BCD

TRUTH TABLE

Logic diagram

DISCUSSION QUESTIONS:

1. List the procedures to convert gray code into binary?

2. Why weighted code is called as reflective codes?

3. What is a sequential code?

4. What is error deducting code?

5. What is ASCII code?

RESULT:

The design of the three bit Binary to Gray code converter & Gray to Binary code

converter circuits was done and its truth table was verified.

25

Ex. No: 1) ENCODER

Date:

AIM:

To design and implement encoder using IC 74148 (8-3 encoder)

APPARATUS REQUIRED:

S. No

Name

Specification

Quantity

1. IC 74148 1

2. Digital IC Trainer Kit 1

3. Patch chords -

THEORY:

An encoder is digital circuit that has 2n input lines and n output lines. The output lines

generate a binary code corresponding to the input values 8 – 3 encoder circuit has 8 inputs,

one for each of the octal digits and three outputs that generate the corresponding binary

number. Enable inputs E1 should be connected to ground and Eo should be connected to VCC

PROCEDURE:

 Connections are given as per the logic diagram.

 The truth table is verified by varying the inputs.

26

PIN DIAGRAM

TRUTH TABLE

27

LOGIC DIAGRAM:

28

AIM:

)

D

ENCODER

To design and implement decoder using IC 74155 (3-8 decoder).

APPARATUS REQUIRED:

S. No Name Specification Quantity

1. IC 74155 1

2. Digital IC Trainer Kit 1

3. Patch chords -

THEORY:

A decoder is a combinational circuit that converts binary information from n input

lines to 2n unique output lines.

In 3-8 line decoder the three inputs are decoded into right outputs in which each output

representing one of the minterm of 3 input variables. IC 74155 can be connected as a dual 2*4

decoder or a single 3*8 decoder desired input in C1 and C2 must be connected together and

used as the C input. G1 and G2 should be connected and used as the G (enable) input. G is the

enable input and must be equal to 0 for proper operation.

PROCEDURE:

 Connections are given as per the logic diagram.

 The truth table is verified by varying the inputs.

PIN DIAGRAM

29

TRUTH TABLE

30

LOGIC DIAGRAM:

DISCUSSION QUESTIONS:

1. How the output line will be activated in decoder circuit?

2. What are the necessary steps for implementing higher order decoders?

3. What is the use of code converters?

4. How to convert BCD to Decimal decoder?

5. What is seven segment displays?

6. What is the other name of encoder?

7. What is encoding?

8. What are the applications of encoder?

9. What is BCD encoder?

RESULT:

Thus the encoder and decoder circuits were designed and implemented.

31

Ex. No:
Date: 12A ASYNCHRONOUS COUNTER

AIM:

To implement and verify the truth table of an asynchronous decade counter.

APPARATUS REQUIRED:

S.No Name of the Apparatus Range Quantity

1. Digital IC trainer kit 1

2. JK Flip Flop IC 7473 2

4. NAND gate IC 7400 1

5. Connecting wires As required

THEORY:

Asynchronous decade counter is also called as ripple counter. In a ripple counter the flip

flop output transition serves as a source for triggering other flip flops. In other words the clock

pulse inputs of all the flip flops are triggered not by the incoming pulses but rather by the transition

that occurs in other flip flops. The term asynchronous refers to the events that do not occur at the

same time. With respect to the counter operation, asynchronous means that the flip flop within

the counter are not made to change states at exactly the same time, they do not because the

clock pulses are not connected directly to the clock input of each flip flop in the counter.

CIRCUIT DIAGRAM:

TRUTH TABLE:

32

S.No
CLOCK

PULSE

OUTPUT

D(MSB) C B A(LSB)

1 0 0 0 0 0

2 1 0 0 0 1

3 2 0 0 1 0

4 3 0 0 1 1

5 4 0 1 0 0

6 5 0 1 0 1

7 6 0 1 1 0

8 7 0 1 1 1

9 8 1 0 0 0

10 9 1 0 0 1

11 10 0 0 0 0

PROCEDURE:

1. Connections are given as per the circuit diagrams.

2. Apply the input and verify the truth table of the counter.

Ex. No:
Date:

12B SYNCHRONOUS COUNTER
AIM:

To design and implement 4-bit synchronous BCD counter.

APPARATUS REQUIRED:

S.No Name of the Apparatus Range Quantity

1. Digital IC trainer kit 1

2. JK Flip Flop IC 7473 2

3. AND gate IC 7408 2

4. OR gate IC 7432 1

5 Connecting wires As required

THEORY:

 A counter is a register capable of counting number of clock pulse arriving at the clock input. In

synchronous counter all the flip-flops are clocked simultaneously .It is faster in speed because of the

propagation delay of the single flip-flop is involved. It is also called as a parallel counter. A BCD

synchronous counter can be called as a decade counter or mod-10 counter. It requires 4 flip flops

(10<=24). So there are 16 possible states out of which 10 are valid and other 6 are invalid.

CIRCUIT DIAGRAM:

 1905507 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

SRM Valliammai Engineering College, Department of Electrical and Electronics Engineering

34

TRUTH TABLE:

Present State Next State Excitation Required
Q4 Q3 Q2 Q1 Q4 Q3 Q2 Q1 J4 K4 J3 K3 J2 K2 J1 K1

0 0 0 0 0 0 0 1 0 X 0 X 0 X 1 X

0 0 0 1 0 0 1 0 0 X 0 X 1 X X 1

0 0 1 0 0 0 1 1 0 X 0 X X 0 1 X

0 0 1 1 0 1 0 0 0 X 1 X X 1 X 1

0 1 0 0 0 1 0 1 0 X X 0 0 X 1 X

0 1 0 1 0 1 1 0 0 X X 0 1 X X 1

0 1 1 0 0 1 1 1 0 X X 0 X 0 1 X

0 1 1 1 1 0 0 0 1 X X 1 X 1 X 1

1 0 0 0 1 0 0 1 X 0 0 X 0 X 1 X

1 0 0 1 0 0 0 0 X 1 0 X 0 X X 1

PROCEDURE:

1. Connections are given as per the circuit diagrams.

2. Apply the input and verify the truth table of the counter.

DISCUSSION QUESTIONS:

1. Compare synchronous and asynchronous sequential circuits?

2. What is a ripple counter?

3. What is propagation delay in ripple counter?

4. Define MOD counter?

5. What are the applications of counters?

6. State the types of counter?

7. Define bit, byte and word.

8. Define address of a memory.

 9. What is a parallel counter?

 10. What is the speed of a synchronous counter?

Result:

 Thus the synchronous and asynchronous counter circuits were designed and the outputs were
verified.

 1905507 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

SRM Valliammai Engineering College, Department of Electrical and Electronics Engineering

35

13 STUDY OF ARM EVALUATION SYSTEM
AIM:

To study of ARM processor system and describe the features of architecture.

ARCHITECTURE OF ARM PROCESSOR:

1.1. Features of ARM DEVELOPMENT KIT Processor:

 16-bit/32-bit ARM7TDMI-S microcontroller in a tiny LQFP64 package.8 kB to 40 kB of on-chip

static RAM and 32 kB to 512 kB of on-chip flash memory. 128-bit wide interface/accelerator enables

high-speed 60 MHz operation. In-System/In-Application Programming (ISP/IAP) via on-chip boot

loader software.

 Single flash sector/full chip erase in 400 ms and programming of 256 bytes in 1ms.USB 2.0 Full-

speed compliant device controller with 2 kB of endpoint RAM.The LPC2146/48 provides 8 kB of on-

chip RAM accessible to USB by DMA.

 One or two (LPC2141/42 vs. LPC2144/46/48) 10-bit ADCs provide a total of 6/14 analog inputs, with

conversion times as low as 2.44 μs per channel. Single 10-bit DAC provides variable analog output

(LPC2142/44/46/48 only).Two 32-bit timers/external event counters (with four capture and four

compare channels each), PWM unit (six outputs) and watchdog.

 Low power Real-Time Clock (RTC) with independent power and 32 kHz clock input. Multiple serial

interfaces including two UARTs (16C550), two Fast I2Cbus (400 kbit/s), SPI and SSP with buffering

and variable data length capabilities.

 Vectored Interrupt Controller (VIC) with configurable priorities and vector addresses.Up to 45 of 5 V

tolerant fast general purpose I/O pins in a tiny LQFP64 package.Up to 21 external interrupt pins

available.

 60MHz maximum CPU clock available from programmable on-chip PLL with settling time of

100μs.On-chip integrated oscillator operates with an external crystal from 1 MHz to 25 MHz.Power

saving modes include Idle and Powerdown.

 Individual enable/disable of peripheral functions as well as peripheral clock scaling for additional

power optimization.Processor wake-up from Power-down mode via external interrupt or BOD.Single

power supply chip with POR and BOD circuits:CPU operating voltage range of 3.0 V to 3.6 V (3.3 V ±

10 %) with 5 V

 1905507 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

SRM Valliammai Engineering College, Department of Electrical and Electronics Engineering

36

1.2. Power Supply:

 The external power can be AC or DC, with a voltage between (9V/12V, 1A output) at 230V AC input.The

ARM board produces +5V using an LM7805 voltage regulator,which provides supply to the peripherals.

 LM1117 Fixed +3.3V positive regulator used for processor & processor related

peripherals.

1.3. Flash Programming Utility

 NXP (Philips)

NXP Semiconductors produce a range of Microcontrollers that feature both on-chip Flash memory and the ability

to be reprogrammed using In-System Programming technology.

 1905507 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

SRM Valliammai Engineering College, Department of Electrical and Electronics Engineering

37

1.4. On-board Peripherals:

 8-Nos. of Point LED’s (Digital Outputs)

 8-Nos. of Digital Inputs (slide switch)

 2 Lines X 16 Character LCD Display

 I2C Enabled 4 Digit Seven-segment display

 128x64 Graphical LCD Display

 4 X 4 Matrix keypad

 Stepper Motor Interface

 2 Nos. Relay Interface

 Two UART for serial port communication through PC

 Serial EEPROM

 On-chip Real Time Clock with battery backup

 PS/2 Keyboard interface(Optional)

 Temperature Sensor

 Buzzer(Alarm Interface)

 Traffic Light Module(Optional)

RESULT:

Thus the study of ARM processor has been done and ensured its composition

with internal features specifically.

 1905507 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

SRM Valliammai Engineering College, Department of Electrical and Electronics Engineering

38

ADDITIONAL EXPERIMENTS

 1905507 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

SRM Valliammai Engineering College, Department of Electrical and Electronics Engineering

39

14 PROGRAMS TO VERIFY TIMER AND INTERRUPTS OPERATIONS IN 8051

 MICROCONTROLLER

AIM:

To write ALP to generate a square wave of frequency, transfer a data serially from one kit to

anotherand to verify the result.

APPARATUS REQUIRED:

 8051 microcontroller kit ,key board.

a) Program to generate a square wave of frequency.

 Steps to determine the count:

 Let the frequency of sqaurewave to be generated be Fs KHz.

 And the time period of the squarewave be Ts Sec.

 Oscillator Frequency = 11.0592MHz.

 One machine cycle = 12 clock periods

 Time taken to complete one machine cycle=12*(1/11.0592MHz)= 1.085microsec.

 Y(dec) = (Ts/2)/(1.085microsec)

 Count(dec) = 65536(dec) – Y(dec)

 = Count(hexa)

 PROGRAM:

 MOV TMOD,#10h ; To select timer1 & mode1 operation

L1: MOV TL1,#LOWERORDER BYTE OF THE COUNT

 MOV TH1,#HIGHER ORDER BYTE OF THE COUNT

 SETB TR1 ; to start the timer (TCON.6)

BACK: JNB TF1,BACK ; checking the status of timerflag1(TCON.7) for

 overflow

 CPL Px.x ; get the square wave through any of the portpins

 ; eg. P1.2 (second bit of Port 1)

 CLR TR1 ; stop timer

 CLR TF1 ; clear timer flag for the next cycle

 SJMP L1

 1905507 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

SRM Valliammai Engineering College, Department of Electrical and Electronics Engineering

40

b) Program to transfer a data serially from one kit to another.

Transmitter:

 MOV TMOD,#20H ; Mode word to select timer1 & mode 2

 MOV TL1,#FDH ; Initialize timer1 with the count

 MOV TH1,#FFH

 MOV SCON,#50H ; Control word for serial communication to

 to select serial mode1

 SETB TR1 ; Start timer1

 MOV A,#06h

 MOV SBUF,A ; Transfer the byte to be transmitted to serial

 Buffer register.

LOOP: JNB TI, LOOP ; checking the status of Transmit interrupt

 flag

 CLR TI

HERE: SJMP HERE

Receiver:

 MOV TMOD,#20H

 MOV TL1,#FDH

 MOV TH1,#FFH

 MOV SCON,#50H

 SETB TR1

LOOP: JNB RI,LOOP

 MOV A,SBUF

 MOV DPTR,#4500H

 MOVX @DPTR,A

 CLR RI

HERE: SJMP HERE

 1905507 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

SRM Valliammai Engineering College, Department of Electrical and Electronics Engineering

41

Result:

Thus ALP to generate a square wave of frequency, transfer a data serially from one kit to

another and also the result is verified.

VIVA QUESTIONS:

1. What is the use of INT0,INT1?

2. What is the special function of the pin ALE/PROG

3. What is meant by memory interfacing?

4. What is meant by memory mapped IO and IO mapped IO?

5. What are the timer modes are available in 8051?

6. What are interrupt control register?

7. What is the function of IP register?

 1905507 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

SRM Valliammai Engineering College, Department of Electrical and Electronics Engineering

42

FLOW CHART:

 YES

 NO

HL HL+1

DE DE+1; DE DE+1

Is

A=04H

?

Increment HL

reg. pair

C 00H

HL 8500H

DE 8600H

HL HL+1

DE DE+1; DE DE+1

B A

A A+B

START

HL HL-1

DE DE-1;

B A

A

Call subroutine

MUL

Call subroutine

 STORE

A

Call subroutine

MUL

Call subroutine

MUL

A A+B

Call subroutine

 STORE

Call subroutine

MUL

A C

B

A

B
STOP

 1905507 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

SRM Valliammai Engineering College, Department of Electrical and Electronics Engineering

43

15 2 X 2 MATRIX MULTIPLICATION

AIM:

 To perform the 2 x 2 matrix multiplication using 8085 microprocessor.

APPARATUS REQUIRED:

 8085 microprocessor kit ,key board.

ALGORITHM:

1. Load the 2 input matrices in the separate address and initialize the HL and the DE register

pair with the starting address respectively.

2. Call a subroutine for performing the multiplication of one element of a matrix with the other

element of the other matrix.

3. Call a subroutine to store the resultant values in a separate matrix.

4. Halt

 1905507 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

SRM Valliammai Engineering College, Department of Electrical and Electronics Engineering

44

 YES

 NO

 NO

 YES

MUL

H H- 1

Is H=0 ?

[A] [[DE]]

D A

H M

[D] [D]+1

[H] 85; [D] 86

H H- 1

Is H=0 ?

RET

STORE

B 87

[A] [[BC]]

C C+ 1

RET

 1905507 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

SRM Valliammai Engineering College, Department of Electrical and Electronics Engineering

45

PROGRAM:

ADDRESS OPCODE LABEL MNEMONCS OPERAND COMMENT

8100 MVI C, 00 Clear C reg.

8101

8102 LXI H, 8500 Initialize HL reg. to

4500 8103

8104

8105 LOOP2 LXI D, 8600 Load DE register pair

8106

8107

8108 CALL MUL Call subroutine MUL

8109

810A

810B MOV B,A Move A to B reg.

810C INX H Increment HL register pair .

810D INX D Increment DE register pair

810E INX D Increment DE register pair

810F CALL MUL Call subroutine MUL

8110

8111

8112 ADD B Add [B] with [A]

8113 CALL STORE Call subroutine STORE

8114

8115

8116 DCX H Decrement HL register pair

8117 DCX D Decrement DE register pair

8118 CALL MUL Call subroutine MUL

8119

811A

811B MOV B,A Transfer A reg content to B

reg.

811C INX H Increment HL register pair

811D INX D Increment DE register pair

811E INX D Increment DE register pair

811F CALL MUL Call subroutine MUL

8120

8121

8122 ADD B Add A with B

8123 CALL STORE Call subroutine MUL

8124

8125

8126 MOV A,C Transfer C register content

to Acc.

 1905507 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

SRM Valliammai Engineering College, Department of Electrical and Electronics Engineering

46

8127 CPI 04 Compare with 04 to check

whether all elements are

multiplied.
8128

8129 JZ LOOP1 If completed, go to loop1

812A

812B

812C INX H Increment HL register Pair.

812D JMP LOOP2 Jump to LOOP2.

812E

812F

8130 LOOP1 HLT Stop the program.

8131 MUL LDAX D Load acc from the memory

location pointed by DE pair.

8132 MOV D,A Transfer acc content to D

register.

8133 MOV H,M Transfer from memory to H

register.

8134 DCR H Decrement H register.

8135 JZ LOOP3 If H is zero go to LOOP3.

8136

8137

8138 LOOP4 ADD D Add Acc with D reg

8139 DCR H Decrement H register.

813A JNZ LOOP4 If H is not zero go to

LOOP4. 813B

813C

813D LOOP3 MVI H,85 Transfer 85 TO H register.

813E

813F MVI D,86 Transfer 86 to D register.

8140

8141 RET Return to main program.

8142 STORE MVI B,87 Transfer 87 to B register.

8143

8144 STAX B Load A from memory

location pointed by BC pair.

8145 INR C Increment C register.

8146 RET Return to main program.

 1905507 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

SRM Valliammai Engineering College, Department of Electrical and Electronics Engineering

47

OBSERVATION:

INPUT OUTPUT

4500 01 4600 01 4700 07

4501 02 4601 02 4701 08

4502 03 4602 03 4702 0B

4503 03 4603 03 4703 0F

RESULT:

Thus the 2 x 2 matrix multiplication is performed and the result is stored at 4700,4701 ,

4702 & 4703.

VIVA QUESTIONS:

1. How many loops needed to perform matrix multiplication ?

2. What is the condition for two matrix is multipliable ?

3. What is the use of the instruction RET ?

4. What are conditional jump and unconditional jump instructions?

5. What is the next line will execute after Call instruction?

6. Compare Call and DJNZ instructions?

7. If there is no RET statement after CALL instruction whether the program will come to

 end or not?

