SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur-603203.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

1905704 - Special Electrical Machines

Regulation-2019

Academic Year 2022–23 (ODD)

Prepared by

Dr.K.Elango, Professor & Head / EEE

SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur- 603203.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

OUESTION BANK

UNIT I - SYNCHRONOUS RELUCTANCE MOTORS

Constructional features – Types – Axial and Radial flux motors – Operating principles – Variable Reluctance Motors – Voltage and Torque Equations - Phasor diagram - performance characteristics – Applications.

performance characteristics – Applications.				
•	Part - A			
Q.No.	Questions	BT Level	Competence	Course Outcome
1.	What is synchronous reluctance motor?	BTL 1	Remember	CO1
2.	List the applications of synchronous reluctance motors.	BTL 1	Remember	CO1
3.	Examine the principle of operation Synchronous reluctance Motor.	BTL 4	Analyze	CO1
4.	Develop the voltage and torque characteristics of synchronous reluctance motor.	BTL 6	Create	CO1
5.	Describe in short about SYNREL motors.	BTL 2	Understand	CO1
6.	Compare synchronous reluctance motor and induction motor.	BTL 5	Evaluate	CO1
7.	Give the voltage and torque equation of synchronous reluctance motor.	BTL 2	Understand	CO1
8.	Analyze the effect of cogging.	BTL 4	Analyze	CO1
9.	Order the different types of synchronous reluctance motor.	BTL 4	Analyze	CO1
10.	Identify the advantages of synchronous reluctance motors.	BTL 3	Apply	CO1
11.	Classify the types of rotor available in synchronous reluctance motor.	BTL 2	Understand	CO1
12.	Define reluctance torque with reference to synchronous reluctance motor.	BTL 1	Remember	CO1
13.	Infer potential applications of synchronous reluctance machine.	BTL 3	Apply	CO1
14.	Define the characteristics of synchronous reluctance motor.	BTL 1	Remember	CO1
15.	What are the primary design consideration of synchronous reluctance motor?	BTL 1	Remember	CO1
16.	Define power factor of synchronous reluctance motor.	BTL 3	Apply	CO1
17.	What are the applications of the torque – speed characteristics of synchronous reluctance motor?	BTL 1	Remember	CO1
18.	Summarize the various stator current modes	BTL 2	Understand	CO1

	used in synchronous reluctance motor?			
10	·	DTI 6	Cuanta	CO1
19.	List out the properties of synchronous	BTL 6	Create	CO1
20	reluctance motor.	D		~~4
20.	Outline the various design parameters of a	BTL 2	Understand	CO1
	synchronous reluctance motor.			
21.	Compare synchronous reluctance motor with	BTL 5	Evaluate	CO1
	conventional Synchronous motor.			
22.	Justify whether skewing is necessary for	BTL 4	Analyze	CO1
	synchronous reluctance motor.			
23.	Construct the advantages of increasing Ld / Lq	BTL 3	Apply	CO1
	ratio in Synchronous reluctance motor?			
24.	Draw the voltage and torque characteristics of	BTL 5	Evaluate	CO1
	Synchronous reluctance Motor.			
	Part – B			I.
1.	(i) Give a detailed technical note on the	BTL 6	Create	CO1
1.	variable reluctance motor and the advantages.		210010	
	(7)			
	(ii) Investigate the performance of the			
	synchronous reluctance motor with neat phasor			
	diagram. (6)			
2.	e ·	BTL 5	Evaluate	CO1
۷.	(i) Draw and explain the phasor diagram of	DILJ	Evaluate	COI
	synchronous reluctance motor. (3)			
	(ii) Explain the construction and operation of			
	axial and radial flux machines. Discuss the			
	advantages and disadvantages of each			
	construction. (10)			
3.	Differentiate between axial and radial airgap	BTL 2	Understand	CO1
	synchronous reluctance motors. Compare the			
	performance of synchronous reluctance motor			
	with switched reluctance motor. (13)			
4.	Summarize the design considerations of	BTL 2	Understand	CO1
	synchronous reluctance motor. (13)			
5.	A three phase 230V,60Hz,4 pole star connected	BTL 3	Apply	CO1
	synchronous reluctance motor with negligible			
	armature resistance has $X_{sd} = 22.5$ ohm and X_{sq}			
	= 3.5ohm.The load torque is 12.5Nm.The			
	voltage frequency ratio is maintained constant			
	at rated value. If the supply frequency is			
	60Hz, determine (i) torque angle (5)			
	(ii) line current (4)			
	(iii)input power factor (4)			
6.	Describe the constructional features and	BTL 2	Understand	CO1
	operation of variable reluctance synchronous			
	reluctance motor. (13)			
7.	Explain with neat diagram, the construction,	BTL 1	Remember	CO1
	working principle and types of synchronous			
	reluctance motor. (13)			
8.	Explain the torque speed characteristics of	BTL 1	Remember	CO1
0.	synchronous reluctance motor in detail. (13)	ועועו	Remember	
9.	(i) Discuss the main advantages and	BTL 3	Apply	CO1
9.	disadvantages of synchronous reluctance	נחום	Appry	
	Large of Synchrolicus Iciaciance			ĺ

	motor (7)			
	motor. (7)			
	(ii) Discuss the various applications of			
1.0	synchronous reluctance motor. (6)	DTI 1	D 1	001
10.	Describe circle diagram and torque-speed	BTL 1	Remember	CO1
	characteristics of synchronous reluctance			
	motor. (13)			
11.	Derive the torque equation of synchronous	BTL 4	Analyze	CO1
	reluctance motor.(13)			
12.	Explain the various types of Synchronous	BTL 1	Remember	CO1
	reluctance motor based on rotor construction			
	(13)			
13.	Compare a reluctance motor with an equivalent	BTL 4	Analyze	CO1
	induction motor and list out the merits and			
	demerits of reluctance motor over induction			
	motor. (13)			
14.	(i) Explain the advantages and disadvantages	BTL 5	Evaluate	CO1
	of synchronous reluctance motor. (8)			
	(ii) Explain the characteristics of synchronous			
	reluctance motor. (5)			
15.	(i) Distinguish between Axial and Radial	BTL 4	Analyze	CO1
	airgap motors.		•	
	(ii) List out the applications of synchronous			
	reluctance motor.			
16.	A three phase 400V, 50Hz, 4 pole, star	BTL 3	Apply	CO1
	connected synchronous reluctance motor with		11 3	
	negligible armature resistance has $X_{sd} = 8\Omega$			
	and $X_{sq} = 2\Omega$. Calculate (a) the load angle (b)			
	the line current (c) the input power factor.			
	Neglect rotational losses.			
17.	Explain the various stator current modes in a	BTL 2	Understand	CO1
17.	synchronous reluctance motor in detail.	DILL	Chacistana	001
	Part – C			
1.	Recommend a suitable type of synchronous	BTL 5	Evaluate	CO1
1.	reluctance motor for rewinding mill. (15)	DILJ	Lvaraate	COI
2.	Formulate a suitable saliency ratio of	BTL 6	Create	CO1
۷.	· ·	DILU	Cicate	COI
	synchronous reluctance motor and how it can			
2	be improved. (15)	DTI 5	Evoluete	CO1
3.	A three phase, 220Volts, 50Hz, 4 pole Star	BTL 5	Evaluate	CO1
	Connected Reluctance Motor has $X_d=25\Omega$ and			
	$X_q=2.5\Omega$. The Armature Resistance is			
	negligible. The Load torque is T _L =24.5Nm.The			
	voltage to frequency ratio is maintained			
	constant at the rated value. If the supply			
	frequency is 50 Hz. Determine			
	i) Torque Angle δ (5)			
	ii) Line current (5)			
	iii) Input Power Factor. (5)			
4.	Derive the expression for the d axis	BTL 6	Create	CO1
	synchronous reactance of the PM synchronous			
_	reluctance motor. (15)			2
5.	A three phase, 230V, 60Hz, 4 pole, star	BTL 5	Evaluate	CO1

connected reluctance motor has $X_{sd} = 22.5\Omega$		
and $X_{sq} = 3.5\Omega$. The armature resistance is		
negligible. The load torque is $T_1 = 12.5$ N-m.		
The voltage to frequency ratio is maintained		
constant at rated value. If the supply frequency		
is 60 Hz, determine (a) torque angle δ (b) the		
line current (c) the input power factor.		

UNIT II - STEPPER MOTORS

Constructional features – Principle of operation – Types – Torque predictions – Linear Analysis – Characteristics – Drive circuits – Closed loop control – Concept of lead angle – Applications of Stepper motor in robotics, CNC, Computer peripherals, 3D printers.

1 What is stepper motor? 2 Define step angle. 3 Define slewing. 4 Classify the different types of stepping motor. 6 Summarize the principle of operation of a variable reluctance stepper motor. 7 Distinguish the half step and full step operations of a stepper motor. 8 Generalize single stack and multi stack configurations in stepping motors. 9 Define the terms holding and detent torques as referred to stepper motor. 10 What is the relationship between the step number and step angle in a stepper motor? 11 The stepper motor has a step angle of 1.8° and is driven at 4000rps. Determine (a) Resolution (b) Rotor speed. 12 Define torque constant of a stepper motor. 13 Calculate the stepping angle for a 3phase, 24 pole permanent magnet stepper motor. 14 Draw the block diagram of the drive system of a stepping motor. 15 What is the function of drive circuit in stepping	BTL 4 BTL 1 BTL 4 BTL 2 BTL 2 BTL 5 BTL 6 BTL 1	Analyze Remember Analyze Understand Understand Evaluate Create	CO2 CO2 CO2 CO2 CO2
3 Define slewing. 4 Classify the different types of stepping motor. 6 Summarize the principle of operation of a variable reluctance stepper motor. 7 Distinguish the half step and full step operations of a stepper motor. 8 Generalize single stack and multi stack configurations in stepping motors. 9 Define the terms holding and detent torques as referred to stepper motor. 10 What is the relationship between the step number and step angle in a stepper motor? 11 The stepper motor has a step angle of 1.8° and is driven at 4000rps. Determine (a) Resolution (b) Rotor speed. 12 Define torque constant of a stepper motor. 13 Calculate the stepping angle for a 3phase, 24 pole permanent magnet stepper motor. 14 Draw the block diagram of the drive system of a stepping motor. 15 What is the function of drive circuit in stepping	BTL 4 BTL 2 BTL 5 BTL 6 BTL1	Analyze Understand Understand Evaluate Create	CO2 CO2 CO2
4 Classify the different types of stepping motor. 6 Summarize the principle of operation of a variable reluctance stepper motor. 7 Distinguish the half step and full step operations of a stepper motor. 8 Generalize single stack and multi stack configurations in stepping motors. 9 Define the terms holding and detent torques as referred to stepper motor. 10 What is the relationship between the step number and step angle in a stepper motor? 11 The stepper motor has a step angle of 1.8° and is driven at 4000rps. Determine (a) Resolution (b) Rotor speed. 12 Define torque constant of a stepper motor. 13 Calculate the stepping angle for a 3phase, 24 pole permanent magnet stepper motor. 14 Draw the block diagram of the drive system of a stepping motor. 15 What is the function of drive circuit in stepping	BTL 2 BTL 5 BTL 6 BTL1	Understand Understand Evaluate Create	CO2 CO2
6 Summarize the principle of operation of a variable reluctance stepper motor. 7 Distinguish the half step and full step operations of a stepper motor. 8 Generalize single stack and multi stack configurations in stepping motors. 9 Define the terms holding and detent torques as referred to stepper motor. 10 What is the relationship between the step number and step angle in a stepper motor? 11 The stepper motor has a step angle of 1.8° and is driven at 4000rps. Determine (a) Resolution (b) Rotor speed. 12 Define torque constant of a stepper motor. 13 Calculate the stepping angle for a 3phase, 24 pole permanent magnet stepper motor. 14 Draw the block diagram of the drive system of a stepping motor. 15 What is the function of drive circuit in stepping	BTL 2 BTL 5 BTL 6 BTL1	Understand Evaluate Create	CO2
variable reluctance stepper motor. 7 Distinguish the half step and full step operations of a stepper motor. 8 Generalize single stack and multi stack configurations in stepping motors. 9 Define the terms holding and detent torques as referred to stepper motor. 10 What is the relationship between the step number and step angle in a stepper motor? 11 The stepper motor has a step angle of 1.8° and is driven at 4000rps. Determine (a) Resolution (b) Rotor speed. 12 Define torque constant of a stepper motor. 13 Calculate the stepping angle for a 3phase, 24 pole permanent magnet stepper motor. 14 Draw the block diagram of the drive system of a stepping motor. 15 What is the function of drive circuit in stepping	BTL 5 BTL 6 BTL1	Evaluate Create	CO2
operations of a stepper motor. 8 Generalize single stack and multi stack configurations in stepping motors. 9 Define the terms holding and detent torques as referred to stepper motor. 10 What is the relationship between the step number and step angle in a stepper motor? 11 The stepper motor has a step angle of 1.8° and is driven at 4000rps. Determine (a) Resolution (b) Rotor speed. 12 Define torque constant of a stepper motor. 13 Calculate the stepping angle for a 3phase, 24 pole permanent magnet stepper motor. 14 Draw the block diagram of the drive system of a stepping motor. 15 What is the function of drive circuit in stepping	BTL 6	Create	
configurations in stepping motors. 9 Define the terms holding and detent torques as referred to stepper motor. 10 What is the relationship between the step number and step angle in a stepper motor? 11 The stepper motor has a step angle of 1.8° and is driven at 4000rps. Determine (a) Resolution (b) Rotor speed. 12 Define torque constant of a stepper motor. 13 Calculate the stepping angle for a 3phase, 24 pole permanent magnet stepper motor. 14 Draw the block diagram of the drive system of a stepping motor. 15 What is the function of drive circuit in stepping	BTL1		CO2
referred to stepper motor. 10 What is the relationship between the step number and step angle in a stepper motor? 11 The stepper motor has a step angle of 1.8° and is driven at 4000rps. Determine (a) Resolution (b) Rotor speed. 12 Define torque constant of a stepper motor. 13 Calculate the stepping angle for a 3phase, 24 pole permanent magnet stepper motor. 14 Draw the block diagram of the drive system of a stepping motor. 15 What is the function of drive circuit in stepping		D 1	
number and step angle in a stepper motor? 11 The stepper motor has a step angle of 1.8° and is driven at 4000rps. Determine (a) Resolution (b) Rotor speed. 12 Define torque constant of a stepper motor. 13 Calculate the stepping angle for a 3phase, 24 pole permanent magnet stepper motor. 14 Draw the block diagram of the drive system of a stepping motor. 15 What is the function of drive circuit in stepping	DET 1	Remember	CO2
is driven at 4000rps. Determine (a) Resolution (b) Rotor speed. 12 Define torque constant of a stepper motor. 13 Calculate the stepping angle for a 3phase, 24 pole permanent magnet stepper motor. 14 Draw the block diagram of the drive system of a stepping motor. 15 What is the function of drive circuit in stepping	BTL 1	Remember	CO2
13 Calculate the stepping angle for a 3phase, 24 pole permanent magnet stepper motor. 14 Draw the block diagram of the drive system of a stepping motor. 15 What is the function of drive circuit in stepping	BTL 5	Evaluate	CO2
pole permanent magnet stepper motor. 14 Draw the block diagram of the drive system of a stepping motor. 15 What is the function of drive circuit in stepping	BTL 1	Remember	CO2
a stepping motor. 15 What is the function of drive circuit in stepping	BTL 3	Apply	CO2
11 &	BTL 6	Create	CO2
motor?	BTL 1	Remember	CO2
Name the various driver circuits used in stepped motor.	BTL 2	Understand	CO2
17 Illustrate the need of suppressor circuits in stepper motor.	BTL 3	Apply	CO2
18 Examine the advantages of closed loop operation of stepper motor.	BTL 4	Analyze	CO2
What is meant by Lead angle in stepper motors?	BTL 2	Understand	CO2
20 List the applications of stepper motor.	BTL 4	Analyze	CO2
21 Outline the limitations of stepper motor?	BTL 2	Understand	CO2
With the characteristics, Define Pull in torque	BTL 3	Apply	CO2
23 What is meant by pull out range?	BTL 1	Remember	CO2
Justify the application of stepper motor in 3D printers.		Evaluate	CO2
Part – B	BTL 5		

1	Describe in detail the construction and working	BTL 1	Remember	CO2
1	of variable reluctance stepper motor. (13)	DILI	Remember	002
2	Explain the construction and working principle	BTL 4	Analyze	CO2
	of hybrid stepper motor with neat diagrams.	DIL.	111101720	002
	(13)			
3	Explain the operation of single stack and multi-	BTL 5	Evaluate	CO2
	stack stepper motor with a neat diagram. (13)			
4	Discuss the principles of operation of	BTL 4	Analyze	CO2
	permanent magnet stepper motor torque Vs		•	
	angle characteristics. (13)			
5	Draw and explain in detail the static and	BTL 1	Remember	CO2
	dynamic characteristics of stepper motor. (13)			
6	i) Explain the mechanism of static torque	BTL 2	Understand	CO2
	production in a variable reluctance stepping			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	ii) Describe the dynamic characteristics of a			
7	variable reluctance stepper motor. (6)	BTL 6	Cuanto	CO2
/	i) Explain with a neat diagram the multi-stack construction of stepper motors. (7)	DILO	Create	CO2
	ii) A stepper motor has a resolution of 180			
	steps per revolution. Find the pulse rate			
	required in order to obtain a rotor speed of			
	2400 rpm. (6)			
8	Explain in detail, linear analysis of stepper	BTL 2	Understand	CO2
	motor. (13)			
9	Draw and explain drive circuits and their	BTL 1	Remember	CO2
	performance characteristics for stepper motor.			
	(13)			
10	A stepper motor driven by a bipolar drive	BTL 4	Analyze	CO2
	circuit has following parameters: Winding			
	inductance = 30mH, rated current = 3A, DC supply = 45V, total resistance in each phase =			
	15ohm. When the transistors are turned off,			
	determine the time taken by the phase current			
	to delay to zero and the proportion of the stored			
	inductive energy returned to the supply. (13)			
11	(i) Explain briefly closed loop control of	BTL 2	Understand	CO2
	stepper motor. (7)			
	(ii) A single stack 3 phase variable reluctance			
	motor has a step angle of 15°. Find the number			
	of stator and rotor poles. (6)			
12	Explain in detail the concept of lead angle in	BTL 1	Remember	CO2
12	stepper motor. (13)	DTI 2	A 1	002
13	(i) What is the motor torque T _m required to	BTL 3	Apply	CO2
	accelerate an initial load of $2*10^{-4}$ kgm ² from f_1 =500 Hz to f_2 =1500 Hz during 50ms. The			
	I_1 -300 Hz to I_2 -1300 Hz during 30ms. The frictional torque T_f is 0.03Nm and step angle is			
	1.18°. (7)			
	(ii) Write a detailed technical note on the			
	bipolar drives for stepper motors. (6)			
14	Enumerate the various applications of stepper	BTL 3	Apply	CO2
	-Tr		1 Г -√	

	motor. (13)			
15	A stepper motor has a step angle of 1.8° and it is driven at 4000 pps. Determine (a) Resolution (b) Motor speed (c) Number of pulses required to rotate the shaft through 54°.	BTL 3	Apply	CO2
16	Summarize about the suppressor circuits for stepper motor.	BTL 2	Understand	CO2
17	Explain dual voltage driver circuit for two phase on drive of a four phase stepper motor and explain the nature of current build up in dual voltage drive.	BTL 5	Evaluate	CO2
	Part-C			
1	Develop single and multi-stack configured stepping motors for mechanical clock application. (15)	BTL 6	Create	CO2
2	A Variable Reluctance stepper motor has a step angle of 3°, Determine the following: i) Resolution. ii) Number of steps per shaft to make 10 revolutions iii)Shaft speed if stepping frequency is 2400pulse/sec. (15)	BTL 5	Evaluate	CO2
3	Recommend suitable types of stepper motor for textile mill and explain the reason with the mechanical characteristics. (15)	BTL 5	Evaluate	CO2
4	Design a suitable driver circuit which employs unipolar and bipolar wiring arrangements of stepping motor and explain. (15)	BTL6	Create	CO2
5	(i) A variable reluctance stepper motor has 8 poles and they have five teeth in each pole. If the rotor has 50 teeth, calculate the step angle and also resolution. (8) (ii) A stepper motor has a step angle of 2.5, Find (a) Resolution (b) Number of steps required for the shaft to make 25 revolutions (c) Shaft speed if stepping frequency is 3600 pulses/sec. (7)	BTL 5	Evaluate	CO2

UNIT III - SWITCHED RELUCTANCE MOTORS (SRM)

Constructional features – Principle of operation - Torque prediction – Characteristics Steady state performance prediction – Analytical Method – Power controllers – Control of SRM drive - Sensor less operation of SRM – Applications.

1	What is switched reluctance motor?	BTL 1	Remember	
2	Explain the principle of operation of switched	BTL 2	Understand	CO3
	reluctance motor.			
3	List out the advantages of switched reluctance	BTL 1	Remember	CO3
	motors.			
4	Illustrate the different modes of operation of	BTL 3	Apply	CO3
	switched reluctance motor.			
5	Differentiate switched reluctance motor	BTL 5	Evaluate	CO3
	and variable reluctance stepper motor.			
6	Give basic features or characteristics of	BTL 2	Understand	CO3
	Switched Reluctance motor			
7	What are the disadvantages of a switched	BTL 2	Understand	CO3

	reluctance motor?			
8	Give the expression for torque of a switched	BTL 6	Create	CO3
	reluctance motor	DILU	Create	003
9	Write the relations between the speed and	BTL 1	Remember	CO3
	fundamental switching frequency	DILI	Remember	003
10	Analyze the step angle of a three phase	BTL 4	Analyze	CO3
10	switched reluctance motor having 12stator	DIL.	111101720	005
	poles and 8 rotor poles. What is the			
	commutation frequency in each phase of			
	6000rpm?			
11	Write the relations between the speed and	BTL 5	Evaluate	CO3
	fundamental switching frequency			
12	List out the basic requirements of power	BTL 2	Understand	CO3
	semiconductor switching circuits employed for			
	switched reluctance motor.			
13	List out the different power controllers used for	BTL 4	Analyze	CO3
	the control of switched reluctance motor.			
14	What are the merits of classic converter or	BTL 2	Understand	CO3
	power controller in SRM?			
15	What are the merits of Dump C – Converter?	BTL 1	Remember	CO3
16	Illustrate why SR machines popular in	BTL 3	Apply	CO3
	adjustable speed drives.	D		~~^
17	List out the advantages and disadvantages of	BTL 1	Remember	CO3
	the converter circuit with two power			
	semiconductor devices and two diodes per			
1.0	phase?	DTI 4	A 1	CO2
18	Examine the significance of closed loop control in switched reluctance motor?	BTL 4	Analyze	CO3
19		BTL 3	A noly	CO3
20	Classify types of current control techniques? List the advantages of sensorless operation of	BTL 4	Apply Analyze	CO3
20	switched reluctance motor.	DIL 4	Allatyze	COS
21	Illustrate the applications of switched	BTL 3	Apply	CO3
21	reluctance motor.	DILJ	Арріу	003
22	Why rotor position sensor is essential for the	BTL 1	Remember	CO3
	operation of SRM?			203
23	Develop the simple block diagram of SRM.	BTL 6	Create	CO3
24	Evaluate the demerits of Bifilar wires.	BTL 5	Evaluate	CO3
	Part-B		_ : 5125300	
1.	Draw the cross sectional view of switched	BTL 1	Remember	CO3
	reluctance motor and explain the principle of			
	operation. State the advantages of switched			
	reluctance motor. (13)			
2.	(i) Explain the torque-speed characteristics of	BTL 4	Analyze	CO3
	switched reluctance motors. (7)		_	
	(ii) Derive the expressions for voltage and			
	torque of SR machines. (6)			
3	i) What is the relationship between torque and	BTL 1	Remember	CO3
	current in synchronous reluctance motor?			
	Derive the equation of torque developed in a			
	switched reluctance motor. (7)			
	ii) A switched reluctance motor with 8 stator			

poles and frotor poles has a stator polar arc of 30° and rotor pole arc of 33°. The aligned inductance is 1.5mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. Neglect fringing. 4 Explain the steady state performance analysis of switched reluctance motor. (13) 5 i) Draw and explain the characteristics of switched reluctance motor in detail. (7) ii) Derive the expression of static torque in SRM. (6) 6 A SRM with 6 stator poles and 4 rotor poles has a stator pole arc of 30° and rotor pole arc is 32°. The aligned inductance is 10.7mH and unaligned inductance is 10.7mH and unaligned inductance is 15.5mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. (13) 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. (13) 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. (13) 9 Draw as schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of Switched reluctance motor. (13) 11 (i) Describe the losed loop control analysis of switched reluctance motor. (13) 12 Describe the elosed loop control analysis of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3 disadvantages of switched reluctance motor. (7) (ii) Sensorless operation. (6)			T		
inductance is 1.5mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. Neglect fringing. 4 Explain the steady state performance analysis of switched reluctance motor. (13) 5 i) Draw and explain the characteristics of switched reluctance motor in detail. (7) ii) Derive the expression of static torque in SRM. (6) 6 A SRM with 6 stator poles and 4 rotor poles has a stator pole are of 30° and rotor pole are is 32°. The aligned inductance is 10.7mH and unaligned inductance is 1.5mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. (13) 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. (13) 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. (13) 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each topology. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of SRM. (13) 12 Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the following: (3) (i) Role of microprocessors in control of switched reluctance motor. (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3		poles and 6rotor poles has a stator polar arc of			
inductance is 1.5mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. Neglect fringing. (6) 4 Explain the steady state performance analysis of switched reluctance motor. (13) 5 i) Draw and explain the characteristics of switched reluctance motor in detail. (7) ii) Derive the expression of static torque in SRM. (6) 6 A SRM with 6 stator poles and 4 rotor poles has a stator pole are of 30° and rotor pole are is 32°. The aligned inductance is 10.7mH and unaligned inductance is 1.5mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. (13) 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. (13) 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. (13) 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the following: (3) RFL 2 Understand CO3 switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3		30° and rotor pole arc of 33°. The aligned			
neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. Neglect fringing. 4 Explain the steady state performance analysis of switched reluctance motor. (13) 5 i) Draw and explain the characteristics of switched reluctance motor in detail. (7) ii) Derive the expression of static torque in SRM. (6) 6 A SRM with 6 stator poles and 4 rotor poles has a stator pole are of 30° and rotor pole are is 32°. The aligned inductance is 1.5mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. (13) 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. (13) 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the following: (3) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3		inductance is 10.5mH and unaligned			
when the rotor is 30° before the aligned position and phase current is 6A. Neglect fringing. 4 Explain the steady state performance analysis of switched reluctance motor. (13) 5 i) Draw and explain the characteristics of switched reluctance motor in detail. (7) ii) Derive the expression of static torque in SRM. (6) 6 A SRM with 6 stator poles and 4 rotor poles has a stator pole are of 30° and rotor pole are is 32°. The aligned inductance is 10.7mH and unaligned inductance is 10.7mH and unaligned inductance is 10.5mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. (13) 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. (13) 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. (13) 9 Draw as schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the following: (3) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3		inductance is 1.5mH. Saturation can be			
when the rotor is 30° before the aligned position and phase current is 6A. Neglect fringing. 4 Explain the steady state performance analysis of switched reluctance motor. (13) 5 i) Draw and explain the characteristics of switched reluctance motor in detail. (7) ii) Derive the expression of static torque in SRM. (6) 6 A SRM with 6 stator poles and 4 rotor poles has a stator pole are of 30° and rotor pole are is 32°. The aligned inductance is 10.7mH and unaligned inductance is 10.7mH and unaligned inductance is 10.5mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. (13) 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. (13) 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. (13) 9 Draw as schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the following: (3) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3		neglected. Calculate the instantaneous torque			
position and phase current is 6A. Neglect fringing. (6) 4 Explain the steady state performance analysis of switched reluctance motor. (13) 5 i) Draw and explain the characteristics of switched reluctance motor in detail. (7) ii) Derive the expression of static torque in SRM. (6) 6 A SRM with 6 stator poles and 4 rotor poles has a stator pole arc of 30° and rotor pole arc is 32°. The aligned inductance is 10.7mH and unaligned inductance is 1.5mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. (13) 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. (13) 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. (13) 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3		1			
fringing. Explain the steady state performance analysis of switched reluctance motor. (13) i) Draw and explain the characteristics of switched reluctance motor in detail. (7) ii) Derive the expression of static torque in SRM. (6) A SRM with 6 stator poles and 4 rotor poles has a stator pole arc of 30° and rotor pole arc is 32°. The aligned inductance is 10.7mH and unaligned inductance is 1.5mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. (13) Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. (13) B Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. (13) Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) To Describe with a neat circuit any two configuration of power converters used for the control of Switched reluctance motor. (10) (ii) Describe the dosed loop control analysis of switched reluctance motor. (10) (iii) State the advantages of sensorless operation. (3) Describe the following: (1) Role of microprocessors in control of switched reluctance motor. (10) (ii) Sensorless operation. (6) BTL 2 Understand CO3					
4 Explain the steady state performance analysis of switched reluctance motor. (13) 5 i) Draw and explain the characteristics of switched reluctance motor in detail. (7) ii) Derive the expression of static torque in SRM. (6) 6 A SRM with 6 stator poles and 4 rotor poles has a stator pole arc of 30° and rotor pole arc is 32°. The aligned inductance is 10.7mH and unaligned inductance is 1.5mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. (13) 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. (13) 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. (13) 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of SRM. (13) 12 Describe the closed loop control analysis of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3		1 2			
analysis of switched reluctance motor. (13) 5 i) Draw and explain the characteristics of switched reluctance motor in detail. (7) ii) Derive the expression of static torque in SRM. (6) 6 A SRM with 6 stator poles and 4 rotor poles has a stator pole arc of 30° and rotor pole arc is 32°. The aligned inductance is 1.5mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. (13) 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. (13) 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. (13) 9 Draw as schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (10) (iii) State the advantages of sensorless operation. (5) (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3	4		DTI 5	Evaluata	CO2
5 i) Draw and explain the characteristics of switched reluctance motor in detail. (7) ii) Derive the expression of static torque in SRM. (6) 6 A SRM with 6 stator poles and 4 rotor poles has a stator pole are of 30° and rotor pole are is 32°. The aligned inductance is 10.7mH and unaligned inductance is 15.7mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. (13) 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. (13) 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. (13) 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (10) (i) Role of microprocessors in control of switched reluctance motor. (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3	4		DILJ	Evaluate	COS
switched reluctance motor in detail. (7) ii) Derive the expression of static torque in SRM. (6) 6 A SRM with 6 stator poles and 4 rotor poles has a stator pole are of 30° and rotor pole are is 32°. The aligned inductance is 10.7mH and unaligned inductance is 1.5mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. (13) 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. (13) 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. (13) 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3		·	DET A		G 0 2
ii) Derive the expression of static torque in SRM. 6 A SRM with 6 stator poles and 4 rotor poles has a stator pole are of 30° and rotor pole are is 32°. The aligned inductance is 10.7mH and unaligned inductance is 15.5mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. 10 Describe the various converter topologies BTL 4 Analyze CO3 before a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of Switched reluctance motor. (10) (ii) State the advantages of sensorless operation. 12 Describe the closed loop control analysis of switched reluctance motor. (10) (iii) State the alvantages of sensorless operation. 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor. (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3	5	'	BIL 3	Apply	CO3
SRM. (6) A SRM with 6 stator poles and 4 rotor poles has a stator pole are of 30° and rotor pole are is 32°. The aligned inductance is 10.7mH and unaligned inductance is 15.7mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. (13) 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. (13) 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. (13) 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3					
A SRM with 6 stator poles and 4 rotor poles has a stator pole are of 30° and rotor pole are is 32°. The aligned inductance is 10.7mH and unaligned inductance is 1.5mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of Switched reluctance motor. (10) (ii) State the advantages of sensorless operation. 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor. (7) (ii) Sensorless operation. (6)					
has a stator pole arc of 30° and rotor pole arc is 32°. The aligned inductance is 10.7mH and unaligned inductance is 15.7mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. 12 Describe the closed loop control analysis of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (23) 14 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6)		SRM. (6)			
has a stator pole arc of 30° and rotor pole arc is 32°. The aligned inductance is 10.7mH and unaligned inductance is 15.7mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. 12 Describe the closed loop control analysis of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (23) 14 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6)	6	A SRM with 6 stator poles and 4 rotor poles	BTL 3	Apply	CO3
32°. The aligned inductance is 10.7mH and unaligned inductance is 1.5mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor. (7) (ii) Sensorless operation. (6)				11.5	
unaligned inductance is 1.5mH. Saturation can be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. (13) 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. (13) 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (20) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6)					
be neglected. Calculate the instantaneous torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. (13) 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. (13) 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (1) (1) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (2) 12 Describe the closed loop control analysis of switched reluctance motor. (10) (i) Role of microprocessors in control of switched reluctance motor (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3					
torque when the rotor is 30° before the aligned position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3					
position and phase current is 6A. What is the maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6)					
maximum energy conversion for one stroke, if the current is limited to 7A? Determine the average torque corresponding to this energy conversion. 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6)					
the current is limited to 7A? Determine the average torque corresponding to this energy conversion. 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of Switched reluctance motor. (10) (ii) State the advantages of sensorless operation. 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3		1 *			
average torque corresponding to this energy conversion. 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. 12 Describe the closed loop control analysis of switched reluctance motor. (10) (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3		,			
conversion. (13) 7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. (13) 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. (13) 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3					
7 Prepare the necessity of power electronic circuit in SR motor. Explain its different types of converter circuits. (13) 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. (13) 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3					
circuit in SR motor. Explain its different types of converter circuits. 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. 12 Describe the closed loop control analysis of switched reluctance motor. (13) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3		()			
of converter circuits. (13) 8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. (13) 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3	7	Prepare the necessity of power electronic	BTL 6	Create	CO3
8 Draw and explain four converter topologies for a three phase SRM. Write the merits and demerits of each topology. (13) 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3		circuit in SR motor. Explain its different types			
a three phase SRM. Write the merits and demerits of each topology. 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3		of converter circuits. (13)			
a three phase SRM. Write the merits and demerits of each topology. 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3	8	Draw and explain four converter topologies for	BTL 1	Remember	CO3
demerits of each topology. (13) 9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3					
9 Draw a schematic diagram and explain the operation of a "C"-dump converter used for the control of SRM. 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3					
operation of a "C"-dump converter used for the control of SRM. 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (ii) Sensorless operation. (i) Discuss the main advantages and BTL 4 Analyze CO3	Q		RTI 4	Analyze	CO3
control of SRM. (13) 10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3			DILT	Anaryze	CO3
10 Describe the various converter topologies for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3					
for a 3 phase switched reluctance motor with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3	1.0	` /	DEL A	TT 1 · 1	002
with merits and demerits of each. Explain any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3	10		BIL 2	Understand	CO3
any two of them. (13) 11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3					
11 (i) Describe with a neat circuit any two configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (2) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (ii) Sensorless operation. (iii) Discuss the main advantages and BTL 4 Analyze CO3		<u> </u>			
configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3					
configuration of power converters used for the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3	11	(i) Describe with a neat circuit any two	BTL 2	Understand	CO3
the control of switched reluctance motor. (10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3					
(10) (ii) State the advantages of sensorless operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (ii) Sensorless operation. (5) (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3					
(ii) State the advantages of sensorless operation. 12 Describe the closed loop control analysis of switched reluctance motor. 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (ii) Sensorless operation. (iii) Discuss the main advantages and BTL 4 Analyze CO3					
operation. (3) 12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3					
12 Describe the closed loop control analysis of switched reluctance motor. (13) 13 Describe the following: BTL 2 Understand CO3 (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3		1 ` /			
switched reluctance motor. (13) 13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3	12	1	RTI 1	Remember	CO3
13 Describe the following: (i) Role of microprocessors in control of switched reluctance motor (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3	12	2	DILI	Remembel	003
(i) Role of microprocessors in control of switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3	12	()	DTI 2	I Indonetan 1	CO2
switched reluctance motor (7) (ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3	1.5		BILZ	Understand	CO3
(ii) Sensorless operation. (6) 14 (i) Discuss the main advantages and BTL 4 Analyze CO3		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
14 (i) Discuss the main advantages and BTL 4 Analyze CO3					
		• • • • • • • • • • • • • • • • • • • •			
disadvantages of switched reluctance motor. (7)	14	(i) Discuss the main advantages and	BTL 4	Analyze	CO3
		disadvantages of switched reluctance motor. (7)			

	(ii) Discuss the various applications of			
	switched reluctance motor. (6)			
15	(i) Explain the shaft position sensing of SR	BTL 2	Understand	CO3
	motor. (9)			
	(ii) Enumerate the necessity of converter			
	circuits for switched reluctance motors. (4)			
16	Determine the nonlinear analysis of SRM.	BTL 5	Evaluate	CO3
17	Derive the voltage and torque equation of	BTL 3	Apply	CO3
	SRM.			
	Part-C			
1.	Assess the features of rotary and linear	BTL 5	Evaluate	CO3
	switched reluctance motors and suggest			
	suitable motor for bottling plant. (15)			
2.	Build a suitable microprocessor based	BTL 6	Create	CO3
	controller for switched reluctance motor. (15)			
3.	Summarize the various stages in sensorless	BTL 5	Evaluate	CO3
	control of SRM. (15)			
4.	Plot the mechanical characteristics of SR motor	BTL 6	Create	CO3
	and discuss the type of control strategy used for			
	different regions of the curve. Also, draw the			
	typical phase current waveforms. (15)			
5	Describe in detail about the λ -i curve.	BTL 5	Evaluate	CO3

UNIT IV - PERMANENT MAGNET BRUSHLESS D.C. MOTORS

Fundamentals of Permanent Magnets – Types - Principle of operation - Magnetic circuit analysis - EMF and Torque equations - Power Converter Circuits and their controllers - Characteristics and control - Applications.

	Part-A				
1.	List the permanent magnet materials used in	BTL 1	Remember	CO4	
	PMBLDC motors.			~~.	
2.	Compare conventional DC motor and	BTL 4	Analyze	CO4	
	PMBLDC motor.				
3.	Compare PMBLDC motor with PMSM.	BTL 5	Evaluate	CO4	
4.	Define permeance coefficient.	BTL 1	Remember	CO4	
5.	Write down the torque equation of P.M brush	BTL 1	Remember	CO4	
	less D.C motor?				
6.	Describe the principle of operation of	BTL 2	Understand	CO4	
	PMBLDC motor.				
7.	List out the different classifications of BLPM	BTL 3	Apply	CO4	
	DC motor.		11.7		
8.	Plot the magnetic equivalent circuit of	BTL 6	Create	CO4	
	PMBLDC motor.				
9.	What are the differences between mechanical	BTL 3	Apply	CO4	
	and electronic commutator?		11 7		
10.	Give the torque and emf equation of square	BTL 2	Understand	CO4	
	wave brushless motor.				
11.	Justify the statement: PMBLDC motor	BTL 5	Evaluate	CO4	
	is called electronically commutated motor.				
12.	How the demagnetization occurs in PMBLDC	BTL 4	Analyze	CO4	
12.	motor?		7 11101 7 20		
	motor.				

13.	Summarize the merits of the brushless DC	BTL 2	Understand	CO4
	motor drives.			
14.	List out the power controllers used in permanent magnet brushless DC motor.	BTL 1	Remember	CO4
15.	What are the ways by which demagnetization can be limited in permanent magnet?	BTL 1	Remember	CO4
16.	Name the position sensors that are used for PMBLDC motor.	BTL 1	Remember	CO4
17.	Show how are the directions of rotations reversed in PMBLDC motor?	BTL 2	Understand	CO4
18.	Sketch the ideal phase voltage and current waveform of PMBLDC machine.	BTL 6	Create	CO4
19.	A permanent magnet DC commutator motor has a stalling torque of 2 Nm. The stall current is 5 A.Compute the motor's no-load speed if it is fed with 28 V DC supply.	BTL 3	Apply	CO4
20.	Mention some of the applications of PMBLDC motor.	BTL 5	Evaluate	CO4
21.	List the materials used for making Hall IC Pallet.	BTL 4	Analyze	CO4
22.	Classify types of BLPM motors?	BTL 2	Understand	CO4
23.	Identify the peak recovery current in PMBLDC motor.	BTL 3	Apply	CO4
24.	Define recoil permeability.	BTL 4	Analyze	CO4
	Part-B	I		
1.	(i) Derive an expression for permeance coefficient of PMBLDC motor. (10) (ii) State the advantages of BLPM DC motor over conventional DC motor. (3)	BTL 2	Understand	CO4
2.	Derive the torque equation and torque ratio of permanent magnet brushless DC motor. (13)	BTL 3	Apply	CO4
3.	Explain the construction PMBLDC also compare conventional DC motor and PMBLDC motor. (13)	BTL 1	Remember	CO4
4.	(i) Elucidate in detail about the operation of PMBLDC motor with 180° magnet arcs and 120° square-wave phase currents. (7) (ii) Describe the constructional aspects of mechanical and electronic commutators of PMBLDC motors. (6)	BTL 1	Remember	CO4
5.	Discuss in detail about magnetic circuit analysis of PMBLDC motor. Also draw its characteristics. (13)	BTL 4	Analyze	CO4
6.	Derive the expression for emf and torque of a PMBLDC motor. Draw the relevant characteristics. (13)	BTL 2	Understand	CO4
7.	Explain the operation of electronic commutator in PMBLDC motor with necessary diagrams. Explain the operation of the same. (13)	BTL 4	Analyze	CO4
8.	Write a note on power controllers used for PMBLDC motor and explain the each blocks	BTL 1	Remember	CO4

	associated in it. (13)			
9.	Discuss the hysteresis type current regulation	BTL 2	Understand	CO4
	of PMBLDC motor with neat diagram?			
	(13)			
10.	Discuss the use of Hall sensors for position	BTL 6	Create	CO4
	sensing in PMBLDC motor with necessary			
	block diagram. (13)			
11.	(i) Explain the speed-torque characteristics of	BTL 4	Analyze	CO4
	PMBLDC motor. (7)		,	
	(ii) Differentiate between mechanical and			
	electronic commutators. (6)			
12.	(i) A permanent magnet DC commutator motor	BTL 5	Evaluate	CO4
	has a no-load speed of 6000 rpm when			
	connected to a 120 V supply. The armature			
	resistance is 2. Ω and rotational and iron losses			
	may be neglected. Determine the speed when			
	the supply voltage is 60 V and the torque is 0.5			
	Nm. (7)			
	(ii) Prove that the torque equation in BLDC			
	motor is similar to that of conventional DC			
	motor. (6)			
13.	(i) Explain in detail about various types of	BTL 3	Apply	CO4
	PMBLDC motor with necessary diagrams. (7)			
	(ii) A PMBLDC motor has torque constant of			
	0.12 Nm/A referred to DC supply. Find the			
	motor's no-load speed when connected to 48 V			
	DC supply. Find the stall current and stall			
	torque if armature resistance is 0.15Ω /phase &			
	drop in controller transistor is 2 V. (6)			
14.	What is the operation of the closed loop	BTL 1	Remember	CO4
	control scheme of a PMBLDC motor drive			
	with a suitable schematic diagram.			
	(13)			
15.	Explain the following	BTL 2	Understand	CO4
	(i) B-H loop (7)			
1.0	(ii) Demagnetization Characteristics (6)	DET 5	T 1 .	004
16.	(i) Conclude the features of various Permanent	BTL 5	Evaluate	CO4
	magnets used for electrical machines. (6)			
	(ii) Briefly explain the drive circuits of			
17	BLPMDC motor. (7)	DTI 1	A 1	CO 4
17.	Identify the role of rotor position sensors for	BTL 3	Apply	CO4
	BLPM motors.			
1	Part-C	DTI 5	Evolucto	CO4
1.	Identify appropriate power controllers for	BTL 5	Evaluate	CO4
	PMBLDC motor and explain with neat			
2	diagram. (15)	BTL 6	Crasts	CO4
2.	Develop a power semiconductor base inverter circuit for star connected PMBLDC Motor and	DILO	Create	CO4
	sketch the firing sequence and phase current waveform for any mode. (15)			
3.	Select suitable sensors for position sensing in	BTL 5	Evaluate	CO4
٦.	befeet suitable sensors for position sensing in	DILJ	Lvaiuaic	CO4

	MBLDC motors and explain the operation with			
4.	()	BTL 6	Create	CO4
4.	Prepare the relationship between magnetising	DILO	Create	CO4
	force and flux density by performing the			
	magnetic circuit analysis of a brushless de			
_	motor on open circuit. (15)	DTI 5	Г 1 4	004
5.	Derive the expression for permeance	BTL 5	Evaluate	CO4
	coefficient.	NIOLIGIA	OTODG (DMG	
<u> </u>	UNIT V - PERMANENT MAGNET SYNCHRO			
	ructional features - Principle of operation – EMF ar			
	with practical windings - Phasor diagram - Power of	controllers	– performance	
	teristics - Digital controllers – Applications.	D.T. 4		G0.
1.	Distinguish PM synchronous motor from	BTL 4	Analyze	CO5
	BLPM DC motor.			
2.	List out the merits and demerits of PMSM.	BTL 1	Remember	CO5
3.	Classify the different types of PMSM.	BTL 3	Apply	CO5
4.	Express the torque and EMF equation of	BTL 5	Evaluate	CO5
	PMSM.			
5.	Enumerate the assumptions to be made in	BTL 3	Apply	CO5
	deriving the EMF equation of PMSM.			
6.	Briefly explain about synchronous reactance.	BTL 6	Create	CO5
	Also write the expression for self and			
	synchronous reactance of PMSM.			
7.	Define load angle.	BTL 1	Remember	CO5
8.	State the power controllers for PM synchronous	BTL 2	Understand	CO5
	machines.			
9.	Describe load commutation and mention its	BTL 2	Understand	CO5
	advantages.			
10.	Describe the features of closed loop speed	BTL 2	Understand	CO1
101	control of loaded commuted inverter fed	2122		
	synchronous motor drive.			
11.	Differentiate square wave and sine wave motor.	BTL 1	Remember	CO5
12.	Distinguish between self-control and vector	BTL 2	Understand	CO5
12.	control PMSM.	DILZ	Onderstand	003
13.	What are the assumptions made in derivation of	BTL 4	Analyze	CO5
13.	emf equation for PMSM?	DILT	Anaryze	003
14.	Define synchronous reactance in PMSM.	BTL 1	Remember	CO5
15.	Explain the difference between SYNREL	BTL 4	Analyze	CO5
13.		DIL 4	Allalyze	COS
1.6	motor and PM synchronous motor.	BTL 6	Cuanto	CO5
16.	Prepare the important features of permanent	DILO	Create	COS
17	magnet synchronous motor.	DTI 1	D 1	007
17.	Differentiate between self control and vector	BTL 1	Remember	CO5
1.0	control of PMSM.	DTI 4	TT 1 4 1	005
18.	Summarize the distribution factor for PMSM.	BTL 2	Understand	CO5
19.	Examine the Volt-ampere requirements of	BTL 3	Apply	CO5
2.0	PMSM.	D 1		~
20.	List few applications of PMSM.	BTL 1	Remember	CO5
21.	State the principle of operation of PMSM.	BTL 4	Analyze	CO5
22.	When does a PMSM operate as synchronous	BTL 4	Analyze	CO5
	reluctance motor?			
23.	Identify the uses of position sensors?	BTL 3	Apply	CO5

24.	Identify the types of power controllers for PMSM.	BTL 5	Evaluate	CO5
	Part-B	<u> </u>	1	
1.	Explain the construction and working principle of operation of PMSM. (13)	BTL 1	Remember	CO5
2.	For an ideal sinewave permanent magnet motor derive the torque and EMF equations. (13)	BTL 3	Apply	CO5
3.	Enumerate the design considerations of permanent magnet synchronous motor. (13)	BTL 6	Create	CO5
4.	Describe the construction of phasor diagram of surface magnet sinewave motor. (13)	BTL 3	Apply	CO5
5.	With necessary phasor diagram and circle diagram, describe the torque speed characteristics of PMSM. (13)	BTL 4	Analyze	CO5
6	Derive the expression for power input and torque of a PMSM. Explain how its torque speed characteristics are obtained. (13)	BTL 4	Analyze	CO5
7.	Discuss PMBLDC and PMSM with respect to torque/ampere and KVA of converter/ kW of power to motor for 4 Pole, 3 Phase motor system. (13)	BTL 5	Evaluate	CO5
8.	Analyze and justify, the power output of PMBLDC motor is more than PMSM for the same size. (13)	BTL 4	Analyze	CO5
9.	With necessary diagrams, discuss about various power controllers used for PMSM. (13)	BTL 2	Understand	CO5
10.	(i) Discuss the current control scheme of permanent magnet synchronous motor in detail. (7) (ii) Derive self and mutual inductance of permanent magnet synchronous motor. (6)	BTL 2	Understand	CO5
11.	(i) What is armature reaction? Discuss its effects on PMSM. (3) (ii) Explain the concept of vector control and how it achieved in PMSM. (10)	BTL 1	Remember	CO5
12.	With a neat sketch, explain the microprocessor based speed control of PMSM. (13)	BTL 1	Remember	CO5
13.	(i) Discuss in detail about various rotor configurations of permanent magnet synchronous machines. (6) (ii) With necessary block diagram explain in detail about FOC for PMSM. (7)	BTL 2	Understand	CO5
14.	(i) State the applications of PMSM. (3) (ii) Discuss in detail about Volt-ampere requirements of PMSM. (10)	BTL 1	Remember	CO5
15.	Compare BLPM SQW motor and BLPM SNW motor.	BTL 2	Understand	CO5
16.	Explain Vector control of BLPM SNW motor in detail.	BTL 3	Apply	CO5
17.	Justify the self control operation of PMSM.	BTL 5	Evaluate	CO5

Part-C				
1.	A brush PM sine wave motor has an open circuit voltage of 173V at its corner point speed of 3000rpm. It is supplied from a PWM converter whose maximum voltage is 200V. Neglecting resistance and all other losses, estimate the maximum speed at which maximum current can be supplied to the motor. (15)	BTL 5	Evaluate	CO5
2.	Integrate a suitable microprocessor for the control of permanent magnet synchronous motor. (15)	BTL 6	Create	CO5
3	A 3 φ, 4 pole, brushless PM rotor has 36 stator slots. Each phase winding is made up of three coils per pole with 10 turns per coil. The coil span = 7 slots. If the fundamental component of magnet flux is 1.8mWb. Estimate the open circuit phase emf (Eq) at 3000 rpm. (15)	BTL 5	Evaluate	CO5
4.	Elaborate in detail the field oriented control of permanent magnet synchronous motor. (15)	BTL 6	Create	CO5
5.	Derive an expression for synchronous reactance of PMSM.	BTL 5	Evaluate	CO5

Course Outcomes:

Cos	Course Outcome		
CO1	Ability to acquire the knowledge on construction, operation and control of synchronous		
	reluctance motors.		
CO2	Ability to acquire the knowledge on construction, operation and control of stepper motors.		
CO3	Ability to acquire the knowledge on construction, operation and control of switched reluctance		
003	motors.		
CO4	Ability to acquire the knowledge on construction, operation and control of permanent magnet		
	brushless D.C. motors.		
CO5	Ability to acquire the knowledge on construction and operation of permanent magnet		
	synchronous motors.		