
1

SRM VALLIAMMAI ENGINEERING COLLEGE
(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

LAB MANUAL

Regulation – 2019

1906003 DIGITAL SIGNAL PROCESSING LABORATORY

ACADEMIC YEAR: 2022-2023 (ODD SEM)

III YEAR ECE

 V SEMESTER

 Prepared by

 Ms.K.Arthi, AP

 Mr. R. Dhananjeyan, AP

 Ms.K.Durgadevi, AP

2

SRM VALLIAMMAI ENGINEERING COLLEGE
(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VISION OF THE INSTITUTE

Educate to excel in social transformation

MISSION OF THE INSTITUTE

• To contribute to the development of human resources in the form of professional engineers and

managers of international excellence and competence with high motivation and dynamism, who

besides serving as ideal citizen of our country will contribute substantially to the economic

development and advancement in their chosen areas of specialization.

• To build the institution with international repute in education in several areas at several levels with

specific emphasis to promote higher education and research through strong institute-industry

interaction and consultancy.

VISION OF THE DEPARTMENT

To excel in the field of electronics and communication engineering and to develop highly competent

technocrats with global intellectual qualities.

MISSION OF THE DEPARTMENT

M1: To educate the students with the state of art technologies to compete internationally, able to

produce creative solutions to the society`s needs, conscious to the universal moral values,

adherent to the professional ethical code

M2: To encourage the students for professional and software development career

M3: To equip the students with strong foundations to enable them for continuing education and

research.

3

SRM VALLIAMMAI ENGINEERING COLLEGE
(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

PROGRAM OUTCOMES

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design

system components or processes that meet the specified needs with appropriate consideration for

the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of the

information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities with

an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions

in societal and environmental contexts, and demonstrate the knowledge of, and need for

sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms

of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in

diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering

and management principles and apply these to one’s own work, as a member and leader in a team,

to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOME(PSOs)

PSO1: Ability to apply the acquired knowledge of basic skills, mathematical foundations, principles of

electronics, modeling and design of electronics based systems in solving engineering Problems.

PSO2: Ability to understand and analyze the interdisciplinary problems for developing innovative

sustained solutions with environmental concerns.

PSO3: Ability to update knowledge continuously in the tools like MATLAB, NS2, XILINIX and

technologies like VLSI, Embedded, Wireless Communications to meet the industry requirements.

PSO4: Ability to manage effectively as part of a team with professional behavior and ethics.

4

SYLLABUS

1906003 DIGITAL SIGNAL PROCESSING LABORATORY

OBJECTIVES:

The student should be made:

• To perform basic signal processing operations such as Linear Convolution, Circular Convolution,

Auto Correlation, Cross Correlation and Frequency analysis in MATLAB

• To implement FIR and IIR filters in MATLAB and DSP Processor

• To study the architecture of DSP processor

• To design a DSP system to demonstrate the Multi-rate and Adaptive signal processing concepts.

 LIST OF EXPERIMENTS:

MATLAB / EQUIVALENT SOFTWARE PACKAGE

1. Generation of elementary Discrete-Time sequences

2. Linear and Circular convolutions

3. Auto correlation and Cross Correlation

4. Frequency Analysis using DFT

5. Design of FIR filters (LPF/HPF/BPF/BSF) and demonstrates the filtering operation

6. Design of Butterworth and Chebyshev IIR filters (LPF/HPF/BPF/BSF) and demonstrate the

filtering operations.

DSP PROCESSOR BASED IMPLEMENTATION

1. Study of architecture of Digital Signal Processor.

2. Perform MAC operation using various addressing modes.

3. Generation of various signals and random noise.

4. Design and demonstration of FIR Filter for Low pass, High pass, Band pass and Band

Stop Filtering.

5. Design and demonstration of Butter worth and Chebyshev IIR Filters for Low pass, High

Pass, Band pass and Band stop filtering

6. Implement an Up-sampling and Down-sampling operation in DSP Processor

 TOTAL: 60 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

• Carryout basic signal processing operations

• Demonstrate their abilities towards MATLAB based implementation of various DSP systems

• Analyze the architecture of a DSP Processor

• Design and Implement the FIR and IIR Filters in DSP Processor for performing filtering operation

over real-time signals

• Design a DSP system for various applications of DSP

LIST OF EXPERIMENTS

5

CYCLE I

1 Generation of elementary Discrete-Time sequences

2 Linear and Circular Convolutions

3 Auto correlation and Cross Correlation

4 Frequency Analysis using DFT

5 Design of FIR filters (LPF/HPF/BPF/BSF) and demonstrates the filtering operation

6 Design of Butterworth and Chebyshev IIR filters (LPF/HPF/BPF/BSF) and demonstrate the

filtering operations

CYCLE II

7 Study of architecture of Digital Signal Processor.

8 MAC operation using various addressing modes.

9 Generation of various signals and random noise.

10 Design and demonstration of FIR Filter for Low pass, High pass, Band pass and Band stop

Filtering.

11 Design and demonstration of Butter worth and Chebyshev IIR Filters for Low pass, High pass,

Band pass and Band stop filtering.

12 Implement an Up-sampling and Down-sampling operation in DSP Processor.

TOPIC BEYOND SYLLABUS

13. Study of Image processing tool box.

14. Generation of Dual Tone Multi Frequency Signals (DTMF) using DFT.

6

Ex No: Date:

1. Generation of sequences (Functional &Random) & correlation

Aim:

 To write a MATLAB program to generate unit step, unit impulse, unit ramp, exponential, sine

waveform, cosine waveform, random signal and correlation.

Prerequisite Lab Questions:

1. Define Continuous Time and Discrete Time Signal?

2. How to represent Unit step, impulse and ramp function?

3. Compare stem & Plot functions.

4. Define Energy & Power signals.

5. Give an example for real time signals.

Description:

 Input : Enter the sequence length for the generation of signals.

 (a)The unit sample sequence (Unit Impulse) is

 δ (n) = 1 for n = 0

 = 0 for n ≠ 0

 (b)The unit step sequence is

u (n) = 1 for n ≥ 0

 = 0 for n < 0

 (c) The unit ramp sequence is denoted as ur (n) is

ur (n) = n for n ≥ 0

 = 0 for n < 0

 (d)The exponential signal is a sequence of the form

 x(n) = en for all ‘n’

 (e)Sine signal x(t) = sinωt , for all t values.

 (f) Sine sequensce x(n) = sinωn , for all n values.

 (g)Cosine signal x(t) = cosωt , for all t values.

 (h)Cosine signal x(t) = cosωn , for all n values.

Output: Plot of all the above mentioned signals.

Algorithm:

1. Start the program.

2. Generate unit step, unit impulse, unit ramp, exponential, sine waveform, cosine waveform,

random signal and correlation.

3. Execute the program.

4. Plot the output for each sequence.

5. Stop the program.

7

Program:

%Program for Unit Impulse Signal

clc;

clear all;

t=-3:1:3;

y=[zeros(1,3),ones(1,1),zeros(1,3)];

figure(1);

subplot(2,2,1);

stem(t,y);

ylabel('amplitude --->');

xlabel('t --->');

title('Unit impulse signal');

%Program for Unit Step Signal

t=0:5;

y=[ones(1,6)];

subplot(2,2,2);

stem(t,y);

ylabel('amplitude --->');

xlabel('t --->');

title('Unit Step Signal');

%Program for Ramp Signal

t=0:5;

y=t;

subplot(2,2,3);

stem(t,y);

ylabel('amplitude --->');

xlabel('t --->');

title('Ramp Signal');

%Program for Exponential Signal

t=0:0.1:5;

y=exp(t);

subplot(2,2,4);

stem(t,y);

ylabel('amplitude --->');

xlabel('t --->');

title('Exponential Signal');

figure(2);

%Program for Sine waveform

t=-pi:0.01:pi;

y=sin(t);

subplot(2,2,1);

plot(t,y);

ylabel('amplitude --->');

xlabel('t --->');

title('Sine waveform');

8

%Program for Cosine waveform

t=-pi:0.01:pi;

y=cos(t);

subplot(2,2,2);

plot(t,y);

ylabel('amplitude --->');

xlabel('t --->');

title('Cosine waveform');

%Program for Discrete Sine waveform

t=-pi:0.1:pi;

y=sin(t);

subplot(2,2,3);

stem(t,y);

ylabel('amplitude --->');

xlabel('t --->');

title('Discrete Sine waveform');

%Program for Discrete Cosine waveform

t=-pi:0.1:pi;

y=cos(t);

subplot(2,2,4);

stem(t,y);

ylabel('amplitude --->');

xlabel('t --->');

title('Discrete Cosine waveform');

9

Model Graph:

-4 -2 0 2 4
0

0.5

1

a
m

p
lit

u
d
e
 -

--
>

t --->

Unit impulse signal

0 2 4 6
0

0.5

1

a
m

p
lit

u
d
e
 -

--
>

t --->

Unit Step Signal

0 2 4 6
0

2

4

6

a
m

p
lit

u
d
e
 -

--
>

t --->

Ramp Signal

0 2 4 6
0

50

100

150

a
m

p
lit

u
d
e
 -

--
>

t --->

Exponential Signal

-4 -2 0 2 4
-1

-0.5

0

0.5

1

a
m

p
lit

u
d
e
 -

--
>

t --->

Sine waveform

-4 -2 0 2 4
-1

-0.5

0

0.5

1

a
m

p
lit

u
d
e
 -

--
>

t --->

Cosine waveform

-4 -2 0 2 4
-1

-0.5

0

0.5

1

a
m

p
lit

u
d
e
 -

--
>

t --->

Discrete Sine waveform

-4 -2 0 2 4
-1

-0.5

0

0.5

1

a
m

p
lit

u
d
e
 -

--
>

t --->

Discrete Cosine waveform

10

%Program for Random Signal

t = rand(1,10);

subplot(2,1,1);

plot(t);

ylabel('amplitude --->');

xlabel('t --->');

title('Random Signal');

disp('t=');

disp(t);

a=2;

b=3;

t1 = a + (b-a).*rand(100,1);

subplot(2,1,2);

plot(t1)

ylabel('amplitude --->');

xlabel('t --->');

title('Random Signal');

disp('t1=');

disp(t1);

1 2 3 4 5 6 7 8 9 10
0

0.5

1

a
m

p
lit

u
d
e
 -

--
>

t --->

Random Signal

0 10 20 30 40 50 60 70 80 90 100
2

2.5

3

a
m

p
lit

u
d
e
 -

--
>

t --->

Random Signal

11

% Program for computing cross-correlation of the sequences x[1 2 3 4] and h[4 3 2 1]

clc;

clear all;

close all;

x=input('enter the 1st sequence');

h=input('enter the 2nd sequence');

y= xcorr(x,h);

subplot(3,1,1);

stem(x);

ylabel('Amplitude --.');

xlabel('(a) n --.');

title('input sequence');

subplot(3,1,2);

stem(h);

ylabel('Amplitude --.');

xlabel('(b) n --.');

title('impulse sequence');

subplot(3,1,3);

stem(y);

ylabel('Amplitude --.');

xlabel('(c) n --.');

title('Cross correlated sequence');

disp('The resultant signal is y=');

disp(y)

Output:

enter the 1st sequence[1 2 3 4]

enter the 2nd sequence[4 3 2 1]

The resultant signal is y=

 1.0000 4.0000 10.0000 20.0000 25.0000 24.0000 16.0000

12

Model Graph:

1 1.5 2 2.5 3 3.5 4
0

2

4
A

m
p
lit

u
d
e
 -

-.

(a) n --.

input sequence

1 1.5 2 2.5 3 3.5 4
0

2

4

A
m

p
lit

u
d
e
 -

-.

(b) n --.

impulse sequence

1 2 3 4 5 6 7
0

20

40

A
m

p
lit

u
d
e
 -

-.

(c) n --.

Cross correlated sequence

%Program for computing autocorrelation function x[1 2 3 4]

x=input('enter the sequence');

y=xcorr(x,x);

subplot(2,1,1);

stem(x);

ylabel('Amplitude --.');

xlabel('(a) n --.');

title('original signal');

subplot(2,1,2);

stem(y);

ylabel('Amplitude --.');

xlabel('(a) n --.');

title ('Auto correlated sequence');

disp('The resultant signal is y=');

disp(y)

Output:

enter the sequence[1 2 3 4]

The resultant signal is y=

 4.0000 11.0000 20.0000 30.0000 20.0000 11.0000 4.0000

13

Model Graph

1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

A
m

p
lit

u
d
e
 -

-.

(a) n --.

original signal

1 2 3 4 5 6 7
0

10

20

30

A
m

p
lit

u
d
e
 -

-.

(a) n --.

Auto correlated sequence

Postlab Questions:

1. Modify Program (b) to generate a delayed unit step sequence u[n] with an advance of “n”

samples. Run the modified program and display the sequence generated.

2. What is the subplot command used to plot 4 figures in 2 rows and 2 columns?

3. How can you compute the average power of the generated sinusoidal sequence?

4. Write the syntax to determine auto correlation of the given signal x[n].

5. Give the examples for 1-D, 2-D & 3-D signals.

Result:

 Thus a program to generate sequence for unit step, unit impulse, unit ramp, exponential,

sine, cosine and correlation signal using MATLAB was written and executed and the

corresponding simulation output is plotted.

14

Ex No: Date:

2a.LINEAR CONVOLUTION OF TWO SEQUENCES

Aim:

 To write a program to find out the linear convolution of two sequence using Matlab.

Prerequisite Lab Questions:

1. Define Convolution.

2. What is zero padding ?

3. List the properties of linear convolution.

4. What is the MATLAB function used to perform linear & circular convolution?

5. How will you determine the maximum length of the convolution of the sequences?

Description :

Input : Give the input x(n) and h(n) in matrix form.

Output : y(n), using the formula







k

knhkxny)()()(

Algorithm:

1. Start the program.

2. Get the two input sequence x(n) and h(n).

3. Flip the h vector to the right or left direction.

4. Calculate the length of the input and output sequence.

5. Append zeros to the input to get the same length as output.

6. Sum the product of x(n) and shifted sequence of h(n-k).

7. Execute the program, display the result and verify theoretically.

8. Plot the graph for the input and output sequence.

9. Stop the pogram.

Program:

% Program for Linear Convolution

clc;

clear all;

close all;

%x=[1 1 1 1];

%h=[4 5 6 7];

x=input('enter the value x=');

h=input('enter the value h=');

subplot(3,1,1);

stem(x);

title('Input x(n)');

ylabel('x(n) --->');

xlabel('t --->');

subplot(3,1,2);

stem(h);

15

title('Input h(n)');

ylabel('h(n) --->');

xlabel('t --->');

h1=fliplr(h);

n1=length(x);

n2=length(h);

n=n1+n2-1;

x=[zeros(1,n2-1),x];

h1=[h1,zeros(1,n1-1)];

for i=1:n

 new=[zeros(1,i-1),h1(1:n-i+1)];

out(i)=x*new';

end

disp('output=');

disp(out);

subplot(3,1,3);

t=0:1:n-1;

stem(t,out);

title('Output y(n)');

ylabel('y(n) --->');

xlabel('t --->');

MODEL GRAPH

1 1.5 2 2.5 3 3.5 4
0

0.5

1
Input x(n)

x(
n)

 -
--

>

t --->

1 1.5 2 2.5 3 3.5 4
0

5

10
Input h(n)

h(
n)

 -
--

>

t --->

0 1 2 3 4 5 6 7
0

10

20

Output y(n)

y(
n)

 -
--

>

t --->

THEORETICAL CALCULATION

Enter the value x=[1 1 1 1]

Enter the value h=[4 5 6 7]

Output= 4 9 15 22 18 13 7

16

EX NO: 2bCIRCULAR CONVOLUTION

Aim:

 To write a program to find out the circular convolution of two sequences using MATLAB.

Description:

Input : Give the input x(n) and h(n) in matrix form.

Output : y(n), using the formula

)()()(nhnxny 







1

0

)()()(
N

k

knhkxny

Algorithm:

1. Start the program.

2. Get the two input sequence x(n) and h(n) and compute the length of the sequence.

3. Append zeros to x(n) or h(n) to make both sequence of same length.

4. Rotate the sequence h(-k), ‘n’ times. If ‘n’ is positive shift the sequence in anticlockwise

direction else in the clockwise direction.

5. Determine the product of sequence x(n) and shifted h(n) sequence and sum it.

6. Execute the program, display the result and verify it theoretically.

7. Plot the output graph for each sequence.

8. Stop the process.

Program:

% Program for Circular Convolution

clc;

clear all;

close all;

%g=[1,2,3,4];

%h=[2,4,6];

x=input('enter the sequence');

h=input('enter the sequence');

N1=length(x);

N2=length(h);

subplot(3,1,1);

n=0:1:N1-1;

stem(n,x);

title('x(n)');

ylabel('amplitude --->');

xlabel('time --->');

subplot(3,1,2);

n=0:1:N2-1;

stem(n,h);

title('h(n)');

ylabel('amplitude --->');

xlabel('time --->');

17

N=max(N1,N2);

if(N1<=N);

 x1=[x,zeros(1,N-N1)];

end

if(N2<=N);

h1=[h,zeros(1,N-N2)];

end

for n=1:N

 y(n)=0;

for i=1:N

 j=n-i+1;

if(j<=0)

 j=N+j;

end

 y(n)=y(n)+x1(i)*h1(j);

end

end

disp('y=');

disp(y);

subplot(3,1,3);

n=0:1:N-1;

stem(n,y);

title('output y(n)');

ylabel('amplitude --->');

xlabel('time --->');

MODEL GRAPH

0 0.5 1 1.5 2 2.5 3
0

2

4
g(n)

a
m

p
lit

u
d
e
 -

--
>

time --->

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10
h(n)

a
m

p
lit

u
d
e
 -

--
>

time --->

0 0.5 1 1.5 2 2.5 3
0

20

40
output y(n)

a
m

p
lit

u
d
e
 -

--
>

time --->

18

THEORITICAL CALCULATION

Using graphical or Matrix method

)()()(nhnxny 







1

0

)()()(
N

k

knhkxny

Enter the sequence g=[1,2,3,4]

Enter the sequence h=[2,4,6]

Output Sequence is = 36 32 20 32

Matrix Method:

x(0) x(N-1) x(n-2) ….. x(1) h(0) y(0)

x(1) x(0) x(N-1)… x(2) h(1) y(1)

x(2) x(1) x(0)… x(N-1) h(2) y(2)

. . .

. . = . . .

 .

x(N-1) x(N-2) x(N-3).. x(0) h(N-1) y(N-1)

Postlab Questions :

1. What is the difference between Linear convolution & circular convolution?

2. State convolution property of a signal.

3. What are sectioned convolutions & what is the need of it?

4. Write the applications of convolution.

5. What is the relation between convolution in time domain and frequency domain ?

Result:

 Thus a program to find out the linear and circular convolution of two sequences using Matlab was

written and executed.

19

Ex No: Date :

3(a). SPECTRUM ANALYSIS USING DFT

Aim:

 To analyze the amplitude and phase response of the DFT and IDFT signalusing MATLAB.

Prerequisite Lab Questions:

1. Write the analysis and synthesis equation for DFT?

2. What do you mean by the property of shifting of DFT?

3. Find the value of twiddle factor for N=8, K=2 .

4. How many multiplications and additions are required to compute N point DFT ?

5. What is the relationship between DFT and Z-transform?

Algorithm:

1. Start the program.

2. Get the two input sequence x (n) and type of the DFT.

3. Compute the Discrete Fourier Transform (DFT) of the given sequence.

4. Find out the magnitude and phase response of the given sequence.

5. Execute the program, display the result and verify it.

6. Plot the output graph for magnitude and phase.

7. Compute the Inverse Discrete Fourier Transform (IDFT) of the given sequences.

8. Display the results verify it and plot the result.

9. Stop the process.

Program:

% Program for Discrete Fourier Transform

clc;

clear all;

close all;

%x=[1 2 3 4 5 6 7 8];

%N=[8];

x=input('enter the input x=');

N=input('enter the order of dft N=');

k=0:1:N-1;

disp('Input Sequence x=');

disp(x);

 XK=fft(x,N);

disp('XK=');

disp(XK);

R=real(XK);

disp('Real part=');

disp(R);

I=imag(XK);

disp('Imaginary part=');

disp(I);

20

 mag=abs(XK);

disp('Magnitude=');

disp(mag);

 ang=angle(XK);

disp('Angle=');

disp(ang);

xn=ifft(XK,N);

disp('IDFT xn=');

disp(xn);

figure(1);

subplot(2,1,1);

stem(x);

xlabel('time -->');

ylabel('Amplitude -->');

title('Given sequence');

subplot(2,1,2);

stem(R,'r*');

hold on;

stem(I);

legend('Real Part','Imaginary Part');

xlabel('time -->');

ylabel('Amplitude -->');

title('Discrete Fourier Transform')

figure(3);

subplot(2,2,1);

stem(k,mag);

xlabel('time -->');

ylabel('x(k) --->');

title('Magnitude response');

subplot(2,2,2);

stem(k,ang);

xlabel('time -->');

ylabel('ang x(k) --->');

title('Phase response');

subplot(2,2,3);

stem(k,xn);

xlabel('time -->');

ylabel('x(n)');

title('Inverse Discrete Fourier transform');

 %Spectrum analysis

Fs=[10];

xdft = XK(1:N/2+1);

psdx = (1/(Fs*N)) * abs(xdft).^2;

psdx(2:end-1) = 2*psdx(2:end-1);

21

freq = 0:Fs/N:Fs/2;

subplot(2,2,4);

plot(freq,psdx);

grid on;

xlabel('hz -->');

ylabel('db');

title('Spectrum analysis DFT');

disp('Spectrum analysis DFT=');

disp(psdx);

Output:

enter the input x=[1 2 3 4 5 6 7 8]

enter the order of dft N=[8]

Input Sequence x=1 2 3 4 5 6 7 8

XK=

 36.0000 + 0.0000i

 -4.0000 - 9.6569i

 -4.0000 - 4.0000i

 -4.0000 - 1.6569i

 -4.0000 + 0.0000i

 -4.0000 + 1.6569i

 -4.0000 + 4.0000i

 -4.0000 + 9.6569i

Real part= 36 -4 -4 -4 -4 -4 -4 -4

Imaginary part= 0 9.6569 4.0000 1.6569 0 -1.6569 -4.0000 -9.6569

Magnitude= 36.0000 10.4525 5.6569 4.3296 4.0000 4.3296 5.6569 10.4525

Angle= 0 1.9635 2.3562 2.7489 3.1416 -2.7489 -2.3562 -1.9635

IDFT xn= [1 2 3 4 5 6 7 8]

Spectrum analysis DFT= 16.2000 2.7314 0.8000 0.4686 0.2000

22

Model Graph

1 2 3 4 5 6 7 8
0

2

4

6

8

time -->

A
m

p
lit

u
d
e
 -

->

Given sequence

1 2 3 4 5 6 7 8
-20

0

20

40

time -->

A
m

p
lit

u
d
e
 -

->

Discrete Fourier Transform

Real Part

Imaginary Part

0 2 4 6 8
0

10

20

30

40

time -->

x
(k

)
--

->

Magnitude response

0 2 4 6 8
-4

-2

0

2

4

time -->

a
n
g
 x

(k
)

--
->

Phase response

0 2 4 6 8
0

2

4

6

8

time -->

x
(n

)

Inverse Discrete Fourier transform

0 2 4 6
0

5

10

15

20

hz -->

d
b

Spectrum analysis DFT

Postlab Questions :

1. Mention the applications of DFT?

2. What is the drawback in Fourier transform and how it can be avoided?

3. Write the 4-point DFT matrix representation.

4. How many multiplications and additions are required to compute DFT for N=512?

5. Distinguish between DFT and DTFT.

Result:

 Thus a MATLAB program for Spectrum analysis of the DFT and IDFT signal was written,

executed and the graphs were plotted.

23

Ex : No: Date:

3(b).FAST FOURIER TRANSFORM AND INVERSE FAST FOURIER

TRANSFORM (FFT & IFFT)

Aim:

 To write a program to find out the Fast Fourier transform and Inverse Fast Fourier transform of the

sequence using MATLAB and display the magnitude and phase response.

Prerequisite Lab Questions:

1. What do you mean by the term “ bit reversal” as applied to FFT?

2. How many multiplications and additions are required to compute N point DFT using

radix 2 FFT?

3. What are the advantages of FFT algorithm over direct computation of DFT?

4. State and periodicity and symmetry property of FFT?

5. Define in place computation?

Description

Input : Enter input x (n) as a sequence

Output : X (k) can be obtained by using formula,

FFT







1

0

)()(
N

n

kn
N

nxkX 

 IFFT

 





1

0

)(
1

)(
N

k

knkX
N

nx
N

N

knj

ekn
N





2



Algorithm:

1. Start the program.

2. Get the two input sequence x (n) and type of the FFT.

3. Compute the fast Fourier transform (FFT) of the given sequence.

4. Find out the magnitude and phase response of the given sequence.

5. Execute the program, display the result and verify it.

6. Plot the output graph for magnitude and phase.

7. Compute the inverse fast Fourier transform (FFT) of the given sequences.

8. Display the results verify it and plot the result.

9. Stop the process.

24

Program:

% Program for FFT & IFFT

clc;

clear all;

close all;

%x=[2 2 2 2 1 1 1 1];

%N=[8];

x=input('enter the input x=');

N=input('enter the order of fft N=');

k=0:1:N-1;

disp('Input Sequence x=');

disp(x);

XK=fft(x,N);

disp('XK=');

disp(XK);

R=real(XK);

disp('Real part=');

disp(R);

I=imag(XK);

disp('Imaginary part=');

disp(I);

mag=abs(XK);

disp('Mag=');

disp(mag);

ang=angle(XK);

disp('angle=');

disp(ang);

xn=ifft(XK,N);

disp('IFFT xn=');

disp(xn);

figure(1);

stem(R,'r*');

hold on;

stem(I);

legend('Real Part','Imaginary Part');

xlabel('time -->');

ylabel('Amplitude -->');

title('Fast Fourier Transform')

25

figure(2);

subplot(2,2,1);

stem(x);

xlabel('time -->');

ylabel('Amplitude -->');

title('Given sequence');

subplot(2,2,2);

stem(k,mag);

xlabel('time -->');

ylabel('x(k) --->');

title('Magnitude response');

subplot(2,2,3);

stem(k,ang);

xlabel('time -->');

ylabel('ang x(k) --->');

title('Phase response');

subplot(2,2,4);

stem(k,xn);

xlabel('time -->');

ylabel('x(n)');

title('Inverse Fast Fourier transform');

Output:

enter the input x=[2 2 2 2 1 1 1 1]

enter the order of fft N=[8]

Input Sequence x= 2 2 2 2 1 1 1 1

XK=

 12.0000 + 0.0000i

 1.0000 + 2.4142i

 0.0000 + 0.0000i

 1.0000 + 0.4142i

 0.0000 + 0.0000i

 1.0000 - 0.4142i

 0.0000 + 0.0000i

 1.0000 - 2.4142i

Real part= 12 1 0 1 0 1 0 1

Imaginary part= 0 -2.4142 0 -0.4142 0 0.4142 0 2.4142

Mag= 12.0000 2.6131 0 1.0824 0 1.0824 0 2.6131

Angle= 0 -1.1781 0 -0.3927 0 0.3927 0 1.1781

IFFT xn= 2 2 2 2 1 1 1 1

26

Model Graph:

1 2 3 4 5 6 7 8
-4

-2

0

2

4

6

8

10

12

time -->

A
m

p
lit

u
d
e
 -

->

Fast Fourier Transform

Real Part

Imaginary Part

0 2 4 6 8
0

0.5

1

1.5

2

time -->

A
m

p
lit

u
d
e
 -

->

Given sequence

0 2 4 6 8
0

5

10

15

time -->

x
(k

)
--

->

Magnitude response

0 2 4 6 8
-2

-1

0

1

2

time -->

a
n
g
 x

(k
)

--
->

Phase response

0 2 4 6 8
0

0.5

1

1.5

2

time -->

x
(n

)

Inverse Fast Fourier transform

27

28

PostLab Questions:

1. How many multiplications and additions are involved in radix-2 FFT for N=1024 when compared

to DFT?

2. Draw the 2-point DIF-FFT butterfly structure.

3. Compare DIF and DIT FFT algorithm.

4. Why FFT is needed?

5. Mention the applications of FFT algorithm?

Result:

 Thus a program to find out the fast Fourier (FFT) and inverse fast Fourier transform (IFFT) of the

sequence using Matlab was written and executed.

29

Ex:No: Date:

4.FIR FILTER DESIGN

Aim:

 To write a program to design the FIR low pass, high pass, band pass and band stop filters and

obtain thefrequency response of the filter using MATLAB.

Prerequisite Lab Questions:

1. Mention the advantages and disadvantages of FIR filters.

2. What are the classifications of filters?

3. List the techniques for designing FIR filters.

4. What are the features of windowing method?

5. What are the types of windows in FIR filter design?

Description:

 Input: Give the cutoff frequency and order of the filter.

Output: 1) Find the impulse response hd (n) for the given cut-off frequency and

Order of the filter.

2) Decide the window function w (n) and compute the window

Coefficients.

 3) Find the filter coefficients h (n) =hd (n)*w (n).

 4) Plot the frequency response for Low pass, High pass, Band pass and

 Band stop filters

 Algorithm:

1. Start the program.

2. Get the cutoff frequency and order of the filter as input...

3. Find the ideal impulse response of the filter hd (n).

4. Select a window function w (n).

5. Find out the filter coefficients h (n) by multiplying hd (n) and w (n).

6. Compute the frequency response of the filter.

7. Repeat the process for high pass, band pass and band stop filters.

8. Execute the program, display the result and verify it.

9. Plot the output graph for hd(n),w(n),h(n)and frequency response of LPF,HPF,BPF and BSF.

10. Stop the process.

30

Program:

% Ideal LowPass filter computation

% hd = ideal impulse response between 0 to M-1

% wc = cutoff frequency in radians

% M = length of the ideal filter

% Save as ideal_lp

% Function:

function [hd]=ideal_lp(wc,M)

alpha=(M-1)/2;

n=0:1:M-1;

N=n-alpha+eps; % add smallest number to avoid divide by zero

hd=sin(wc*N)./(pi*N);

Program:

%PROGRAM FOR LOW PASS FILTER

clc;

clear all;

close all;

M=7;

wc=1.2;

n=0:1:M-1;

hd=ideal_lp(wc,M);

w=hamming(M);

h=hd.*w';

disp('Filter coefficients for LPF=');

[M1,P]=freqz(h,1,2000);

mag=20*log10(abs(M1));

subplot(2,2,1);

stem(n,hd);

xlabel('n--->');

ylabel('hd(n)--->');

title('Ideal Impulse Response');

disp('hd=');

disp(hd);

subplot(2,2,2);

stem(n,w);

xlabel('n--->');

ylabel('w(n)--->');

title('Hamming Window');

disp('w=');

disp(w);

subplot(2,2,3);

stem(n,h);

xlabel('n--->');

31

ylabel('h(n)--->');

title('Actual Impulse Response');

disp('h=');

disp(h);

subplot(2,2,4);

plot(P/pi, mag);

grid on;

xlabel('Normalized frequency--->');

ylabel('Magnitude in db--->');

title('Frequency Response ');

Output:

Filter coefficients for LPF=

hd= -0.0470 0.1075 0.2967 0.3820 0.2967 0.1075 -0.0470

w = 0.0800 0.3100 0.7700 1.0000 0.7700 0.3100 0.0800

h = -0.0038 0.0333 0.2284 0.3820 0.2284 0.0333 -0.0038

Model Graph:

LOW PASS FILTER

0 2 4 6
-0.2

0

0.2

0.4

0.6

n--->

h
d
(n

)-
--

>

Ideal Impulse Response

0 2 4 6
0

0.5

1

n--->

w
(n

)-
--

>

Hamming Window

0 2 4 6
-0.2

0

0.2

0.4

0.6

n--->

h
(n

)-
--

>

Actual Impulse Response

0 0.5 1
-150

-100

-50

0

Normalized frequency--->

M
a
g
n
it
u
d
e
 i
n
 d

b
--

->

Frequency Response

32

%PROGRAM FOR HIGH PASS FILTER

clc;

clear all;

close all;

M=11;

wc=1.2;

n=0:1:M-1;

hd=ideal_lp(pi,M)-ideal_lp(wc,M);

w=hann(M);

h=hd.*w';

disp('Filter coefficients for HPF=');

[M1,P]=freqz(h,1,2000);

mag=20*log10(abs(M1));

subplot(2,2,1);

stem(n,hd);

xlabel('n--->');

ylabel('hd(n)--->');

title('Ideal Impulse Response');

disp('hd=');

disp(hd);

subplot(2,2,2);

stem(n,w);

xlabel('n--->');

ylabel('w(n)--->');

title('Hanning Window');

disp('w=');

disp(w);

subplot(2,2,3);

stem(n,h);

xlabel('n--->');

ylabel('h(n)--->');

title('Actual Impulse Response');

disp('h=');

disp(h);

subplot(2,2,4);

plot(P/pi, mag);

grid on;

xlabel('Normalized frequency--->');

ylabel('Magnitude in db--->');

title('Frequency Response ');

33

Output:

Filter coefficients for HPF=

hd=0.0178 0.0793 0.0470 -0.1075 -0.2967 0.6180 -0.2967 -0.1075 0.0470

0.0793 0.0178

w = 0 0.0955 0.3455 0.6545 0.9045 1.0000 0.9045 0.6545 0.3455 0.0955

0

h = 0 0.0076 0.0162 -0.0704 -0.2683 0.6180 -0.2683 -0.0704 0.0162 0.0076

0

Model Graph:

HIGH PASS FILTER

0 5 10
-0.5

0

0.5

1

n--->

h
d
(n

)-
--

>

Ideal Impulse Response

0 5 10
0

0.5

1

n--->

w
(n

)-
--

>
Hanning Window

0 5 10
-0.5

0

0.5

1

n--->

h
(n

)-
--

>

Actual Impulse Response

0 0.5 1
-100

-50

0

50

Normalized frequency--->

M
a
g
n
it
u
d
e
 i
n
 d

b
--

->

Frequency Response

34

%PROGRAM FOR BAND PASS FILTER

clc;

clear all;

close all;

M=11;

wc1=1.2;

wc2=2;

n=0:1:M-1;

hd=ideal_lp(wc2,M)-ideal_lp(wc1,M);

w=hann(M);

h=hd.*w';

disp('Filter coefficients for BPF=');

[M1,P]=freqz(h,1,2000);

mag=20*log10(abs(M1));

subplot(2,2,1);

stem(n,hd);

xlabel('n--->');

ylabel('hd(n)--->');

title('Ideal Impulse Response');

disp('hd=');

disp(hd);

subplot(2,2,2);

stem(n,w);

xlabel('n--->');

ylabel('w(n)--->');

title('Hanning Window');

disp('w=');

disp(w);

subplot(2,2,3);

stem(n,h);

xlabel('n--->');

ylabel('h(n)--->');

title('Actual Impulse Response');

disp('h=');

disp(h);

subplot(2,2,4);

plot(P/pi, mag);

grid on;

xlabel('Normalized frequency--->');

ylabel('Magnitude in db--->');

title('Frequency Response ');

35

Output:

Filter coefficients for BPF=

hd=-0.0168 0.1580 0.0173 -0.2280 -0.0072 0.2546 -0.0072 -0.2280 0.0173

0.1580 -0.0168

w= 0 0.0955 0.3455 0.6545 0.9045 1.0000 0.9045 0.6545 0.3455 0.0955

0

h= 0 0.0151 0.0060 -0.1492 -0.0065 0.2546 -0.0065 -0.1492 0.0060 0.0151

0

Model Graph:

BANDPASS FILTER

0 5 10
-0.4

-0.2

0

0.2

0.4

n--->

h
d
(n

)-
--

>

Ideal Impulse Response

0 5 10
0

0.5

1

n--->

w
(n

)-
--

>

Hanning Window

0 5 10
-0.2

0

0.2

0.4

0.6

n--->

h
(n

)-
--

>

Actual Impulse Response

0 0.5 1
-80

-60

-40

-20

0

Normalized frequency--->

M
a
g
n
it
u
d
e
 i
n
 d

b
--

->

Frequency Response

36

%PROGRAM FOR BAND STOP FILTER

clc;

clear all;

close all;

M=7;

wc1=1.2;

wc2=2;

n=0:1:M-1;

hd=ideal_lp(pi,M)-ideal_lp(wc2,M)+ideal_lp(wc1,M);

w=rectwin(M);

h=hd.*w';

disp('Filter coefficients for BSF=');

[M1,P]=freqz(h,1,2000);

mag=20*log10(abs(M1));

subplot(2,2,1);

stem(n,hd);

xlabel('n--->');

ylabel('hd(n)--->');

title('Ideal Impulse Response');

disp('hd=');

disp(hd);

subplot(2,2,2);

stem(n,w);

xlabel('n--->');

ylabel('w(n)--->');

title('Rectangular Window');

disp('w=');

disp(w);

subplot(2,2,3);

stem(n,h);

xlabel('n--->');

ylabel('h(n)--->');

title('Actual Impulse Response');

disp('h=');

disp(h);

subplot(2,2,4);

plot(P/pi, mag);

grid on;

xlabel('Normalized frequency--->');

ylabel('Magnitude in db--->');

title('Frequency Response ');

37

Output:

Filter coefficients for BSF=

hd= -0.0173 0.2280 0.0072 0.7454 0.0072 0.2280 -0.0173

w = 1 1 1 1 1 1 1

h = -0.0173 0.2280 0.0072 0.7454 0.0072 0.2280 -0.0173

Model Graph:

BANDSTOP FILTER

0 2 4 6
-0.5

0

0.5

1

n--->

h
d
(n

)-
--

>

Ideal Impulse Response

0 2 4 6
0

0.5

1

n--->

w
(n

)-
--

>

Rectangular Window

0 2 4 6
-0.5

0

0.5

1

n--->

h
(n

)-
--

>

Actual Impulse Response

0 0.5 1
-15

-10

-5

0

5

Normalized frequency--->

M
a
g
n
it
u
d
e
 i
n
 d

b
--

->

Frequency Response

Windows:

Theoretical calculation:

1. hd (n)=1/2π ∫ Hd(w)ejwndw

2. Select w (n)

3. Find h (n) = hd (n)w(n)

38

Rectangular Window



 


otherwise

Mn
nw

,0

10,1
)(

Hanning Window



































otherwise

Mn
M

n

nw

,0

10,
1

2
cos1*5.0

)(



Hamming Window

1.


























otherwise

Mn
M

n

nw

,0

10,
1

2
cos*46.054.0

)(



Kaiser window

  
1

2 2

0 01 () / / () 0 1
()

0

I n I n M
w n

otherwise

   
  

         



Where  = (M-1)/2 and I0 = the zeroth order Modified Bessel Function

If
spsp AR and,,,  are giventhen the following equations are needed for design.





2
widthTransition

ps
f




7.95
Filter order 1

14.36

sA
M

f


 



0.4

0.1102(8.7), 50

0.5842(21) 0.07886(21), 21 50

0 21

s s

s s s

s

A A

Parameter A A A

A



 


     
 

PostLab questions:

1. What is meant by linear phase filters?

2. What is the condition for the impulse response of FIR filter to satisfy for constant and

Phase delay and for only constant group delay?

3. What are Gibbs oscillations?

4. Give the equation for rectangular, hamming and Kaiser Windows.

5. State the condition for linear phase characteristics in FIR.

Result:

 Thus a program to design the FIR low pass, high pass, band pass and band stop filters was

Written and response of the filter using MATLAB was executed.

39

Ex : No: Date:

5.IIR FILTER DESIGN

Aim:

 To write a program to design the Butterworth low pass, high pass filters and find out the response

of the filter using MATLAB.

Prerequisite Lab Questions:

1. What are the requirements for an analog filter to be stable and causal?

2. What are the types of analog filters?

3. State the conditions to design a stable digital filters.

4. Write the relationship between analog and digital frequency in impulse invariant method?

5. Define Bilinear transformation.

Description:

Input :(a) Enter the pass band ripple and stop band attenuation

 (b)Enter the passband and stop band frequency

Output : (a) Find the order and cutoff frequency using bilinear and impulse

Invariant transformation

 (b) Calculate the Analog filter coefficients H(s)

 (c) Transform the Analog filter to digital filter and find H (z)

 (d) Plot the responses for all the filters.

Algorithm:

1. Start the program.

2. Get the input sequences for pass band ripple, stop band ripple, pass band frequency, stop band

frequency and sampling frequency.

3. Convert the frequency into radians/sec.

4. Compute the order and cutoff frequency of the filter and display it.

5. Design the analog filter and find the coefficient.

6. Convert the analog filter into digital using bilinear or impulse invariant transform.

7. Find out the frequency response of the filter.

8. Compute the magnitude and phase response of the filter.

9. Execute the program, display the result and verify it.

10. Plot the output graph for each sequence for low pass and high pass filters.

11. Stop the process.

Program:

% function to find order of butterworth filter using impulse invariant transformation

% Save as butt_impord

function [N,Wc]= butt_impord(w1,w2,a1,a2)

l=sqrt((1/a2^2)-1)

e=sqrt((1/a1^2)-1)

num=log10(l/e)

den=log10(w2/w1)

N=ceil((num/den))

Wc=(w1)/((e)^(1/N))

40

%function to find order of butterworth filter using bilinear transformationSave is as

butt_biord.

function [N1,Wc1]= butt_biord(w1,w2,a1,a2)

T=1;

wp1=(2/T)*tan(w1/2)

ws1=(2/T)*tan(w2/2)

lam=sqrt((1/a2^2)-1)

ep=sqrt((1/a1^2)-1)

num1=log10(lam/ep)

den1=log10(ws1/wp1)

N1=ceil((num1/den1))

Wc1=wp1/((ep)^(1/N1))

% Program for Butterworth Low Pass Filter

clc;

clear all;

close all;

%w1=0.2*pi;w2=0.6*pi;a1=0.8;a2=0.2;

w1=input('Enter the Passband frequency w1=');

w2=input('Enter the Stopband frequency w2=');

a1= input('Enter the Passband ripple a1=');

a2=input('Enter the Stopband ripple a2=');

[N,Wc]=butt_impord(w1,w2,a1,a2);

disp('LPF ANALOG FILTER TRANSFER FUNCTION');

[num,den]=butter(N,Wc,'s')

disp('LPF DIGITAL FILTER TRANSFER FUNCTION');

[b,a]=impinvar(num,den)

[mag,angle]=freqz(b,a,512);

magnitude=20*log10(abs(mag));

figure(1);

plot(angle/pi,magnitude);

grid on;

title('Low Pass Butterworth Filter');

xlabel('frequency --->');

ylabel('magnitude --->');

%Program for Butterworth High Pass Filter

[N1,Wc1]=butt_biord(w2,w1,a1,a2);

disp(' HPF ANALOG FILTER TRANSFER FUNCTION');

[num1,den1]=butter(N1,Wc1,'high','s')

disp('HPF DIGITAL FILTER TRANSFER FUNCTION');

[b1,a1]=bilinear(num1,den1,1)

[mag1,angle1]=freqz(b1,a1,512);

magnitude=20*log10(abs(mag1));

figure(2);

plot(angle1/pi,magnitude);

grid on;

title('High Pass Butterworth Filter');

xlabel('frequency --->');

41

ylabel('magnitude --->');

Output:

Enter the Passband frequency w1=[0.2*pi]

Enter the Stopband frequency w2=[0.6*pi]

Enter the Passband ripple a1=[0.8]

Enter the Stopband ripple a2=[0.2]

l = 4.8990 ,e = 0.7500

num = 0.8150 ,den = 0.4771

N = 2 ,Wc = 0.7255

LPF ANALOG FILTER TRANSFER FUNCTION

num = 0 0 0.5264

den = 1.0000 1.0260 0.5264

LPF DIGITAL FILTER TRANSFER FUNCTION

b = 0 0.3015 0

a = 1.0000 -1.0432 0.3584

T = 1, wp1 = 0.6498

ws1 = 2.7528, lam = 4.8990

ep = 0.7500

num1 = 0.8150, den1 = 0.6270

N1 = 2

Wc1 = 0.7504

 HPF ANALOG FILTER TRANSFER FUNCTION

num1 = 1 0 0

den1 = 1.0000 1.0612 0.5631

HPF DIGITAL FILTER TRANSFER FUNCTION

b1 = 0.5983 -1.1966 0.5983

a1 = 1.0000 -1.0282 0.3651

42

Model graph

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-45

-40

-35

-30

-25

-20

-15

-10

-5

0
Low Pass Butterworth Filter

frequency --->

m
a
g
n
it
u
d
e
 -

--
>

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0
High Pass Butterworth Filter

frequency --->

m
a
g
n
it
u
d
e
 -

--
>

43

Theoretical calculation

Bilinear Transformation

wp1=(2/T)*tan(w1/2)

ws1=(2/T)*tan(w2/2)

lam=sqrt((1/a2^2)-1)

ep=sqrt((1/a1^2)-1)

N=log10(lam/ep) / log10(ws1/wp1);

Wc1=wp1/((ep)^(1/N1));

To find H (Z) replace‘s’ by

S= 2(Z-1)

T(Z+1)

Impulse Invariant Transformation

l=sqrt((1/a2^2)-1)

e=sqrt((1/a1^2)-1)

N=log10(l/e) / log10(w2/w1); ;

Wc=(w1)/((e)^(1/N));

H(S) is same

44

PostLab questions:

1. What are the properties of Butterworth low pass filters?

2. Give the magnitude function of Butterworth filter.

3. What is meant by conformal mapping?

4. Define warping effect?

5. What are the advantages and disadvantages of bilinear transformations?

Result:

 Thus a program to design the Butterworth low pass and high pass filter using Matlab was written

and response of the filter was executed.

45

Ex : No: Date:

6. MULTIRATE FILTERS

Aim:

 Write a program to perform the decimation and interpolation on the given input sequence operation

using Matlab.

Prerequisite Lab Questions:

1. What are the need for multirate signal processing?

2. Define Decimator and Interpolator.

3. How aliasing effect is overcome in decimation?

4. Write the time domain relationship for upsampling and downsampling.

5. List the advantages of MDSP.

Description:

 Input: Give the input signal

Output: Find the decimated and interpolated output signal for the given number of samples.

Algorithm:

1. Start the program.

2. Get the amplitude of the input signal.

3. Get the decimation and interpolation factor.

4. Perform the decimation and interpolation operations using Matlab functions.

5. Plot the output signals.

6. Stop the process.

Program:
%Program for Decimate signal

clc;

clear all;

close all;

t=0:0.00025:1; % Time vector

x=sin(2*pi*30*t)+sin(2*pi*60*t);

r=4; % Factor of 4

y=decimate(x,r);

%View the original signal

figure(1);

subplot(2,1,1);

stem(x(1:120));

xlabel('n--->');

ylabel('Amplitude--->');

title('Original Signal');

46

%View the decimated signal

subplot(2,1,2);

stem(y(1:30));

xlabel('n--->');

ylabel('Amplitude--->');

title('Decimated Signal');

%Program for Interpolated signal

t=0:0.001:1; % Time vector

x=sin(2*pi*30*t)+sin(2*pi*60*t);

r=4; % Factor of 4

y=interp(x,r);

 %View the Original signal

figure(2);

subplot(2,1,1);

stem(x(1:30));

xlabel('n--->');

ylabel('Amplitude--->');

title('Original Signal');

%View the Interpolated Signal

subplot(2,1,2);

stem(y(1:120));

xlabel('n--->');

ylabel('Amplitude--->');

title('Interpolated Signal');

47

Model graph:

0 20 40 60 80 100 120
-2

-1

0

1

2

n--->

A
m

p
lit

u
d
e
--

->

Original Signal

0 5 10 15 20 25 30
-2

-1

0

1

2

n--->

A
m

p
lit

u
d
e
--

->

Decimated Signal

0 5 10 15 20 25 30
-2

-1

0

1

2

n--->

A
m

p
lit

u
d
e
--

->

Original Signal

0 20 40 60 80 100 120
-2

-1

0

1

2

n--->

A
m

p
lit

u
d
e
--

->

Interpolated Signal

48

PostLab Questions:

1. What are the effects of upsampling?

2. List the applications of multirate signal processing?

3. What are sampling rate converters?

4. Define sub band coding of signals.

5. For the given signal x[n]= {1,3,4,5,6,7,8,9,1,-2} . Decimate and interpolate by a factor of 2.

Result:

 Thus a program to perform decimation and interpolation the input signal was written using

MATLABand plotted.

49

Ex : No: Date:

7.EQUALIZATION

Aim:

To Design an Least Mean Square (LMS) channel equalizer using MATLAB.

Prerequisite Lab Questions:

1. Define adaptive filtering?

2. What are the two steps in adaptive filtering?

3. Whether FIR or IIR filters are used for adaptive filtering?

4. List the classifications of algorithms for adaptive filtering.

5. What is the need for adaptive equalization?

THEORY:

The Least Mean Square algorithm or non-recursive adaptive filter is routinely used in filtering

applications that range from adaptive equalizers to adaptive noise control systems. The various reasons for

its priority, the stability are controlled. There are simple and efficient algorithms to adjust the filter

coefficients. Finally the performance of these algorithms is well understood in terms of convergence and

stability. For an LMS algorithm having p+1 coefficient require P+1 multiplications and p additions to

calculate the output. The simplicity of this algorithm comes from the update equation. And most

importantly the data and LMS weight vector are statistically independent. The LMS algorithm is the most

commonly used nonrecursive channel equalizer technique.

ALGORITHM:

1. The Input values are all set

2. For input generate normally distributed random matrix.

3. For filter generate uniform distributed pseudo random matrix.

4. The filter coefficients are determined.

5. The input vector is filtered with the specified vector and stored in another vector.

6. Now all the outputs and vectors are initialized.

7. Now the LMS adaptation curve is determined using the equation

w=w+mu(Re(e(n)*conj(in))-iImg(e(n)*conj(in)))

8. Finally the generated output waveform is plotted in a semilog graph sheet

% **

% LEAST MEAN SQUARE ALGORITHM

% **

clear all;

close all;

randn('state',sum(100*clock)); % Returns a matrix with pseudorandom values in normal

distribution

rand('state',sum(100*clock)); % Returns a matrix with pseudorandom values in uniform

distribution

numpoints=5000; % Sampling points

numtaps = 10; % No of filter coefficients

Mu=0.01;

50

x=randn(numpoints,1)+i*randn(numpoints,1); % Complex Random Input Signal

h=rand(numtaps,1); % filter transfer function

h=h /max(h);

d = filter(h,1,x); % digital filter with num coeff h and den coeff 1 and vector x

w=[];

y=[];

in=[];

e=[];

w=zeros(numtaps+1,1)+i*zeros(numtaps+1,1); % initialize the w matrix

for n=numtaps+1:numpoints

 in=x(n:-1:n-numtaps);

 y(n)=w'*in;

 e(n)=d(n)-y(n); % Calculates the error value

 w=w+Mu*(real(e(n)*conj(in))-i*imag(real(e(n)*conj(in))));

end

figure(10);

semilogy(abs(e));grid on;

title(['LMS Adaptation Learning Curve using Mu=',num2str(Mu)]);

xlabel('Iteration Number');

ylabel('Output estimation error in db');

OUTPUT

PostLab Questions:

1. List the applications of adaptive filtering.

2. What do you mean by adaptive noise cancellation?

3. Define mean square error criterion.

4. What is in-phase and quadrature signals?

5. What are the characteristics of LMS algorithm?

RESULT :

 Thus the Least Mean Square (LMS) channel equalizer was designed and the generated output

sequence was plotted using MATLAB software.

51

Ex : No: Date:

8. STUDY OF ARCHITECTURE OF DIGITAL SIGNAL PROCESSOR

Aim:

To Study the architecture of TMS320C5416 Digital Signal Processor Starter Kit (DSK).

Description:

The TMS320VC5416 fixed-point, digital signal processor (DSP) (hereafter referred to as the

device unless otherwise specified) is based on an advanced modified Harvard architecture that has one

programMemory bus and three data memory buses. This processor provides an arithmetic logic unit

(ALU) with aHigh degree of parallelism, application-specific hardware logic, on-chip memory, and

additional on-chipPeripherals. The basis of the operational flexibility and speed of this DSP is a highly

specialized instructionSet. Separate program and data spaces allow simultaneous access to program

instructions and data, providing, a high degree of parallelism. Two read operations and one write

operation can be performed in a single cycle. Instructions with parallel store and application-specific

instructions can fully utilize this architecture. In addition, data can be transferred between data and

program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation

operations that can all be performed in a single machine cycle. The device also includes the control

mechanisms to manage interrupts, repeated

Operations, and function calls.

Architecture:

The ‟54x DSPs use an advanced, modified Harvard architecture that maximizes processing power

by maintaining one program memory bus and three data memory buses. These processors also provide an

arithmetic logic unit (ALU) that has a high degree of parallelism, application-specific hardware logic, on-

chip memory, and additional on-chip peripherals. These DSP families also provide a highly specialized

instruction set, which is the basis of the operational flexibility and speed of these DSPs. Separate program

and data spaces allow simultaneous access to program instructions and data, providing the high degree of

parallelism. Two reads and one write operation can be performed in a single cycle. Instructions with

parallel store and application-specific instructions can fully utilize this architecture. In addition, data can

be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic,

logic, and bit-manipulation operations that can all be performed in a single machine cycle. Also included

are the control mechanisms to manage interrupts, repeated operations, and function calls.

52

Architecture of TMS320VC5416 Fixed-Point Digital Signal Processor:

53

 Central Processing Unit (CPU)

The CPU is common to all C54x™ devices. The C54x CPU contains:

40-bit arithmetic logic unit (ALU)

Two 40-bit accumulators

Barrel shifter

17 × 17-bit multiplier

40-bit adder

Compare, select, and store unit (CSSU)

Data address generation unit

Program address generation unit

Arithmetic Logic Unit (ALU)

The C54x DSP performs 2s-complement arithmetic with a 40-bit arithmetic logic unit

(ALU)and two 40-bit accumulators(accumulators A and B). The ALU can also perform Boolean

operations. The ALU uses these inputs:

16-bit immediate value

16-bit word from data memory

16-bit value in the temporary register, T

Two 16-bit words from data memory

32-bit word from data memory

40-bit word from either accumulator

The ALU can also function as two 16-bit ALUs and perform two 16-bit operations

simultaneously.

Accumulators

Accumulators A and B store the output from the ALU or the multiplier/adder block. They

can also provide a second input to the ALU; accumulator A can be an input to the multiplier/adder.

Each accumulator is divided into three parts:

Guard bits (bits 39–32)

High-order word (bits 31–16) Low-order word (bits 15–0)

Instructions are provided for storing the guard bits, for storing the high- and the low-order

accumulator words in data memory, and for transferring 32-bit accumulator words in or out of data

memory. Also, either of the accumulators can be used as temporary storage.

Barrel Shifter

The C54x DSP barrel shifter has a 40-bit input connected to the accumulators or to data

memory (using CB or DB), and a 40-bit output connected to the ALU or to data memory (using

EB). The barrel shifter can produce a left shift of 0 to 31 bits and a right shift of 0 to 16 bits on the

input data. The shift requirements are defined in the shift count field of the instruction, the shift

count field (ASM) of status register ST1, or in temporary register T (when it is designated as a

shift count register).

The barrel shifter and the exponent encoder normalize the values in an accumulator in a

single cycle. The LSBs of the output are filled with 0s, and the MSBs can be either zero filled or

sign extended, depending on the state of the sign-extension mode bit (SXM) in ST1. Additional

shift capabilities enable the processor to perform numerical scaling, bit extraction, extended

arithmetic, and overflow prevention operations.

54

Multiplier/Adder Unit

The multiplier/adder unit performs 17 17-bit 2s-complement multiplication with a 40-bit

addition in a single instruction cycle. The multiplier/adder block consists of several elements: a

multiplier, an adder, signed/unsigned input control logic, fractional control logic, a zero detector, a

rounder (2s complement), overflow/saturation logic, and a 16-bit temporary storage register (T).

The multiplier has two inputs: one input is selected from T, a data-memory operand, or

accumulator A; the other is selected from program memory, data memory, accumulator A, or an

immediate value.

The fast, on-chip multiplier allows the C54x DSP to perform operations efficiently such as

convolution, correlation, and filtering. In addition, the multiplier and ALU together execute

multiply/accumulate (MAC) computations and ALU operations in parallel in a single instruction

cycle. This function is used in determining the Euclidian distance and in implementing

symmetrical and LMS filters, which are required for complex DSP algorithms.

Compare, Select, and Store Unit (CSSU)

The compare, select, and store unit (CSSU) performs maximum comparisons between the

accumulator’s high and low word, allows both the test/control flag bit (TC) in status register ST0

and the transition register (TRN) to keep their transition histories, and selects the larger word in

the accumulator to store into data memory. The CSSU also accelerates Viterbi-type butterfly

computations with optimized on-chip hardware.

Status Registers (ST0, ST1)

The status registers ST0 and ST1 contain the status of the various conditions and modes for

the C54x devices. ST0 contains the flags (OVA, OVB, C, and TC) produced by arithmetic

operations and bit manipulations, in addition to the DP and the ARP fields. ST1 reflects the status

of modes and instructions executed by the processor.

Auxiliary Registers (AR0–AR7)

The eight 16-bit auxiliary registers (AR0–AR7) can be accessed by the CPU and modified

by the auxiliary register arithmetic units (ARAUs). The primary function of the auxiliary registers

is to generate 16-bit addresses for data space. However, these registers can also act as general-

purpose registers or counters.

Transition Register (TRN)

The 16-bit transition (TRN) register holds the transition decision for the path to new

metrics to perform the Viterbi algorithm. The CMPS (compare select max and store) instruction

updates the contents of TRN register on the basis of the comparison between the accumulator high

word and the accumulator low word.

Temporary Register (T)

The temporary (T) register has many uses. For example, it may hold:

One of the multiplicands for multiply and multiply/accumulate instructions (For more

details about the T register and the processes of multiplication.

A dynamic (execution-time programmable) shift count for instructions with shift operation

such as the ADD, LD, and SUB instructions

A dynamic bit address for the BITT instruction

55

Branch metrics used by the DADST and DSADT instructions for ACS operation of Viterbi

decoding

In addition, the EXP instruction stores the exponent value computed into T register, and

then the NORM instruction uses the T register value to normalize the number.

Stack-Pointer Register (SP)

The 16-bit stack-pointer register (SP) contains the address of the top of the system stack.

The SP always points to the last element pushed onto the stack. The stack is manipulated by

interrupts, traps, calls, returns, and the PSHD, PSHM, POPD, and POPM instructions. Pushes and

pops of the stack predecrement and postincrement, respectively, the 16-bit value in the stack

pointer.

Circular-Buffer Size Register (BK)

The ARAUs use16-bit circular-buffer size register (BK) in circular addressing to specify

the data block size. For information on BK and circular addressing.

Block-Repeat Registers (BRC, RSA, REA)

The 16-bit block-repeat counter (BRC) register specifies the number of times a block of

code is to repeat when a block repeat is performed. The 16-bit blockrepeat start address (RSA)

register contains the starting address of the block of program memory to be repeated. The 16-bit

block-repeat end address (REA) register contains the ending address of the block of program

memory to be repeated.

Memory-Mapped Registers

The 64K words of data memory space include the device’s memory-mapped registers,

which reside in data page 0 (data addresses 0000h–007Fh).

The peripheral registers are used as control and data registers in peripheral circuits. These

registers reside within addresses 0020h–005F and reside on a dedicated peripheral bus structure.

For a list of peripherals on a particular C54x device.

The scratch-pad RAM block (60h–7Fh in data memory) includes 32 words of DARAM for

variable storage that helps avoid fragmenting the large RAM block.The data memory space

contains memory-mapped registers for the CPU and the on-chip peripherals. Simplifying access to

them. The memory-mapped access provides a convenient way to save and restore the registers for

context switches and to transfer information between the accumulators and the other registers.

Data Memory

The data memory space addresses up to 64K of 16-bit words. The device automatically

accesses theOn-chip RAM when addressing within its bounds. When an address is generated

outside the RAM bounds,the device automatically generates an external access.

The advantages of operating from on-chip memory are as follows:

· Higher performance because no wait states are required

· Higher performance because of better flow within the pipeline of the central arithmetic logic unit

(CALU)

56

· Lower cost than external memory

· Lower power than external memory

The advantage of operating from off-chip memory is the ability to access a larger address space.

Program Memory

Software can configure their memory cells to reside inside or outside of the program

address map. When the cells are mapped into program space, the device automatically accesses

them when their addressesare within bounds. When the program-address generation (PAGEN)

logic generates an address outside itsBounds, the device automatically generates an external

access.

The advantages of operating from on-chip memory are as follows:

· Higher performance because no wait states are required

· Lower cost than external memory

· Lower power than external memory

The advantage of operating from off-chip memory is the ability to access a larger address space.

Overview of the TMS320VC5416 DSK

The TMS320VC5416 DSK is a stand-alone development and evaluation module. It allows

evaluators to examine certain characteristics of the C5416 digital signal processor (DSP) to

determine if it meets their application requirements. Furthermore, the module is an excellent

platform to develop and run software for the TMS320VC5416 family of processors.

The DSK allows full speed verification of VC5416 code. With 64K words of on board

RAM memory, 256K words of on board Flash ROM, and a Burr Brown PCM 3002 stereo codec,

the board can solve a variety of problems as shipped. Three expansion connectors are provided for

interfacing to evaluation circuitry not provided on the as shipped configuration.

To simplify code development and shorten debugging time, a special version of Code

Composer Studio is shipped with the board.

Key Features of the TMS320VC5416 DSK

The VC5416 DSK has the following features:

• VC5416 operating at 16-160 MHz

• On board USB JTAG controller with plug and play drivers

• 64K words of on board RAM

• 256K words of on board Flash ROM

• 3 Expansion Connectors (Memory Interface, Peripheral Interface, and Host Port Interface)

• On board IEEE 1149.1 JTAG Connection for Optional Emulation Debug

• Burr Brown PCM 3002 Stereo Codec

• +5 volt operation

Code Composer Studio - 3.1v
INTRODUCTION TO CODE COMPOSER STUDIO

Code Composer is the DSP industry's first fully integrated development environment (IDE)

with DSP-specific functionality. With a familiar environment liked MS-based C++TM, Code

Composer lets you edit, build, debug, profile and manage projects from a single unified

environment. Other unique features include graphical signal analysis, injection/extraction of data

57

signals via file I/O, multi-processor debugging, automated testing and customization via a C-

interpretive scripting language and much more.

Initial setupto work on Code Composer Studio:
 To execute using Simulator OpenSetup CCStudio_v3.1 add C5416 Device Simulator Save

and Quit.

(OR)

 To Execute using DSP Processor Kit -DSK Diagnostic UtilityStart

Check for PASS in the display and continue the Procedure

 Select 5416 dskCCStudio_v3.1DebugConnect

Procedure to work on Code Composer Studio:

To create the New Project
Project  New  (C:\CCStudio_v3.1\MyProjects\projectname.pjt)

To Create a Source file
File  New  Type the code (Save & give file name, Eg: filename.cor

 filename.asm).

 (C:\CCStudio_v3.1\MyProjects\projectname.pjt\filename.c)

To Add Source files to Project
 Project  Add files to Project filename.c

To add library &cmd:
 Project  Add files to Project rts_EXT.lib

 Library files: (Path: C:\ CCStudio\C5400\cgtools\lib\rts_EXT.lib)

 Note: Select Object & Library from all files

Project  Add files to Project c5416dsk.cmd

 CMD file – Which is common for all non-real time programs.

 (Path: Path: C:\ CCStudio\tutorial\dsk5416\shared\c5416dsk.cmd)

 Note: Select Linker Command file (*.cmd) in Type of files

To Compile:

Project  Compile

To Build:
 Project Build

 If there is more number of warnings after build, then

Project Build Options  Advanced (in Category) Use Far Calls (- mf)

Procedure to Load and Run program:
Load the program to DSK: File Load program project name. Out

(C:\CCStudio_v3.1\MyProjects\projectname.pjt\Debug\projectname.out)

58

To execute project:
Debug Run.

To Plot Graph:
 View  Graph (OR Right click in the program Insert Graph)

 Select proper Properties and specify the address.

Result:

Thusthe architecture of TMS320C5416 Digital Signal Processor Starter Kit (DSK) and

programming steps for Code Composer Studio was studied.

59

Ex : No: Date:

9. MAC OPERATION USING VARIOUS ADRESSING MODES

Aim:

 To perform MAC operation usingvarious addressing modes of TMS320C5416 DSP processor.

Prerequisite Lab Questions:

1. What are the classification of DSP Processors?

2. Compare fixed and floating point Processors ?

3. Brief the different types of addressing mode present in the TMS320C5416?

4. Define program counter.

5. What is the architectural difference between conventional and DSP proceesors?

Algorithm:

1. Start the program.

2. Store the first number from X memory to AR2.

3. Store the second number from Y memory to AR3.

4. Store the immediate address to AR4 to store the output.

5. Add both the numbers and store the result in accumulator A.

6. Store the lower order word to the memory location 1500 and higher order word to 1501 and

increment the memory location

7. Load the content pointed by AR2 to the temporary register

8. Multiply the Content pointed by AR2 with the temporary register and store the result in B

register.

9. Store the lower order word and higher order word of B register to the memory location pointed

by AR4

10. Stop the program execution.

Program:

; Program for Addition

 .global _main

 .mmregs

 .data

X: .word 50h

Y: .word 20h

 .text

_main

 STM X,AR2

 STM Y,AR3

 STM #1500h,AR4

 ADD *AR2,*AR3,A

 STL A,*AR4+

 STH A,*AR4

 .end

Output:

0x1500: 0x0000

60

0x1501: 0x0070

; Program for Subtraction

 .global _main

 .mmregs

 .data

X: .word 60h

Y: .word 20h

 .text

_main

 STM X,AR2

 STM Y,AR3

 STM #1500h,AR4

 SUB *AR2,*AR3,A

 STL A,*AR4+

 STH A,*AR4

 .end

Output:

0x1500: 0x0000

0x1501: 0x0040

; Program for Multiplication

 .global _main

 .mmregs

 .data

X: .word 30h

Y: .word 20h

 .text

_main

 STM X,AR2

 STM Y,AR3

 STM #1500h,AR4

 MPY *AR2,*AR3,A

 STL A,*AR4+

 STH A,*AR4

 .end

Output:

0x1500: 0x0600

; Program for Division

 .global _main

 .mmregs

 .data

X: .word 90h

Y: .word 30h

 .text

61

_main

 STM X,AR2

 STM Y,AR3

 STM #1500h,AR4

 LD *AR2+,A

 RPT #15

 SUBC *AR3,A

 STL A,*AR4+

 STH A,*AR4

 .end

SUBC performs binary division like long division. For 16-bit by 16-bit integer division, the dividend is

stored in low part accumulator A. The program repeats the SUBC command 16 times to produce a 16-bit

quotient in low part accumulator A and a 16-bit remainder in high part accumulator B. For each SUBC

subtraction that results in a negative answer, you must left-shift the accumulator by 1 bit. This corresponds

to putting a 0 in the quotient when the divisor does not go into the dividend. For each subtraction that

produces a positive answer, you must left shift the difference in the ALU output by 1 bit, add 1, and store

the result in accumulator A. This corresponds to putting a 1 in the quotient when the divisor goes into the

dividend.

Output:

0x1500: 0x0003

PostLab Questions:

1. Give an example for immediate and indirect addressing modes?

2. What do you mean by bit reversal addressing mode?

3. What are the registers available for indirect addressing mode?

4. What are barrel shifters?

5. What is arithmetic and logical shift in DSP Processors?

Result:

 Thus the assembly coding for MAC operation usingvarious addressing modes of DSP processor

TMS320C5416 was written and executed.

Ex :No: Date:

10.LINEAR CONVOLUTION

Aim:

 Write a program to find out the linear convolution of two sequence using TMS320C5416

processor.

Prerequisite Lab Questions:

1. Define Convolution.

62

2. What is zero padding ?

3. List the properties of linear convolution.

Description:

Input: Give the input x (n) and h (n) in matrix form.

Output: y (n), using the formula







k

knhkxny)()()(

Algorithm:

1. Start the program.

2. Get the two input sequence x (n) and h (n) with zero appended.

3. Sum the product of x (n) and shifted sequence of h (n-k).

4. Execute the program, display the result and verify theoretically.

5. Stop the process.

PROGRAM FOR LINEAR CONVOLUTION

 //PROGRAM FOR LINEAR CONVOLUTION

 #include<stdio.h>

 int x[10]; /*={1 2 3 4 0 0 0} Input Signal Samples*/

 int h[10]; /*={1 2 3 4 0 0 0} Impulse Response */

 /*At the end of input sequences pad 'M' and 'N' no. of zero's*/

 int y[10];

 int m=4; /*Lenght of input samples sequence x(n)*/

 int n=4; /*Lenght of impulse response h(n) */

 int i,j;

 main()

 {

 printf(" enter the first sequence\n");

 for(i=0;i<m+n-1;i++)

 scanf("%d",&x[i]);

 printf(" enter the second sequence\n");

 for(j=0;j<m+n-1;j++)

 scanf("%d",&h[j]);

 for(i=0;i<m+n-1;i++)

 {

 y[i]=0;

 for(j=0;j<=i;j++)

 y[i]+=x[j]*h[i-j];

 }

 printf("output\n");

 for(i=0;i<m+n-1;i++)

 printf("%d\n",y[i]);

63

 }

Result:

Enter the first sequence

1 2 3 4 0 0 0

Enter the second sequence

1 1 1 1 0 0 0

Output:

1

3

6

10

9

7

4

Procedure for Plot:

MODEL GRAPH

64

Postlab Questions :

1. State convolution property of a signal.

2. What are sectioned convolutions & what is the need of it?

3. Write the applications of convolution.

65

Result:

 Thus a program to find out the linear convolution of two sequences using TMS320C5416

processor was written and executed.

Ex:No: Date:

11.CIRCULAR CONVOLUTION

Aim:

 Write a program to find out the circular convolution of two sequences using TMS320C5416

processor.

Prerequisite Lab Questions:

66

1. What is the MATLAB function used to perform linear & circular convolution?

2. How will you determine the maximum length of the convolution of the sequences?

3. List the methods used to find the circular convolution.

Description:

Input: Give the input x (n) and h (n) in matrix form.

Output: y (n), using the formula







1

0

)()()(
N

k

knhkxny

Algorithm:

1. Start the program.

2. Get the two input sequence x (n) and h (n) and compute the length of the sequence.

3. Append zeros to x (n) or h (n) to make both sequence of same length.

4. Rotate the sequence h (-k), ‘n’ times. If ‘n’ is positive shift the sequence in anticlockwise

direction else in the clockwise direction.

5. Determine the product of sequence x (n) and shifted h (n) sequence and sum it.

6. Execute the program, display the result and verify it theoretically.

7. Plot the output graph for each sequence.

8. Stop the process.

PROGRAM FOR CIRCULARCONVOLUTION

#include <stdio.h>

int N1,N2,N,x[30],h[30],y[30],i,j,k;

void main()

{

 printf("enter the length of first sequence\n");

 scanf("%d",&N1);

 printf("enter the length of second sequence\n");

 scanf("%d",&N2);

 printf("Enter first sequence elements\n");

 for(i=0;i<N1;i++)

 scanf("%d",&x[i]);

 printf("Enter second sequence elements\n");

 for(i=0;i<N2;i++)

 scanf("%d",&h[i]);

 if(N1>N2)

 {

 N=N1;

)()()(nhnxny 

67

 }

 else

 {

 N=N2;

 }

 for(i=N1;i<N;i++)

 x[i]=0;

 for(j=N2;j<N;j++)

 h[j]=0;

 for(k=0;k<N;k++)

 {

 y[k]=0;

 for(i=0;i<N;i++)

 {

 j=k-i;

 if(j<0)

 {

 j=N+j;

 }

 y[k]=y[k]+(x[i]*h[j]);

 }

 }

 printf("The circular convolution is \n");

 for(k=0;k<N;k++)

 printf("%d\t",y[k]);

}

//PROGRAM FOR CIRCULAR CONVOLUTION

 #include<stdio.h>

 int m,n,x[30],h[30],y[30],i,j,temp[30],k,x2[30],a[30];

 void main()

 {

 printf(" enter the length of the first sequence\n");

 scanf("%d",&m);

 printf(" enter the length of the second sequence\n");

 scanf("%d",&n);

 printf(" enter the first sequence\n");

 for(i=0;i<m;i++)

 scanf("%d",&x[i]);

 printf(" enter the second sequence\n");

 for(j=0;j<n;j++)

 scanf("%d",&h[j]);

 if(m-n!=0) /*If length of both sequences are not equal*/

 {

 if(m>n) /* Pad the smaller sequence with zero*/

68

 {

 for(i=n;i<m;i++)

 h[i]=0;

 n=m;

 }

 for(i=m;i<n;i++)

 x[i]=0;

 m=n;

 }

 y[0]=0;

 a[0]=h[0];

 for(j=1;j<n;j++) /*folding h(n) to h(-n)*/

 a[j]=h[n-j];

 /*Circular convolution*/

 for(i=0;i<n;i++)

 y[0]+=x[i]*a[i];

 for(k=1;k<n;k++)

 {

 y[k]=0;

 /*circular shift*/

 for(j=1;j<n;j++)

 x2[j]=a[j-1];

 x2[0]=a[n-1];

 for(i=0;i<n;i++)

 {

 a[i]=x2[i];

 y[k]+=x[i]*x2[i];

 }

 }

 /*displaying the result*/

 printf(" the circular convolution is\n");

 for(i=0;i<n;i++)

 printf("%d \t",y[i]);

 }

Model Graph:

69

Output:

enter the length of the first sequence

5

enter the length of the second sequence

4

enter the first sequence

1 3 5 7 9

enter the second sequence

2 4 4 2

the circular convolution is

76 60 44 48 72

Properties to Plot Graph:

70

PostLab Questions:

1. What is the difference between Linear convolution & circular convolution?

2. What is the relation between convolution in time domain and frequency domain ?

3. Give the significance of using convolution process in digital signal processing.

Result:

 Thus a program to find out the circular convolution of two sequences using TMS320C5416

processor was written and executed.

Ex: No: Date:

 12. FFT IMPLEMENTATION

71

Aim:

 To write a program to perform Discrete Fourier transform using TMS320C5416 DSP Processor.

Prerequisite Lab Questions:

1. Write the analysis and synthesis equation for DFT?

2. What do you mean by the property of shifting of DFT?

3. Find the value of twiddle factor for N=8, K=2 .

4. How many multiplications and additions are required to compute N point DFT ?

5. What is the relationship between DFT and Z-transform?

Algorithm:

1. Start the program.

2. Declare the variables

3. Generate the input sequence

4. Using DFT, calculate the real and imaginary part of X (k) for k=0, 1... N-1

5. Calculate the Magnitude of X (k).

6. Print the Result.

7. Stop the Process.

Program:

 //Program for DFT

 #include<stdio.h>

 #include<math.h>

 #define pi 3.1415

 #define N 8

 float X[K];

 int i,k,n;

 float xr[i],xi[i];

 float XR[K],XI[K];

 main()

 {

 for (n=0;n<=N-1;n++)

 {

 xr[n]=sin(2*pi*10*n/8.0);

 xi[n]=0;

 }

 for (k=0;k<N;k++)

 {

XR[k]=0;

 XI[k]=0;

 for (n=0;n<N; n++)

72

 {

 XR[k]+=(xr[n]*cos(2*pi*k*n/N))+(xi[n]*sin(2*pi*k*n/N));

 XI[k]+=(xr[n]*sin(2*pi*k*n/N))-(xi[n]*cos(2*pi*k*n/N));

 }

 X[k]=sqrt((XR[k]*XR[k])+(XI[k]*XI[k]));

 }

 printf("X(k) and magnitude of X(k)\n");

 for (k=0;k<N;k++)

 {

 printf("\n X[%d] = %f + j %f \n",k,XR[k],XI[k]);

 printf(" magnitude of X(%d) = %f\n",k,X[k]);

 }

 }

 //Program for DFT

 #include<stdio.h>

 #include<math.h>

 #define pi 3.1415

 #define N 8

 int i,k,n;

 float X[N];

 float xr[N],xi[N];

 float XR[N],XI[N];

 main()

 {

 for (n=0;n<=N-1;n++)

 {

 xr[n]=sin(2*pi*10*n/8.0);

 xi[n]=0;

 }

 for (k=0;k<N;k++)

 {

XR[k]=0;

 XI[k]=0;

 for (n=0;n<N; n++)

 {

 XR[k]+=(xr[n]*cos(2*pi*k*n/N))+(xi[n]*sin(2*pi*k*n/N));

 XI[k]+=(xr[n]*sin(2*pi*k*n/N))-(xi[n]*cos(2*pi*k*n/N));

 }

 X[k]=sqrt((XR[k]*XR[k])+(XI[k]*XI[k]));

 }

 printf("X(k) and magnitude of X(k)\n");

 for (k=0;k<N;k++)

 {

73

 printf("\n X[%d] = %f + j %f \n",k,XR[k],XI[k]);

 printf(" magnitude of X(%d) = %f\n",k,X[k]);

 }

 }

Model Graph:

Graph Properties:

Sample Values:

X(k) and magnitude of X(k)

X[0] = 0.000926 + j 0.000000

 magnitude of X(0) = 0.000926

X[1] = 0.000927 + j -0.000795

 magnitude of X(1) = 0.001221

74

X[2] = -0.002035 + j 3.999998

 magnitude of X(2) = 3.999999

X[3] = 0.000925 + j 0.000531

 magnitude of X(3) = 0.001066

X[4] = 0.000924 + j -0.000373

 magnitude of X(4) = 0.000997

X[5] = 0.000923 + j -0.001582

 magnitude of X(5) = 0.001831

X[6] = -0.005004 + j -3.999995

 magnitude of X(6) = 3.999999

X[7] = 0.000927 + j 0.001844

 magnitude of X(7) = 0.002064

Calculation:

Formula:

10;)()(
0

2






NkenxkX
M

k

n

nk
j 

Postlab Questions :

1. Mention the applications of DFT?

2. What is the drawback in Fourier transform and how it can be avoided?

3. Write the 4-point DFT matrix representation.

4. How many multiplications and additions are required to compute DFT for N=512?

5. Distinguish between DFT and DTFT.

Result:

Thus a program was written to perform Discrete Fourier Transform and executed using DSP

processor.

75

Ex : No: Date:

13. WAVEFORM GENERATION

Aim:

 To write a program to generate Sine wave and Ramp wave form using TMS320C5416 DSP

Processor.

Algorithm:

1. Start the program.

2. Declare the output buffer to store the result.

3. Assign 0 to accumulator

4. Increment the variable by one and store the value in the output buffer

5. After the counter is incremented to 40, then decrement the value of the variable one by one

from a negative going ramp

6. Again decrement the value from a negative going ramp in negative scale until the value

becomes maximum negative value.

7. Decrement the maximum negative value one by one until the value of the variable becomes

zero.

Program:

; Program for Triangular Wave Generation

 .global _main

 .mmregs

 .def start

 .data

 .text

_main

start STM #2000h,AR4

 LD #0h,0,A

BEGIN STM #40,BRC

 RPTB RAMP

 STL A,*AR4+

 LD #1h,0,B

RAMP ADD B,0,A

 STM #40,BRC

 RPTB RAMP1

 STL A,*AR4+

 LD #1h,0,B

76

RAMP1 SUB B,0,A

 STM #40,BRC

 RPTB RAMP2

 STL A,*AR4+

 LD #1h,0,B

RAMP2 SUB B,0,A

 STM #40,BRC

 RPTB RAMP3

 STL A,*AR4+

 LD #1h,0,B

RAMP3 ADD B,0,A

 STL A,*AR4+

 LD #1h,0,A

 SUB #1h,0,A

 BC BEGIN,ANEQ

 .end

The repeat-block instructions are used to repeat a block of code N + 1 times, where N is the value loaded

into the block-repeat counter register (BRC).

BRC contains the value N, which is one less than the number of times the block is to be repeated. The

block-repeat start address register (RSA) holds the address of the first instruction of the block of code to

be repeated. The block-repeat end address register (REA) holds the address of the last instruction word of

the block of code to be repeat

Model Graph:

Graph Property:

77

Program:

//Program for Sine Wave Generation

#include <stdio.h>

#include<math.h>

#define FREQ 1000

float a[128];

main()

{

 int i=0;

 for(i=0;i<128;i++)

 {

 a[i]=sin(2*3.14*FREQ*i/24000);

 printf("%f",a[i]);

 }

}

Model Graph:

78

Graph Property:

Result:

Thus the program was written to generate a Ramp signal, Sine signal and executed using DSP

processor.

Ex: No: Date:

14.IIR AND FIR IMPLEMENTATION

79

Aim:

 To write a program to implement Low pass filter using Finite Impulse Response in TMS320C5416

DSP Processor.

Prerequisite Lab Questions:

1. What are the properties of FIR filter?

2. When cascade from realization is preferred in FIR filters?

3. What is the reason that FIR filter is always stable?

4. What are the desirable characteristics of the windows?

Description:

 Input: Give the cutoff frequency and order of the filter

 Output: 1. Find the ideal impulse response hd (n) of the filter order.

 2. Find the window coefficients w (n) using the appropriate window

 Function.

 3. Find the filter coefficients h (n) =hd (n)*w (n).

4. Plot hd (n), w (n) and h (n).

Algorithm:

1. Start the program.

2. Get the cutoff frequency and order as an input...

3. Select a window function w (n).

4. Find the ideal impulse response of the filter hd (n).

5. Find the filter coefficients h (n) by multiplying hd (n) and w (n).

6. Execute the program, display the result and verify it.

7. Plot the graph for hd (n), w (n) and h (n) for the low pass filter.

8. Stop the process.

Program:

 //Program for Fir

 #include<stdio.h>

 #include<math.h>

 #define pi 3.14

 int n,N;

 float hd[10],alpha,w[10],h[10],wc;

 main()

 {

 printf("enter N value");

 scanf("%d",&N);

 printf("enter wc value");

 scanf("%f",&wc);

 for(n=0;n<N;n++)

 {

 /*Hamming window function*/

80

 w[n]=0.54-0.46*(cos((2*pi*n)/(N-1)));

 printf("w[%d]= %f \n",n,w[n]);

 }

 alpha=(N-1)/2;

 /* Impulse function */

 for(n=0;n<N;n++)

 {

 if(n!=alpha)

 hd[n]=sin(wc*(n-alpha))/(pi*(n-alpha));

 else

 hd[n]=wc/3.14;

 printf("hd[%d]= %f\n",n,hd[n]);

 }

 /*Filter coefficients*/

 for(n=0;n<N;n++)

 {

 h[n]=hd[n]*w[n];

 printf("h[%d]= %f\n",n,h[n]);

 }

Output:

enter N value11

enter wc value1.2

 window coefficients:

w[0]= 0.080000 w[1]= 0.167766 w[2]= 0.397574 w[3]= 0.681730

w[4]= 0.911803 w[5]= 0.999999 w[6]= 0.912664 w[7]= 0.683123

w[8]= 0.398967 w[9]= 0.168629 w[10]= 0.080002

Ideal impulse response:

hd[0]= -0.017797 hd[1]= -0.079312 hd[2]= -0.046977 hd[3]= 0.107558

hd[4]= 0.296828 hd[5]= 0.382166 hd[6]= 0.296828 hd[7]= 0.107558

hd[8]= -0.046977 hd[9]= -0.079312 hd[10]= -0.017797

Low pass filter coefficients:

h[0]= -0.001424 h[1]= -0.013306 h[2]= -0.018677 h[3]= 0.073325

h[4]= 0.270648 h[5]= 0.382165 h[6]= 0.270904 h[7]= 0.073475

h[8]= -0.018742 h[9]= -0.013374 h[10]= 0.000025

Model Graph:

81

Graph Property:

Theoretical calculation:

82

1. hd(n)=1/2π ∫ Hd(w)ejwndw

2. Select w (n)

3. Find h (n) = hd (n) w (n)

Rectangular Window



 


otherwise

Mn
nw

,0

10,1
)(

Hanning Window



































otherwise

Mn
M

n

nw

,0

10,
1

2
cos1*5.0

)(



Hamming Window

2.


























otherwise

Mn
M

n

nw

,0

10,
1

2
cos*46.054.0

)(



Post Lab Questions:

1. What is the necessary and sufficient condition for linear phase characteristics in

FIR filter?

2. What is the principle of designing FIR filter using frequency sampling method?

3. What is the principle of designing FIR filter using frequency sampling method?

4. What are the disadvantages of' Fourier series method?

Result:

Thus a program was written to implement Low pass filter using Finite Impulse Response and

executed using DSP processor.

Ex No : Date :

83

15. FINITE WORD LENGTH EFFECT

Aim:

 To study the functions of finite word length effect in fixed point DSP systems..

Apparatus Required:

Hardware : Personal Computer & TMS320C67XX kit

Software : Code Composer Studio version4

Prerequisite Lab Questions:

1. What is the difference between rounding and tradeoff?

2. Define finite word length effect

3. What is Limit cycle oscillation?

4. What do you mean by dead band?

5. What is the need for scaling?

Program:

function ADCNoiseGain=ADCNoise(b,a,n,FM) [B,A] = sos2tf([b a]);

%form A(z) and B(z) [h,t] = impz(B,A,n);

ADCNoiseGain = sum(h.^2)/12.0;

fprintf('ADC noise gain is %f\n\n',ADCNoiseGain);

if FM~=1

fprintf('ADC noise is %g^2*%g*q^2\n',[FM ADCNoiseGain]);

else

fprintf('ADC noise is %g*q^2\n',ADCNoiseGain);

 end function

CoeffQuantizeErr(b,a,maxbits,ftype,f,Fs)

%COEFFICIENT QUANTIZATION ERROR ANALYSIS

n=256;

for nbits=2:maxbits [B,A]=QuantizeCoeff(b,a,nbits);

[B,A] = sos2tf([B A]);

[h,w] = freqz(B,A,n);

amag = abs(h);

amag = amag/max(amag);

fprintf('\n\nnbits\tstage\tA1\tA2\tradius1\tangle1\tradiu s2\tangle2\n');

for nbits=2:maxbits [B,A]=QuantizeCoeff(b,a,nbits);

for i=1:size(b,1) r1 = sqrt(abs(A(i,3)));

angle1 = 180/pi*acos(A(i,2)/(-2.0*r1));

r2 = sqrt(abs(a(i,3)));

angle2 = 180/pi*acos(a(i,2)/(-2.0*r2));

fprintf('%d\t%d\t%-7.4f\t%-7.4f\t%-7.4f\t%-7.2f\t%- 7.4f\t%-7.2f\n', nbits, i,A(i,2) , A(i,3),

r1,angle1,r2,angle2);

end

end format;

function ScaleFactor(b,a,nstep,size,structure) norm0 = DirectScale(b,a,0,nstep);

norm1 = DirectScale(b,a,1,nstep);

norm2 = DirectScale(b,a,2,size);

84

else norm0 = CanonicScale(b,a,0,nstep);

norm1 = CanonicScale(b,a,1,nstep);

norm2 = CanonicScale(b,a,2,size);

end disp('L1-norms of the second order sections:');

disp(norm0); disp('L2-norms of the second order sections:');

disp(norm1); disp('Loo-norms of the second order sections:');

disp(norm2);

function s = DirectScale(b,a,iopt,n)

if(iopt>=3) s = ones(1,size(b,1));

 return;

else

A = 1; B = 1;

for i=1:size(b,1)

%loop for each stage

A = conv(A,a(i,:));

B = conv(B,b(i,:));

s(i) = GetScaleFactor(B,A,iopt,n);

end

end function

s = CanonicScale(b,a,iopt,n)

if(iopt>=3)

s = ones(1,size(b,1));

 return;

else

A = 1;

B = 1;

for i=1:size(b,1)

A = conv(A,a(i,:));

if i>1 B = conv(B,b(i-1,:));

 end

s(i) = GetScaleFactor(B,A,iopt,n);

 end

end

Post Lab Questions:

1. What are the advantages of floating point arithmetic?

2. What are the methods to prevent overflow?

3. What are the two kinds of limit cycles?

4. What is the relationship between truncation error e and the bits b for representing a decimal

into binary?

5. What are the three quantization errors to finite word length registers in digital filters?

Result:

Thus the function of finite word length effect in fixed point DSP processor is studied.

Ex :No: Date:

85

16. INTRODUCTION TO IMAGE PROCESSING TOOLBOX

Aim:

 To study the basic operations in image processing using MATLAB program.

Prerequisite Lab Questions:

1. Define image processing.

2. What is a digital image?

3. List the applications of image processing techniques.

4. How will you load and display an image?

5. How will you define 2-D DFT of an image?

Description:

 Input: Give input images from MATLAB edit window.

 Output: Perform various image processing techniques given and display it in different Figure

 window.

 Algorithm:

 Load an image in edit window and perform the following operations:

1. Reading and displaying an image

2. Improving the contrast of an image

3. Addition of images

4. Displaying an color image

5. Converting a color image to Gray scale image

Program:

% PROGRAM FOR READING AND DISPALYING AN IMAGE

clc;

clear all;

close all;

I = imread('pout.tif');

figure, imshow(I)

% PROGRAM FOR IMPROVING THE CONTRAST OF AN IMAGE

figure, imhist(I)

I2 = histeq(I);

figure, imshow(I2)

%PROGRAM FOR ADDING THE IMAGES

 I = imread('rice.png');

 J = imread('cameraman.tif');

 K = imadd(I,J);

 figure, imshow(K)

86

% PROGRAM FOR CONVERTING COLOR IMAGE TO GRAY SCALE

I = imread('board.tif');

J = rgb2gray(I);

figure, imshow(I), figure, imshow(J);

Sample Output

ORIGINAL IMAGE

0

200

400

600

800

1000

1200

1400

1600

IMAGE HISTOGRAM

0 50 100 150 200 250

HISTOGRAM EQUALIZED IMAGE

ADDITION OF IMAGES

87

COLOR IMAGE GRAY SCALE IMAGE

PostLab Questions:

1. Mention the applications of image processing techniques.

2. How will you improve the contrast of an image?

3. What are the various mathematical operations done in an image?

4. Define spatial and frequency domain?

5. How to perform 2-D DFT of an image?

Result:

 Thus a MATLAB program for studying the image processing tool box was written, executed and

the graphs were plotted.

88

Ex No : Date :

17.GENERATION AND DETECTION OF DTMF SIGNAL USING DFT

Aim:

 To study the applications of Dual Tone Multi- Frequency (DTMF) signals in telephones and to

generate and visualize the DTMF signals using MATLAB program.

Prerequisite Lab Questions:

1. What are the applications of DTMF signals?

2. List the various low and high frequency signals used for DTMF generation.

3. How DFT is used for DTMF generation?

4. Draw the basic symbols in a telephone key pad.

5. What do you mean by DTMF generation and detection?

Description:

 Input: Generate sine input signal for low and high frequencies.

 Output:

i. Represent the generated low and high frequency signals using DFT.

ii. Generate the Matlab code for the generation and visualization of the DTMF tones

Algorithm:

1. Start the program.

2. Generate the sinusoidal signal with low frequency group f = 697 Hz, 770 Hz, 852 Hz,

941 Hz and high frequencies h= 1209 Hz, 1336 Hz, 1477Hz.

 3Set the sampling frequency 8 KHz,N = 800 , No of samples at a spacing of 100ms.

4. Generate and visualize the DFT of the corresponding low and high frequency signal.

5. Stop the program.

Theory :

Dual-tone Multi-Frequency (DTMF) signaling is the basis for voice communications control and is widely

used worldwide in modern telephony to dial numbers and configure switchboards. It is also used in

systems such as in voice mail, electronic mail and telephone banking.

Generating DTMF Tones. A DTMF signal consists of the sum of two sinusoids - or tones - with

frequencies taken from two mutually exclusive groups. These frequencies were chosen to prevent any

harmonics from being incorrectly detected by the receiver as some other DTMF frequency. Each pair of

tones contains one frequency of the low group (697 Hz, 770 Hz, 852 Hz, 941 Hz) and one frequency of

the high group (1209 Hz, 1336 Hz, 1477Hz) and represents a unique symbol. The frequencies allocated to

the push-buttons of the telephone pad are shown below:

89

Matlab Program

i. Generation of the twelve frequency pairs

Clear all;

Close all;

symbol = {'1','2','3','4','5','6','7','8','9','*','0','#'};

lfg = [697 770 852 941]; % Low frequency group

hfg = [1209 1336 1477]; % High frequency group

f = [];

for c=1:4,

 for r=1:3,

 f = [f [lfg(c);hfg(r)]];

 end

end

ans =

 697 1209

 697 1336

 697 1477

 770 1209

 770 1336

 770 1477

 852 1209

 852 1336

 852 1477

 941 1209

 941 1336

 941 1477

Matlab code for the generation and visualization of the DTMF tones

Fs = 8000; % Sampling frequency 8 kHz

N = 800; % Tones of 100 ms

t = (0:N-1)/Fs; % 800 samples at Fs

pit = 2*pi*t;

tones = zeros(N,size(f,2));

for toneChoice=1:12,

 % Generate tone

 tones(:,toneChoice) = sum(sin(f(:,toneChoice)*pit))';

 % Plot tone

 subplot(4,3,toneChoice),plot(t*1e3,tones(:,toneChoice));

title(['Symbol "', symbol{toneChoice},'":

[',num2str(f(1,toneChoice)),',',num2str(f(2,toneChoice)),']'])

set(gca, 'XLim', [0 25]);

ylabel('Amplitude');

 if toneChoice>9, xlabel('Time (ms)'); end

90

end

set(gcf, 'Color', [1 1 1], 'Position', [1 1 1280 1024])

annotation(gcf,'textbox', 'Position',[0.38 0.96 0.45 0.026],...

 'EdgeColor',[1 1 1],...

 'String', '\bf Time response of each tone of the telephone pad', ...

 'FitBoxToText','on');

MODEL GRAPH

0 5 10 15 20 25
-2

0

2
Symbol "1": [697,1209]

A
m

p
li
tu

d
e

0 5 10 15 20 25
-2

0

2
Symbol "2": [697,1336]

A
m

p
li
tu

d
e

0 5 10 15 20 25
-2

0

2
Symbol "3": [697,1477]

A
m

p
li
tu

d
e

0 5 10 15 20 25
-2

0

2
Symbol "4": [770,1209]

A
m

p
li
tu

d
e

0 5 10 15 20 25
-2

0

2
Symbol "5": [770,1336]

A
m

p
li
tu

d
e

0 5 10 15 20 25
-2

0

2
Symbol "6": [770,1477]

A
m

p
li
tu

d
e

0 5 10 15 20 25
-2

0

2
Symbol "7": [852,1209]

A
m

p
li
tu

d
e

0 5 10 15 20 25
-2

0

2
Symbol "8": [852,1336]

A
m

p
li
tu

d
e

0 5 10 15 20 25
-2

0

2
Symbol "9": [852,1477]

A
m

p
li
tu

d
e

0 5 10 15 20 25
-2

0

2
Symbol "*": [941,1209]

A
m

p
li
tu

d
e

Time (ms)

0 5 10 15 20 25
-2

0

2
Symbol "0": [941,1336]

A
m

p
li
tu

d
e

Time (ms)

0 5 10 15 20 25
-2

0

2
Symbol "#": [941,1477]

A
m

p
li
tu

d
e

Time (ms)

 Time response of each tone of the telephone pad

PostLab Questions:

1. What are the applications of DSP systems?

2. List the procedure for generation of DTMF signals.

3. Define Goertzel algorithm for DFT estimation.

4. What are the types of multiple access in communication systems?

5. Define OFDM.

Result:

 Thus a program to generate and visualize DTMF tones for telephone communication using Matlab

was written and executed.

