## SRM VALLIAMMAI ENGINEERING COLLEGE

## (An Autonomous Institution)

SRM Nagar, Kattankulathur - 603 203

## DEPARTMENT

## OF

## **ELECTRONICS AND INSTRUMENTATION ENGINEERING**

## **QUESTION BANK**



### **V SEMESTER**

1906004– Communication Engineering

**Regulation – 2019** 

Academic Year :2022-2023 Odd Sem

Prepared by

Mr. R. IssanRaj , Asst. Prof (Sr.G)/EIE



# SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)



SRM Nagar, Kattankulathur – 603 203.

#### DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

#### **QUESTION BANK**

#### SUBJECT : 1906004- COMMUNICATION ENGINEERING YEAR /SEM : III / V

|          | UNIT I<br>ANALOG MODULATION                                                                                                                                                                                                                                                                                                      |             |               |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|--|
| Amp      | litude Modulation–AM, DSBSC, SSBSC, VSB–PSD, modulators and demodulator                                                                                                                                                                                                                                                          | s–Angle 1   | modulation-PM |  |
| and F    | M–PSD, modulators and demodulators–Super heterodyne receivers.                                                                                                                                                                                                                                                                   | 0           |               |  |
|          | PART – A                                                                                                                                                                                                                                                                                                                         |             |               |  |
| Q.<br>No | Questions                                                                                                                                                                                                                                                                                                                        | BT<br>Level | Competence    |  |
| 1.       | Why do you need modulation in communication systems?                                                                                                                                                                                                                                                                             | BTL3        | Apply         |  |
| 2.       | One input to a conventional AM modulator is a 500 kHz carrier with the amplitude of 20 V <sub>p</sub> . The second input is 10 kHz modulating signal that is of sufficient amplitude to cause a change in the output wave of $\pm$ 7.5 V <sub>p</sub> . Evaluate: (a) Upper and lower side frequency, (b) Modulation efficiency. | BTL5        | Evaluate      |  |
| 3.       | Define modulation index.                                                                                                                                                                                                                                                                                                         | BTL1        | Remember      |  |
| 4.       | Consider an AM signal $x(t)=2\cos(2\pi fct) +0.5\cos(2\pi fct).\cos(2\pi fmt)$ . Find the modulation index used to generate the signal.                                                                                                                                                                                          | BTL5        | Evaluate      |  |
| 5.       | The output voltage of a transmitter is given by $500(1+0.4 \text{ sin } 3140t)$ sin $6.28 \times 10^7$ t.Find the carrier frequency and modulating frequency.                                                                                                                                                                    | BTL3        | Apply         |  |
| 6.       | What will be the power in each sideband in amplitude modulated signal if power of carrier wave is 176W and there is 60% modulation?                                                                                                                                                                                              | BTL6        | Create        |  |
| 7.       | Express the relationship between the modulating signal frequency and the bandwidth in a conventional AM system?                                                                                                                                                                                                                  | BTL2        | Understand    |  |
| 8.       | Summarize the methods for generating SSB-SC signal.                                                                                                                                                                                                                                                                              | BTL2        | Understand    |  |
| 9.       | Define modulation coefficient and percent modulation.                                                                                                                                                                                                                                                                            | BTL1        | Remember      |  |
| 10.      | In an amplitude modulation system, the carrier frequency is 100kz. The maximum frequency of the signal is 5 kHz. Calculate the lower & upper side bands and bandwidth of the AM signal.                                                                                                                                          | BTL3        | Apply         |  |
| 11.      | The carrier amplitude of Am varies between 4V and 1V.Calculate the depth of modulation.                                                                                                                                                                                                                                          | BTL5        | Evaluate      |  |
| 12.      | Compare AM with DSB-SC and SSB-SC.                                                                                                                                                                                                                                                                                               | BTL4        | Analyze       |  |
| 13.      | Write down the mathematical expression for angle modulated wave.                                                                                                                                                                                                                                                                 | BTL1        | Remember      |  |
| 14.      | Draw the phasor diagram of narrow band FM.                                                                                                                                                                                                                                                                                       | BTL1        | Remember      |  |
| 15.      | Differentiate between narrow band and wide band FM signal.                                                                                                                                                                                                                                                                       | BTL4        | Analyze       |  |
| 16.      | Infer about deviation sensitivity for FM.                                                                                                                                                                                                                                                                                        | BTL4        | Analyze       |  |
| 17.      | What is the relation between phase modulation and frequency modulation?                                                                                                                                                                                                                                                          | BTL4        | Analyze       |  |
| 18.      | Differentiate frequency and phase modulation.                                                                                                                                                                                                                                                                                    | BTL1        | Remember      |  |
| 19.      | What is the purpose of limiter in FM receiver?                                                                                                                                                                                                                                                                                   | BTL1        | Remember      |  |
| 20.      | Draw the Schematic of generating FM signal using Phase Modulator                                                                                                                                                                                                                                                                 | BTL2        | Understand    |  |

| 21.       | What                              | is Pre-emphasis and De-emphasis circuit? Where these circuits are used.                                | BTL3       | Apply      |
|-----------|-----------------------------------|--------------------------------------------------------------------------------------------------------|------------|------------|
| 22.       | State                             | Carson's rule.                                                                                         | BTL2       | Understand |
| 23.       | The r                             | naximum frequency deviation in an FM is 10kHz and the signal frequency is                              | RTI 6      | Create     |
|           | 10kH                              | z. Estimate the bandwidth using Carson's rule and the modulation index.                                | DILU       | Cleate     |
| 24.       | Defin                             | e heterodyning principle.                                                                              | BTL2       | Understand |
|           |                                   | PART – B                                                                                               | DT         |            |
| Q.        |                                   | Questions                                                                                              | B I<br>B I | Competence |
| <u>No</u> | With                              | waveforms and circuit diagrams explain the amplitude modulation and                                    | Level      | Competence |
|           | demo                              | dulation. (13)                                                                                         | BTL2       | Understand |
| 2.        | (i)                               | The output modulated wave of a standard AM transmitter is represented                                  | BTL5       | Evaluate   |
|           |                                   | $S(t) = 500(1+0.4\sin 3140t) \sin(6.28\times 10^7)t$ . This voltage is fed to a load of                |            |            |
|           |                                   | $600\Omega$ . Analyse the following (6)                                                                |            |            |
|           |                                   | (a) Modulating Frequency                                                                               |            |            |
|           |                                   | (b) Carrier Frequency                                                                                  |            |            |
|           |                                   | (c) Mean power output                                                                                  |            |            |
|           | <b>(ii)</b>                       | Derive efficiency $\eta$ of standard AM and show that for a single tone AM,                            |            |            |
|           |                                   | $\eta_{\rm max} = 33.3\%$ at m=1. (7)                                                                  |            |            |
| 3.        | (i)                               | Derive an expression for the amplitude modulated wave and its power                                    |            |            |
|           |                                   | relation. (8)                                                                                          | BTL3       | Apply      |
|           | (ii)                              | Explain any one AM demodulation method. (5)                                                            |            |            |
| 4.        | Name                              | e the methods used for the suppression of unwanted side band in AM                                     | DTI 1      | D 1        |
|           | transı                            | mission. Describe about the working of any one of them. (13)                                           | BILI       | Remember   |
| 5.        | (i)                               | Discuss the generation of SSB using filtering and phasing method. (8)                                  |            |            |
|           | (ii)                              | Analyse about the SSB demodulation with necessary diagram and                                          | BTL4       | Analyze    |
|           |                                   | equations. (5)                                                                                         |            |            |
| 6.        | (i)                               | Explain the operation of any one Amplitude Modulator. (8)                                              | RTI 3      | Apply      |
|           | (ii)                              | With suitable sketch interpret about square law detector.(5)                                           | DILS       | тррту      |
| 7.        | An a                              | udio frequency signal 10 sin $(2\pi x 500)$ t is used to amplitude modulate a                          |            |            |
|           | carrie                            | er of 50 sin( $5\pi x \ 10^3$ )t. Calculate and Analyse (13)                                           |            |            |
|           |                                   | iodulation index                                                                                       | DTI 4      | A malarma  |
|           |                                   | pper and lower side band frequencies                                                                   | BIL4       | Analyze    |
|           | (III) F<br>(iv) N                 | Teak amplitude and power of side band                                                                  |            |            |
|           | $(\mathbf{v})$ N $(\mathbf{v})$ T | ransmission efficiency                                                                                 |            |            |
| 8.        | Desci                             | ribe any one scheme for both amplitude modulation and amplitude                                        | рлі э      | A 1        |
|           | demo                              | dulation. (13)                                                                                         | BTL3       | Apply      |
| 9.        | (i)                               | Derive the relation between the output power of an AM transmitter and the                              | BTL5       | Evaluate   |
|           |                                   | depth of modulation, and plot it as a graph for values of the modulation<br>index from zero to maximum |            |            |
|           | (jij)                             | For a modulation coefficient $m=0.2$ and an unmodulated carrier power                                  |            |            |
|           | (11)                              | $P_c=1000W$ , determine the total sideband power. upper and lower sideband                             |            |            |
|           |                                   | power, modulated carrier power and total transmitted power. (5)                                        |            |            |
| 10.       | (i)                               | Obtain the mathematical expression for power and efficiency of an AM. (6)                              |            |            |
|           | (ii)                              | Derive the mathematical expression for FM system using Bessel function.                                | BTL1       | Remember   |
| 11        |                                   | (7)                                                                                                    |            |            |
| 11.       | (i)                               | Demonstrate an FM modulator operates at carrier signal frequency of 500                                | BTL6       | Create     |
|           |                                   | KILZ WILL PEAK amplitude 10 Volts. A modulating frequency of 10 KHZ                                    |            |            |

|                       |                            | modulates it with the peak frequency deviation of 10 kHz. Calculate the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                                         |
|-----------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------|
|                       |                            | (i) Modulation index. (ii) Minimum BW. (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                                         |
|                       | (ii)                       | If the signal v(t)=20 sin $(6.28 \times 10^6 \text{ t} + 10 \text{ sin } 6.283 \times 10^3 \text{ t})$ represents a phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                                         |
|                       |                            | modulated signal ,determine the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                         |
|                       |                            | (i) The Carrier frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                                         |
|                       |                            | (ii) The modulating frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                         |
|                       |                            | (iii)The modulation index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                                         |
|                       |                            | (iv)The peak phase deviation (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                                         |
| 12.                   | With                       | relevant diagrams explain the direct and indirect methods of generating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BTL2                        | Understand                              |
|                       | frequ                      | ency modulated waves. (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                                         |
| 13.                   | (i)                        | Compare wide band and narrow band FM system. (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BTL2                        | Understand                              |
| 14                    | (11)                       | Explain the detection of FM using PLL detector. (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                         |
| 14.                   | (1)                        | bandwidth of EM Signal (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                                         |
|                       | (;;)                       | List the difference between phase modulation and frequency modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BTL1                        | Remember                                |
|                       | (II)                       | List the difference between phase modulation and frequency modulation. (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                                         |
| 15.                   | (i)                        | Summarize and prove the properties of power spectral density (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                                         |
| 10.                   | (i)                        | Describe about the PM modulator and demodulator (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BTL1                        | Remember                                |
| 16                    | (ii)                       | Discuss about the Armstrong method of FM generation (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                         |
| 10.                   | (ii)                       | Describe any one Angle demodulation method (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BTL2                        | Understand                              |
| 17.                   | (i)                        | Derive an expression for the FM wave. Compare it with phase modulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                         |
|                       | (-)                        | wave. (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DTI 4                       | A                                       |
|                       | (ii)                       | Explain the operation of a super heterodyne receiver and list its advantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BIL4                        | Analyze                                 |
| -                     |                            | over Tuned radio frequency receiver, (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                                         |
|                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                         |
|                       | 1                          | PARI-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | 1                                       |
| Q.<br>No              |                            | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BT<br>Level                 | Competence                              |
| Q.<br>No<br>1.        | (i)                        | Questions<br>A telephone transmitter using AM has unmodulated carrier output power of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BT<br>Level                 | Competence                              |
| Q.<br>No<br>1.        | (i)                        | Questions       PARI - C         Questions       A telephone transmitter using AM has unmodulated carrier output power of 20 kW and can be modulated to a maximum depth of 80% by a sinusoidal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BT<br>Level                 | Competence                              |
| Q.<br>No<br>1.        | (i)                        | Questions<br>A telephone transmitter using AM has unmodulated carrier output power of<br>20 kW and can be modulated to a maximum depth of 80% by a sinusoidal<br>modulating voltage without causing overloading. Evaluate the value to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BT<br>Level                 | Competence                              |
| Q.<br>No<br>1.        | (i)                        | Questions<br>A telephone transmitter using AM has unmodulated carrier output power of<br>20 kW and can be modulated to a maximum depth of 80% by a sinusoidal<br>modulating voltage without causing overloading. Evaluate the value to<br>which unmodulated carrier power may be increased without resulting in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BT<br>Level                 | Competence                              |
| Q.<br>No<br>1.        | (i)                        | <b>Questions</b><br>A telephone transmitter using AM has unmodulated carrier output power of 20 kW and can be modulated to a maximum depth of 80% by a sinusoidal modulating voltage without causing overloading. Evaluate the value to which unmodulated carrier power may be increased without resulting in overloading if the maximum permitted modulation index is restricted to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BT<br>Level                 | Competence                              |
| Q.<br><u>No</u><br>1. | (i)                        | Questions         A telephone transmitter using AM has unmodulated carrier output power of 20 kW and can be modulated to a maximum depth of 80% by a sinusoidal modulating voltage without causing overloading. Evaluate the value to which unmodulated carrier power may be increased without resulting in overloading if the maximum permitted modulation index is restricted to 60%.         For an AM DSPEC wave with a pack unmodulated carrier voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BT<br>Level                 | Competence                              |
| Q.<br>No<br>1.        | (i)<br>(ii)                | Questions       PART - C         A telephone transmitter using AM has unmodulated carrier output power of 20 kW and can be modulated to a maximum depth of 80% by a sinusoidal modulating voltage without causing overloading. Evaluate the value to which unmodulated carrier power may be increased without resulting in overloading if the maximum permitted modulation index is restricted to 60%.         For an AM DSBFC wave with a peak unmodulated carrier voltage V=10V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BT<br>Level<br>BTL6         | Competence                              |
| Q.<br><u>No</u><br>1. | (i)<br>(ii)                | QuestionsA telephone transmitter using AM has unmodulated carrier output power of<br>20 kW and can be modulated to a maximum depth of 80% by a sinusoidal<br>modulating voltage without causing overloading. Evaluate the value to<br>which unmodulated carrier power may be increased without resulting in<br>overloading if the maximum permitted modulation index is restricted to<br>$60\%$ . (5)For an AM DSBFC wave with a peak unmodulated carrier voltage<br>$V_c=10V_p$ , a load resistance $R_L=10\Omega$ and a modulation coefficient<br>$m=1$ determine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BT<br>Level<br>BTL6         | Competence                              |
| Q.<br>No<br>1.        | (i)<br>(ii)                | <b>PART – C</b><br>Questions<br>A telephone transmitter using AM has unmodulated carrier output power of<br>20 kW and can be modulated to a maximum depth of 80% by a sinusoidal<br>modulating voltage without causing overloading. Evaluate the value to<br>which unmodulated carrier power may be increased without resulting in<br>overloading if the maximum permitted modulation index is restricted to<br>60%. (5)<br>For an AM DSBFC wave with a peak unmodulated carrier voltage<br>$V_c=10V_p$ , a load resistance $R_L=10\Omega$ and a modulation coefficient<br>m=1,determine<br>(a) Powers of the carrier and the upper and lower sidebands.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BT<br>Level<br>BTL6         | <b>Competence</b><br>Create             |
| Q.<br>No<br>1.        | (i)<br>(ii)                | PAR1 - CQuestionsA telephone transmitter using AM has unmodulated carrier output power of20 kW and can be modulated to a maximum depth of 80% by a sinusoidalmodulating voltage without causing overloading. Evaluate the value towhich unmodulated carrier power may be increased without resulting inoverloading if the maximum permitted modulation index is restricted to60%. (5)For an AM DSBFC wave with a peak unmodulated carrier voltageVc=10Vp, a load resistance $R_L=10\Omega$ and a modulation coefficientm=1,determine(a) Powers of the carrier and the upper and lower sidebands.(b) The total side band power.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BT<br>Level<br>BTL6         | <b>Competence</b><br>Create             |
| Q.<br>No<br>1.        | (i)<br>(ii)                | PART - CQuestionsA telephone transmitter using AM has unmodulated carrier output power of20 kW and can be modulated to a maximum depth of 80% by a sinusoidalmodulated to a maximum depth of 80% by a sinusoidalmodulating voltage without causing overloading. Evaluate the value towhich unmodulated carrier power may be increased without resulting inoverloading if the maximum permitted modulation index is restricted to60%. (5)For an AM DSBFC wave with a peak unmodulated carrier voltageV <sub>c</sub> =10V <sub>p</sub> , a load resistance $R_L=10\Omega$ and a modulation coefficientm=1,determine(a) Powers of the carrier and the upper and lower sidebands.(b) The total side band power.(c) The total power of the modulated wave.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BT<br>Level<br>BTL6         | <b>Competence</b><br>Create             |
| Q.<br>No<br>1.        | (i)<br>(ii)                | PART - CQuestionsA telephone transmitter using AM has unmodulated carrier output power of20 kW and can be modulated to a maximum depth of 80% by a sinusoidalmodulating voltage without causing overloading. Evaluate the value towhich unmodulated carrier power may be increased without resulting inoverloading if the maximum permitted modulation index is restricted to60%. (5)For an AM DSBFC wave with a peak unmodulated carrier voltageVc=10Vp , a load resistance $R_L=10\Omega$ and a modulation coefficientm=1,determine(a) Powers of the carrier and the upper and lower sidebands.(b) The total side band power.(c) The total power of the modulated wave.(d) Draw the power spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BT<br>Level<br>BTL6         | <b>Competence</b><br>Create             |
| Q.<br>No<br>1.        | (i)<br>(ii)                | PART - CQuestionsA telephone transmitter using AM has unmodulated carrier output power of20 kW and can be modulated to a maximum depth of 80% by a sinusoidalmodulating voltage without causing overloading. Evaluate the value towhich unmodulated carrier power may be increased without resulting inoverloading if the maximum permitted modulation index is restricted to60%. (5)For an AM DSBFC wave with a peak unmodulated carrier voltageV <sub>c</sub> =10V <sub>p</sub> , a load resistance $R_L=10\Omega$ and a modulation coefficientm=1,determine(a) Powers of the carrier and the upper and lower sidebands.(b) The total side band power.(c) The total power of the modulated wave.(10)A complex modulating waveform consisting of as sine wave of amplitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BT<br>Level<br>BTL6         | Create                                  |
| Q.<br>No<br>1.        | (i)<br>(ii)<br>(i)         | PART – CQuestionsA telephone transmitter using AM has unmodulated carrier output power of20 kW and can be modulated to a maximum depth of 80% by a sinusoidalmodulating voltage without causing overloading. Evaluate the value towhich unmodulated carrier power may be increased without resulting inoverloading if the maximum permitted modulation index is restricted to60%. (5)For an AM DSBFC wave with a peak unmodulated carrier voltageV <sub>c</sub> =10V <sub>p</sub> , a load resistance $R_L=10\Omega$ and a modulation coefficientm=1,determine(a) Powers of the carrier and the upper and lower sidebands.(b) The total side band power.(c) The total power of the modulated wave.(d) Draw the power spectrum.(10)A complex modulating waveform consisting of as sine wave of amplitude3V and frequency 1 kHz plus a cosine wave of amplitude 5 V and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BT<br>Level<br>BTL6         | Create                                  |
| Q.<br>No<br>1.<br>2.  | (i)<br>(ii)<br>(i)         | PART - CQuestionsA telephone transmitter using AM has unmodulated carrier output power of20 kW and can be modulated to a maximum depth of 80% by a sinusoidalmodulating voltage without causing overloading. Evaluate the value towhich unmodulated carrier power may be increased without resulting inoverloading if the maximum permitted modulation index is restricted to60%. (5)For an AM DSBFC wave with a peak unmodulated carrier voltageVc=10Vp , a load resistance $R_L=10\Omega$ and a modulation coefficientm=1,determine(a) Powers of the carrier and the upper and lower sidebands.(b) The total side band power.(c) The total power of the modulated wave.(d) Draw the power spectrum.(10)A complex modulating waveform consisting of as sine wave of amplitude3V and frequency 1 kHz plus a cosine wave of amplitude 5 V andfrequency 3 kHz amplitude modulates a 500 kHz and 10V peak carrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BT<br>Level<br>BTL6         | Create                                  |
| Q.<br>No<br>1.<br>2.  | (i)<br>(ii)<br>(i)         | PART - CQuestionsA telephone transmitter using AM has unmodulated carrier output power of20 kW and can be modulated to a maximum depth of 80% by a sinusoidalmodulating voltage without causing overloading. Evaluate the value towhich unmodulated carrier power may be increased without resulting inoverloading if the maximum permitted modulation index is restricted to60%.(5)For an AM DSBFC wave with a peak unmodulated carrier voltage $V_c=10V_p$ , a load resistance $R_L=10\Omega$ and a modulation coefficientm=1,determine(a) Powers of the carrier and the upper and lower sidebands.(b) The total side band power.(c) The total power of the modulated wave.(d) Draw the power spectrum.(10)A complex modulating waveform consisting of as sine wave of amplitude3V and frequency 1 kHz plus a cosine wave of amplitude 5 V andfrequency 3 kHz amplitude modulates a 500 kHz and 10V peak carriervoltage.Develop the spectrum of modulated wave and determine the                                                                                                                                                                                                                                                                                                                                                                                                                                | BT<br>Level<br>BTL6         | Create                                  |
| Q.<br>No<br>1.        | (i)<br>(ii)<br>(i)         | PART + CQuestionsA telephone transmitter using AM has unmodulated carrier output power of20 kW and can be modulated to a maximum depth of 80% by a sinusoidalmodulating voltage without causing overloading. Evaluate the value towhich unmodulated carrier power may be increased without resulting inoverloading. Evaluate the value towhich unmodulated carrier power may be increased without resulting inoverloading if the maximum permitted modulation index is restricted to60%. (5)For an AM DSBFC wave with a peak unmodulated carrier voltageVc=10Vp , a load resistance $R_L=10\Omega$ and a modulation coefficientm=1,determine(a) Powers of the carrier and the upper and lower sidebands.(b) The total side band power.(c) The total power of the modulated wave.(d) Draw the power spectrum.(10)A complex modulating waveform consisting of as sine wave of amplitude3V and frequency 1 kHz plus a cosine wave of amplitude 5 V andfrequency 3 kHz amplitude modulates a 500 kHz and 10V peak carriervoltage. Develop the spectrum of modulated wave and determine theaverage power when the modulated wave is fed into 50-ohm load.                                                                                                                                                                                                                                                              | BT<br>Level<br>BTL6         | Create                                  |
| Q.<br>No<br>1.        | (i)<br>(ii)<br>(i)         | PART - CQuestionsA telephone transmitter using AM has unmodulated carrier output power of20 kW and can be modulated to a maximum depth of 80% by a sinusoidalmodulating voltage without causing overloading. Evaluate the value towhich unmodulated carrier power may be increased without resulting inoverloading. Evaluate the value towhich unmodulated carrier power may be increased without resulting inoverloading if the maximum permitted modulation index is restricted to60%. (5)For an AM DSBFC wave with a peak unmodulated carrier voltageV <sub>c</sub> =10V <sub>p</sub> , a load resistance R <sub>L</sub> =10Ω and a modulation coefficientm=1,determine(a) Powers of the carrier and the upper and lower sidebands.(b) The total side band power.(c) The total power of the modulated wave.(d) Draw the power spectrum.(10)A complex modulating waveform consisting of as sine wave of amplitude3V and frequency 1 kHz plus a cosine wave of amplitude 5 V andfrequency 3 kHz amplitude modulates a 500 kHz and 10V peak carriervoltage. Develop the spectrum of modulated wave and determine theaverage power when the modulated wave is fed into 50-ohm load.(9)                                                                                                                                                                                                                             | BT<br>Level<br>BTL6<br>BTL5 | <b>Competence</b><br>Create<br>Evaluate |
| Q.<br>No<br>1.        | (i)<br>(ii)<br>(i)<br>(ii) | PART - CQuestionsA telephone transmitter using AM has unmodulated carrier output power of20 kW and can be modulated to a maximum depth of 80% by a sinusoidalmodulating voltage without causing overloading. Evaluate the value towhich unmodulated carrier power may be increased without resulting inoverloading. Evaluate the value towhich unmodulated carrier power may be increased without resulting inoverloading if the maximum permitted modulation index is restricted to60%. (5)For an AM DSBFC wave with a peak unmodulated carrier voltageVc=10Vp , a load resistance $R_L=10\Omega$ and a modulation coefficientm=1,determine(a) Powers of the carrier and the upper and lower sidebands.(b) The total side band power.(c) The total power of the modulated wave.(d) Draw the power spectrum.(10)A complex modulating waveform consisting of as sine wave of amplitude3V and frequency 1 kHz plus a cosine wave of amplitude 5 V andfrequency 3 kHz amplitude modulates a 500 kHz and 10V peak carriervoltage. Develop the spectrum of modulated wave and determine theaverage power when the modulated wave is fed into 50-ohm load.(9)                                                                                                                                                                                                                                                           | BT<br>Level<br>BTL6<br>BTL5 | Create                                  |
| Q.<br>No<br>1.        | (i)<br>(ii)<br>(ii)        | PART - CQuestionsA telephone transmitter using AM has unmodulated carrier output power of20 kW and can be modulated to a maximum depth of 80% by a sinusoidalmodulating voltage without causing overloading. Evaluate the value towhich unmodulated carrier power may be increased without resulting inoverloading. Evaluate the value towhich unmodulated carrier power may be increased without resulting inoverloading if the maximum permitted modulation index is restricted to60%. (5)For an AM DSBFC wave with a peak unmodulated carrier voltageVc=10Vp , a load resistance $R_L=10\Omega$ and a modulation coefficientm=1,determine(a) Powers of the carrier and the upper and lower sidebands.(b) The total side band power.(c) The total power of the modulated wave.(d) Draw the power spectrum.(10)A complex modulating waveform consisting of as sine wave of amplitude3V and frequency 1 kHz plus a cosine wave of amplitude 5 V andfrequency 3 kHz amplitude modulates a 500 kHz and 10V peak carriervoltage. Develop the spectrum of modulated wave and determine theaverage power when the modulated wave is fed into 50-ohm load.(9)Find the power in each sideband of a DSBSC signal with the carrier signalat 1 MHZ and of a peak signal voltage of 100 V modulated simultaneously, <t< th=""><th>BT<br/>Level<br/>BTL6<br/>BTL5</th><th><b>Competence</b><br/>Create<br/>Evaluate</th></t<> | BT<br>Level<br>BTL6<br>BTL5 | <b>Competence</b><br>Create<br>Evaluate |
| Q.<br>No<br>1.        | (i)<br>(ii)<br>(i)<br>(ii) | PART - CQuestionsA telephone transmitter using AM has unmodulated carrier output power of20 kW and can be modulated to a maximum depth of 80% by a sinusoidalmodulating voltage without causing overloading. Evaluate the value towhich which unmodulated carrier power may be increased without resulting inoverloading if the maximum permitted modulation index is restricted to60%. (5)For an AM DSBFC wave with a peak unmodulated carrier voltageV <sub>c</sub> =10V <sub>p</sub> , a load resistance R <sub>L</sub> =10Ω and a modulation coefficientm=1,determine(a) Powers of the carrier and the upper and lower sidebands.(b) The total side band power.(c) The total power of the modulated wave.(d) Draw the power spectrum.(10)A complex modulating waveform consisting of as sine wave of amplitude3V and frequency 1 kHz plus a cosine wave of amplitude 5 V andfrequency 3 kHz amplitude modulated wave is fed into 50-ohm load.(9)Find the power in each sideband of a DSBSC signal with the carrier signalat 1 MHZ and of a peak signal voltage of 100 V modulated simultaneously,and a peak modulating voltages are 10 V, 20 V and 30 V respectively.                                                                                                                                                                                                                                         | BT<br>Level<br>BTL6<br>BTL5 | <b>Competence</b><br>Create<br>Evaluate |

| 3.          | One input to<br>amplitude of<br>sufficient am<br>(a) Upper<br>(b) Modu<br>(c) Peak<br>freque<br>(d) Maxin<br>(e) Expre<br>(f) Draw<br>(g) Sketc      | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                 | BTL5          | Evaluate     |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|
| 4.          | <ul> <li>(i) What = 100kH</li> <li>(ii) A 107 wave.</li> <li>Determ         <ul> <li>(a) The</li> <li>(b) Th</li> <li>(c) The</li> </ul> </li> </ul> | is the modulation index of an FM signal having a carrier swing of<br>z, when the modulating signal has a frequency of 8kHz? (5)<br>6 MHz carrier signal is frequency modulated by a 7KHz signal sine<br>The resultant FM signal has frequency deviation of 5 KHz.<br>hine the following<br>e carrier swing of the FM signal<br>e highest and the lowest frequencies attained by the modulated<br>nal, and<br>e modulation index of the FM wave. (10) | BTL6          | Create       |
| 5.          | <ul> <li>(i) A FM freque</li> <li>(ii) An ar where</li> <li>(a) TI</li> <li>(b) Pe</li> <li>(c) Pe</li> <li>(d) Is</li> </ul>                        | radio link has a frequency deviation of 30kHz. The modulating<br>ncy is 3kHz.Find the bandwidth needed for the link. (3)<br>agle modulated signal has the form $v(t)=100cos[2\pi f_ct+4sin2000\pi t]$<br>$f_c=10MHz$ . Find:<br>the Average transmitted power. (2)<br>ak phase deviation. (3)<br>this FM or a PM signal? Explain. (4)                                                                                                                | BTL5          | Evaluate     |
|             |                                                                                                                                                      | UNIT -II<br>PULSE MODULATION                                                                                                                                                                                                                                                                                                                                                                                                                         |               | <u> </u>     |
| Low<br>Voco | pass sampling<br>der-Time Divi                                                                                                                       | theorem–Quantization–PAM–Line coding–PCM, PCM, DM, and AD<br>sion Multiplexing, Frequency Division Multiplexing                                                                                                                                                                                                                                                                                                                                      | PCM and       | ADM, Channel |
|             |                                                                                                                                                      | raki - A                                                                                                                                                                                                                                                                                                                                                                                                                                             | DT            |              |
| Q.<br>No    |                                                                                                                                                      | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                            | Level         | Competence   |
| 1.          | Define sampl                                                                                                                                         | ing theorem.                                                                                                                                                                                                                                                                                                                                                                                                                                         | BTL1          | Remember     |
| 2.          | Differentiate                                                                                                                                        | natural and flat top sampling.                                                                                                                                                                                                                                                                                                                                                                                                                       | BTL4          | Analyze      |
| 3.          | What is samp                                                                                                                                         | ling and quantization?                                                                                                                                                                                                                                                                                                                                                                                                                               | BTL4          | Analyze      |
| 4.          | Illustrate abo                                                                                                                                       | ut quantization error.                                                                                                                                                                                                                                                                                                                                                                                                                               | BTL3          | Apply        |
| 5.          | What is mean                                                                                                                                         | It by allasing? How do you avoid allasing?                                                                                                                                                                                                                                                                                                                                                                                                           | BILI<br>BTI 4 | Analyza      |
| 0.<br>7     | Determine the                                                                                                                                        | Tate and invyuist line val.<br>Note $rate and Nyouist interval for g(t) - \sin g(200t)$                                                                                                                                                                                                                                                                                                                                                              | DIL4<br>RTI 6 | Allalyze     |
| 8.          | What is mean                                                                                                                                         | t by pulse modulation?                                                                                                                                                                                                                                                                                                                                                                                                                               | BTL2          | Understand   |
| 9.          | What are the                                                                                                                                         | four most common methods of pulse modulation?                                                                                                                                                                                                                                                                                                                                                                                                        | BTL1          | Remember     |
| 10.         | Compare bet                                                                                                                                          | ween PAM and PWM.                                                                                                                                                                                                                                                                                                                                                                                                                                    | BTL5          | Evaluate     |
| L           |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 1            |

| 11. | Why            | flat top PAM is preferred over natural PAM?                                                                             | BTL3          | Apply      |
|-----|----------------|-------------------------------------------------------------------------------------------------------------------------|---------------|------------|
| 12. | What           | is bit depth in PCM?                                                                                                    | BTL1          | Remember   |
| 13. | List c         | but the few demerits of DPCM.                                                                                           | BTL1          | Remember   |
| 14. | Illust         | rate the term slope overload noise.                                                                                     | BTL3          | Apply      |
| 15. | Defin          | e Baud rate and Bit rate.                                                                                               | BTL1          | Remember   |
| 16. | Sumr           | narize about Delta modulation.                                                                                          | BTL5          | Evaluate   |
| 17. | Sumr           | narize the disadvantage of Delta modulation                                                                             | BTL2          | Understand |
| 18. | Can y          | you elaborate on ADPCM?                                                                                                 | BTL6          | Create     |
| 19. | What           | is companding?                                                                                                          | BTL2          | Understand |
| 20. | How            | to apply the principle of ADM to generate ADM signal?                                                                   | BTL3          | Apply      |
| 21. | Asses          | ss the need channel vocoder?                                                                                            | BTL5          | Evaluate   |
| 22. | List t         | he types of vocoders.                                                                                                   | BTL2          | Understand |
| 23. | Com            | pare TDM and FDM.                                                                                                       | BTL4          | Analyze    |
| 24. | Write          | any four primary applications of FDM                                                                                    | BTL2          | Understand |
|     |                | PART – B                                                                                                                |               |            |
| 0   |                |                                                                                                                         | BT            |            |
| No  |                | Questions                                                                                                               | Level         | Competence |
| 1.  | State          | and prove sampling theorem. Obtain the reconstructed Signal and Explain                                                 |               |            |
|     | the lo         | w pass sampling theorem in detail. (13)                                                                                 | BTL2          | Understand |
| 2.  | (i)            | List the various sampling techniques. (3)                                                                               |               |            |
|     | (ii)           | Describe about the generation and detection of Flat top PAM. (10)                                                       | BTL1          | Remember   |
| 3.  | (i)            | Describe the generation of PCM signal with a block diagram. (7)                                                         |               |            |
|     | (ii)           | How does flat top sampling differ from natural sampling? Describe about                                                 | D/DI 1        |            |
| 4   | (*)            | the estimation of filtered output. (6)                                                                                  | BILI          | Remember   |
| 4.  | (1)            | Describe the pulse modulation schemes of PAM, PPM, and PWM. (10)                                                        |               |            |
|     | (II)           | minimized (3)                                                                                                           | RTI 3         | Apply      |
| 5.  | Expla          | in the quantization noise in PCM system. How it can be reduced? (13)                                                    | BTL3<br>BTL4  | Analyze    |
| 6.  | (i)            | Discuss DPCM technique with neat block diagram (7)                                                                      | BTL6          | Create     |
| ••  | (ii)           | For minimum line speed with an 8 bit PCM for speech signal ranging up to                                                | DILU          | create     |
|     | ()             | 1 volt. Calculate the resolution and quantization error. Calculate the coding                                           |               |            |
|     |                | efficiency for a resolution of 0.01 volt with the 8 bit PCM. $(\vec{6})$                                                |               |            |
| 7.  | Expla          | in the pulse code modulation and demodulation process. (13)                                                             | BTL2          | Understand |
| 8.  | (i)            | Compare the various Pulse modulation techniques. (9)                                                                    | BTL5          | Evaluate   |
|     | ( <b>ii</b> )  | A PCM system uses a uniform quantizer followed by a 7-bit encoder. The                                                  |               |            |
|     |                | system bit rate is 50 Mbits/sec. Calculate                                                                              |               |            |
|     |                | (a) Sampling frequency                                                                                                  |               |            |
|     |                | (b)Transmission bandwidth (4)                                                                                           |               |            |
| 9.  | Demo           | onstrate ADPCM with required diagram. How does it differ from PCM? (13)                                                 | BTL5          | Evaluate   |
| 10. | Desci          | ibe delta modulation in detail with neat block diagram. Also describe the                                               |               |            |
| 11  | quant          | 1zation error in delta modulation.       (13)         With most close to be the second strength of DM signals       (9) | BTL3          | Apply      |
| 11. | (1)            | With neat sketch summarize the generation of DM signals. (8)                                                            |               | TT 1 / 1   |
| 10  | (II)<br>W/h-at | state the drawbacks of Divi and suggest a method to correct it. (5)                                                     | BTL2          | Understand |
| 12. | in PC          | is mean by quantization and develop the expression for Quantization noise<br>M and DM systems (12)                      | <b>рті 2</b>  | Apply      |
| 13  | With           | neat block diagram explain the Adaptive delta Modulation Scheme Mantion                                                 | BILS<br>RTI 1 | Remember   |
| 13. | its die        | advantages (13)                                                                                                         | DILL          | Kennennoer |
|     | 105 01         |                                                                                                                         |               |            |
| 14. | (i)            | Compare PCM and DPCM techniques. (4)                                                                                    | BTL4          | Analyze    |
|     | (ii)           | Discuss on the process, "Companding" and its characteristics. (9)                                                       |               |            |

| 15.      | Brief                                                                      | ly discuss about Vocoders and also demonstrate about channel Vocoder with                                                                                                                                                                                                                                                                                                            |       |            |
|----------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|
|          | neces                                                                      | sary diagrams. (13)                                                                                                                                                                                                                                                                                                                                                                  | BTL2  | Understand |
| 16.      | Draw                                                                       | and explain the Time division multiplexing with its applications. (13)                                                                                                                                                                                                                                                                                                               | BTL1  | Remember   |
| 17.      | (i)                                                                        | Describe frequency division multiplexing with neat sketch. (8)                                                                                                                                                                                                                                                                                                                       | DTI 4 | A          |
|          | (ii)                                                                       | Compare and contrast the features of TDM and FDM system. (5)                                                                                                                                                                                                                                                                                                                         | BIL4  | Analyze    |
|          |                                                                            | PART – C                                                                                                                                                                                                                                                                                                                                                                             |       |            |
|          |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                      | ВТ    |            |
| Q.N<br>0 |                                                                            | Ouestions                                                                                                                                                                                                                                                                                                                                                                            | Level | Competence |
| 1.       | (i)                                                                        | An analog signal is represented by the equation $x(t)=5 \cos 150\pi t+20 \sin 500\pi t -\cos 700\pi t$ . Calculate the Nyquist rate. (6)                                                                                                                                                                                                                                             | BTL5  | Evaluate   |
|          | (ii)                                                                       | For a PAM transmission of voice signal having maximum frequency $f_m=4kHz$ , calculate the transmission bandwidth. It is given that the sampling frequency $f_s=8kHz$ and the pulse duration $\tau=0.1T_s$ (4)                                                                                                                                                                       |       |            |
|          | (iii)                                                                      | The bandwidth of a video signal is 4.5MHz. This signal is to be transmitted using PCM with the number of quantization levels $Q=1024$ . The sampling rate should be 20% higher than the Nyquist rate .Calculate the system bit rate and minimum transmission bandwidth. (5)                                                                                                          |       |            |
| 2.       | A PC<br>of 4 H<br>dynau<br>(i) M<br>(ii) M<br>(iii) M<br>(iii) F<br>(iv) Q | M system has the following parameters: a maximum analog input frequency         KHz a maximum decoded voltage at the receiver of ±2.55 V, and a minimum         mic range of 46dB. Evaluate the following:         linimum sample rate.       (4)         linimum number of bits used in the PCM code.       (4)         Resolution.       (4)         Quantization error.       SRM | BTL5  | Evaluate   |
| 3.       | How                                                                        | would you compare the various digital communication systems? (15)                                                                                                                                                                                                                                                                                                                    | BTL6  | create     |
| 4.       | (i)                                                                        | A telephone signal band limited to 4KHz is to<br>the output signal to quantization noise ratio is to be held to a minimum of<br>40dB.<br>(a) Calculate the number of binary digits per word<br>(b) Find the bandwidth required for transmission. (6)                                                                                                                                 | BTL5  | Evaluate   |
|          | (ii)                                                                       | <ul> <li>A PCM system uses a uniform quantizer followed by a 7 bit encoder. The system bit rate is 50 M bits/sec. Calculate</li> <li>(a) Sampling frequency.</li> <li>(b) Transmission bandwidth , and</li> <li>(c) SNR<sub>q</sub> for sinusoidal signal (9)</li> </ul>                                                                                                             |       |            |
| 5.       | For n<br>Calcu<br>effici                                                   | ninimum line speed with an 8 bit PCM for speech signal ranging upto 1 volt.<br>alate the resolution and quantization error. Also analyze about the coding<br>ency for a resolution of 0.01 volt with the 8 bit PCM. (15)                                                                                                                                                             | BTL6  | create     |

### Unit-III DIGITAL MODULATION AND TRANSMISSION

Phase shift keying – BPSK, DPSK, QPSK – Principles of M-ary signalling M-ary PSK & QAM –Comparison, ISI – Pulse shaping – Duo binary encoding – Cosine filters – Eye pattern, equalizers

|    | PART A                                                                  |          |            |  |  |
|----|-------------------------------------------------------------------------|----------|------------|--|--|
| 0. | Ouestions                                                               | BT Level | Competence |  |  |
| NO |                                                                         |          | <b>I</b>   |  |  |
| 1. | Define Digital Modulation and list out the types of Digital modulation. | BTL1     | Remember   |  |  |

| 2.  | Give the advantages and disadvantages of digital modulation.                            | BTL2 | Understand |
|-----|-----------------------------------------------------------------------------------------|------|------------|
| 3.  | Draw the BPSK signal for the given message signal 101101.                               | BTL5 | Evaluate   |
| 4.  | Draw the modulated waveform representing PSK and FSK.                                   | BTL2 | Understand |
| 5.  | For 16 PSK and a transmission system with a 10kHZ bandwidth. Find the maximum bit rate. | BTL6 | Create     |
| 6.  | Define DPSK, How it is different from PSK                                               | BTL1 | Remember   |
| 7.  | Illustrate the expression for probability of error of BPSK and BFSK                     | BTL3 | Apply      |
| 8.  | Sketch the QPSK signal for the binary sequence 11001100                                 | BTL6 | Create     |
| 9.  | Differentiate between BPSK from QPSK.                                                   | BTL4 | Analyse    |
| 10. | Draw the constellation diagram of QPSK signal.                                          | BTL3 | Apply      |
| 11. | Differentiate coherent and Non coherent detection                                       | BTL1 | Remember   |
| 12. | What is M-ary encoding?                                                                 | BTL2 | Understand |
| 13. | What is QAM? Assess the significance of QAM?                                            | BTL2 | Understand |
| 14. | Compare M –ary PSK and QAM                                                              | BTL4 | Analyse    |
| 15. | Demonstrate about pulse shaping in digital modulation.                                  | BTL3 | Apply      |
| 16. | How does pulse shaping reduce inter symbol interference?                                | BTL4 | Analyse    |
| 17. | Explain the term ISI? How do you alleviate ISI?                                         | BTL2 | Understand |
| 18. | What is meant by Inter Symbol Interference? List out the causes for that.               | BTL1 | Remember   |
| 19. | What is Duobinary encoding? Why precoding is used.                                      | BTL4 | Analyse    |
| 20. | Define bandwidth efficiency.                                                            | BTL1 | Remember   |
| 21. | Illustrate the benefits of cosine filter.                                               | BTL3 | Apply      |
|     | Assess the significance of eye pattern. What are the information that can be            |      |            |
| 22. | obtained from eye pattern regarding the signal quality?                                 | BTL5 | Evaluate   |
| 23. | Summarize about Eye-pattern used in pulse shaping                                       | BTL5 | Evaluate   |
| 24. | What is an equalizer? List the applications of it.                                      | BTL1 | Remember   |
|     |                                                                                         |      |            |

|      | PART B                                                                                 |          |            |  |  |  |
|------|----------------------------------------------------------------------------------------|----------|------------|--|--|--|
| Q.NO | Questions                                                                              | BT Level | Competence |  |  |  |
| 1.   | (i) Demonstrate about ASK and FSK in detail. (9)                                       | BTL3     | Apply      |  |  |  |
|      | (ii) Illustrate the various digital communication systems. (4)                         |          |            |  |  |  |
| 2.   | (i) Draw the BPSK wave forms for the bit stream 10110001. (3)                          | BTL5     | Evaluate   |  |  |  |
|      | (ii) For a BPSK modulator with a Carrier frequency of 70 MHz and an input bit          |          |            |  |  |  |
|      | rate of 10 Mbps, determine the maximum and minimum upper and lower side                |          |            |  |  |  |
|      | frequencies, draw the output spectrum, determine the minimum Nyquist                   |          |            |  |  |  |
|      | bandwidth, and calculate the baud rate. (10)                                           |          |            |  |  |  |
| 3.   | Describe the generation and detection of BPSK with necessary diagram and               | BTL3     | Apply      |  |  |  |
|      | equation. (13)                                                                         |          |            |  |  |  |
| 4.   | Discuss the working of DPSK transmitter and receiver with neat block diagram and state | BTL2     | Understand |  |  |  |
|      | the reasons over BPSK. (13)                                                            |          |            |  |  |  |
| 5.   | (i) Demonstrate about the generation and detection of DPSK with neat diagram           | BTL2     | Understand |  |  |  |
|      | and necessary equation. (10)                                                           |          |            |  |  |  |
|      | (ii) Distinguish between BPSK and DPSK. (3)                                            |          |            |  |  |  |
| 6.   | (i) Explain in detail about the operation of QPSK transmitter with necessary           | BTL2     | Understand |  |  |  |
|      | diagrams. (9)                                                                          |          |            |  |  |  |
|      | (ii) Compare QPSK and BPSK. (4)                                                        |          |            |  |  |  |

| 7.  | With relevant expression and figure, describe QPSK receiver with its signal space representation (13)      | BTL1 | Remember   |
|-----|------------------------------------------------------------------------------------------------------------|------|------------|
| 8.  | Explain about the M-ary Phase shift keying, by giving its transmitter and receiver with neat diagram. (13) | BTL5 | Evaluate   |
| 9.  | (i) Draw the constellation diagram of QPSK modulation. (3)                                                 | BTL6 | Create     |
|     | (ii) For QPSK modulator with an input data rate equal to 10 Mbps and a carrier                             |      |            |
|     | frequency of 70 MHz. Determine the following                                                               |      |            |
|     | (a) Minimum double sided Nyquist bandwidth (b) Baud Rate and (c) Sketch<br>the output spectrum (10)        |      |            |
| 10. | (i) Define QAM.(3)                                                                                         |      |            |
|     | (ii) Describe the operation of 8 QAM transmitter and receiver using a block diagram and truth table. (10)  | BTL1 | Remember   |
| 11. | (i) Compare and contrast QPSK and QAM. (8)                                                                 | BTL4 | Analyze    |
|     | (ii) Discuss in detail on signal design for ISI elimination. (5)                                           |      |            |
| 12. | Explain M-ary PSK system and also demonstrate about its transmitter and receiver with neat diagrams. (13)  | BTL3 | Apply      |
| 13. | (i) State Nyquist's pulse shape criterion for zero ISI and explain. (3)                                    | BTL4 | Analyze    |
|     | (ii) Draw the block diagram and explain about the duo -binary signaling scheme<br>for controlled ISI. (10) |      |            |
| 14. | Draw and describe the block diagram of the duo binary signaling scheme with and                            |      |            |
|     | without precoding. (13)                                                                                    | RILI | Remember   |
| 15. | (i) What is meant by pulse Shaping? How it reduces ISI? (4)                                                | BTL4 | Analyze    |
|     | (ii) Discuss raised cosine pulse shaping. (9)                                                              | -    |            |
| 16. | (i) Explain how eye diagram is obtained. (5)                                                               | BTL2 | Understand |
|     | (ii) Draw a typical eye diagram and discuss various timing features interpreted from that. (8)             |      |            |
| 17. | (i) Summarize about the delay equalizer and the classifications of equalizers. (8)                         | BTL1 | Remember   |
|     | (ii) Describe about zero-forcing equalizer with neat diagram. (5)                                          | -    |            |

|            |       | PART – C                                                                  |       |            |
|------------|-------|---------------------------------------------------------------------------|-------|------------|
| <b>Q</b> . |       | Questions                                                                 | BT    | Competence |
| NO         |       |                                                                           | Level |            |
|            |       |                                                                           |       |            |
| 1.         | Prese | ent a case study on the features and error performance of various Digital | BTL6  | Create     |
|            | modu  | alation systems. (15)                                                     |       |            |
| 2.         | (i)   | For a BPSK modulator with a carrier frequency of 70 MHz and an input bit  | BTL5  | Evaluate   |
|            |       | rate of 10 Mbps, determine the maximum and minimum upper and lower        |       |            |
|            |       | side frequencies, draw the output spectrum, determine the minimum         |       |            |
|            |       | Nyquist bandwidth, and calculate the baud. (8)                            |       |            |

|    | ( <b>ii</b> ) | For an 8 PSK system, operating with an information rate of 24 kbps,          |      |          |
|----|---------------|------------------------------------------------------------------------------|------|----------|
|    |               | determine                                                                    |      |          |
|    |               | (a) Baud rate                                                                |      |          |
|    |               | (b) Minimum bandwidth                                                        |      |          |
|    |               | (c) Bandwidth efficiency. (7)                                                |      |          |
| 3. | Ina           | digital communication system, the bit rate of a bipolar NRZ data sequence is | BLT6 | Create   |
|    | 1Mb           | ps and carrier frequency is 100 MHz. Design by determining the symbol rate   |      |          |
|    | of tra        | insmission and the bandwidth requirement of the communication channel for    |      |          |
|    | M-ar          | y PSK system. (15)                                                           |      |          |
| 4. | (i)           | Draw the QPSK and 8-QAM wave forms for the bit stream                        | BLT6 | Create   |
|    |               | 1001110001010101. If needed discard the bits to a minimum extend. (8)        |      |          |
|    | (ii)          | For a QPSK modulator with an input data rate $(f_b)$ equal to 10 Mbps and a  |      |          |
|    |               | carrier frequency of 70 MHz, determine the minimum double sided              |      |          |
|    |               | Nyquist bandwidth $(f_N)$ and the baud rate. (7)                             |      |          |
| 5. | The           | binary data stream 001101001 is applied to the input of a duobinary system.  | BTL5 | Evaluate |
|    | Cons          | truct the duobinary coder output and corresponding receiver output also      |      |          |
|    | com           | ment on the merits of duobinary coding. (15)                                 |      |          |

### UNIT-IV INFORMATION THEORY AND CODING

Measure of information – Entropy – Source coding theorem – Shannon–Fano coding, Huffman Coding, LZ Coding – Channel capacity – Shannon-Hartley law – Shannon's limit – Error control codes – Cyclic codes, Syndrome calculation – Convolution Coding, Sequential and Viterbi decoding

|       | PART –A                                                                                                                                                                                                                                                                                                          |          |            |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|--|--|
| Q. No | Questions                                                                                                                                                                                                                                                                                                        | BT Level | Competence |  |  |
| 1.    | Define information rate?                                                                                                                                                                                                                                                                                         | BTL1     | Remember   |  |  |
| 2.    | An analog signal is band limited to B Hz, sampled at the Nyquist rate, and the samples are quantized into 4 levels. The quantization levels Q1, Q2, Q3 and Q4 are assumed to be independent and occur with probabilities $P_1 = P_4 = 1/8$ and $P_2 = P_3 = 3/8$ . Calculate the information rate of the source. | BTL5     | Evaluate   |  |  |
| 3.    | A source transmits messages $Q_1$ to $Q_5$ having probabilities 1/2,1/4, 1/8, 1/16, 1/16 respectively. Estimate the average information of the source.                                                                                                                                                           | BTL6     | Create     |  |  |
| 4.    | Define Entropy.                                                                                                                                                                                                                                                                                                  | BTL1     | Remember   |  |  |
| 5.    | An event has six possible outcomes with probabilities $\{1/2, 1/4, 1/8, 1/16, 1/32, 1/32\}$ . Calculate the entropy of the system.                                                                                                                                                                               | BTL6     | Create     |  |  |
| 6.    | Define source coding and state the significance of source coding.                                                                                                                                                                                                                                                | BTL1     | Remember   |  |  |
| 7.    | Why the Huffman code called as minimum redundancy coding?                                                                                                                                                                                                                                                        | BTL4     | Analyze    |  |  |
| 8.    | Define LZ coding and state the merits.                                                                                                                                                                                                                                                                           | BTL4     | Analyze    |  |  |
| 9.    | State channel capacity theorem.                                                                                                                                                                                                                                                                                  | BTL2     | Understand |  |  |
| 10.   | What is the need of channel coding?                                                                                                                                                                                                                                                                              | BTL4     | Analyze    |  |  |
| 11.   | Illustrate Shannon's fundamental theorem of information theory.                                                                                                                                                                                                                                                  | BTL3     | Apply      |  |  |

| 12.  | State                      | Shannon-Hartley law and its application.                                                                                                                                                                                                                                     | BTL1     | Remember   |
|------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| 13.  | What                       | is the aim of error control coding? List the different error control mechanism.                                                                                                                                                                                              | BTL1     | Remember   |
| 14.  | Give                       | the different error control methods.                                                                                                                                                                                                                                         | BTL2     | Understand |
| 15.  | Diffe                      | rentiate error detection from error correction.                                                                                                                                                                                                                              | BTL2     | Understand |
| 16.  | Evalı<br>C1=<br>distai     | tate the Hamming distance between the following code words $\{1,0,0,0,1,1,1\}$ and $C_2 = \{0,0,0,1,0,1,1\}$ . List the properties of Hamming nce.                                                                                                                           | BTL5     | Evaluate   |
| 17.  | For 1<br>requi             | 2-bit data string of 1011 0001 0010, determine the number of hamming bits red.                                                                                                                                                                                               | BTL5     | Evaluate   |
| 18.  | State                      | the difference between source coding and error control coding.                                                                                                                                                                                                               | BTL4     | Analyze    |
| 19.  | What                       | t is prefix code? Give examples.                                                                                                                                                                                                                                             | BTL1     | Remember   |
| 20.  | List t                     | he properties of cyclic codes.                                                                                                                                                                                                                                               | BTL2     | Understand |
| 21.  | Disco                      | over, when a binary code is said to be cyclic code?                                                                                                                                                                                                                          | BTL3     | Apply      |
| 22.  | Defir                      | ne syndrome in error control codes.                                                                                                                                                                                                                                          | BTL2     | Understand |
| 23.  | Com                        | pare block and convolution codes.                                                                                                                                                                                                                                            | BTL3     | Apply      |
| 24.  | Illust                     | rate the principle advantages of sequential decoding of convolution code?                                                                                                                                                                                                    | BTL3     | Apply      |
|      |                            | PART – B                                                                                                                                                                                                                                                                     | <u> </u> |            |
| Q.No |                            | Questions                                                                                                                                                                                                                                                                    | BT Level | Competence |
| 1.   | (i)                        | Brief the properties of entropy. (6)                                                                                                                                                                                                                                         | BTL1     | Remember   |
|      | (ii)                       | Describe the concept of Source coding theorem and state its significance. (7)                                                                                                                                                                                                |          |            |
| 2.   | Expla<br>transi            | ain about the discrete Memoryless Channels with its channel diagram and ition matrix and also summarize about BSC. (13)                                                                                                                                                      | BTL4     | Analyze    |
| 3.   | (i)                        | Develop Shannon's Fano algorithm and Huffman coding with a suitable example. (10)                                                                                                                                                                                            | BTL6     | Create     |
|      | (ii)                       | What is a convolutional code? When is it used? (3)                                                                                                                                                                                                                           |          |            |
| 4.   | Sumr<br>the fo<br>m<br>4/3 | narize the procedure of Shannon Fano algorithm and calculate the entropy forpollowing probabilities using the algorithm.(13)1m2m3m41m2m3m422/3216/322/3222/321/321/324/82                                                                                                    | BTL5     | Evaluate   |
| 5.   | Giver<br>Find              | n states $S = \{S_0, S_1, S_2, S_3, S_4\}$ and their probabilities $P = \{0.4, 0.2, 0.2, 0.1, 0.1\}$ .<br>coding efficiency and entropy for shanon Fano coding. (13)                                                                                                         | BTL4     | Analyze    |
| 6.   | (i)<br>(ii)                | Five symbols of the alphabet of discrete memory less source and their<br>probabilities are given below. $S = \{ S_0, S_1, S_2, S_3, S_4 \}$<br>$P(S) = \{0.4, 0.2, 0.2, 0.1, 0.1\}$ Obtain code symbols using Huffman coding.(10)Discuss the drawbacks of Huffman coding.(3) | BTL5     | Evaluate   |
| 7.   | (i)<br>(ii)                | Demonstrate about LZ coding with a suitable example. (10)<br>Consider that a source is transmitting equiprobable $1/0$ at the rate of $10^3$ b/s<br>and the probability error of $P_e = 1/16$ . Determine the rate of transmission. (3)                                      | BTL3     | Apply      |

| 8.   | State<br>also o   | the relationship between the mutual information and channel capacity and derive the expression for mutual information. (13)                                                                                                                                                                             | BTL3     | Apply      |
|------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| 9.   | Sum<br>math       | marize the concept of coding and decoding methods of block codes with its ematical framework and diagram. (13)                                                                                                                                                                                          | BTL2     | Understand |
| 10.  | Expla             | ain in detail about error control codes and their applications. (13)                                                                                                                                                                                                                                    | BTL1     | Remember   |
| 11.  | (i)               | Describe about Shanon's theorem and channel capacity and also discuss<br>about capacity of Gaussian Channel. (7)                                                                                                                                                                                        | BTL1     | Remember   |
|      | ( <b>ii</b> )     | Explain Bandwidth-SNR trade off in source coding. (6)                                                                                                                                                                                                                                                   |          |            |
| 12.  | Sum               | marize about Cyclic codes with necessary diagram and equation. (13)                                                                                                                                                                                                                                     | BTL2     | Understand |
| 13.  | (i)               | Demonstrate the Concept of block codes and coding efficiency. (6)                                                                                                                                                                                                                                       | BTL3     | Apply      |
|      | (ii)              | Determine the Block check sequence (BCS) for the following data and cyclic<br>redundancy check (CRC) generating polynomials:<br>Data $G(x) = x^7 + x^5 + x^4 + x^2 + x^1 + x^0$ , CRC $P(x) = x^5 + x^4 + x^1 + x^0$ .<br>(7)                                                                           |          |            |
| 14.  | (i)               | Design a convolutional coder of constraint length 6 and rate efficiency $\frac{1}{2}$ . (7)                                                                                                                                                                                                             | BTL4     | Analyze    |
|      | (ii)              | Analyse the concept of source coding theorem. (6)                                                                                                                                                                                                                                                       |          |            |
| 15.  | Desc<br>suital    | ribe any one of the decoding methods of convolutional coding precisely with ble example. (13)                                                                                                                                                                                                           | BTL1     | Remember   |
| 16.  | Desc<br>trellis   | ribe about the Viterbi algorithm by showing the possible path through the s of a coder. Assume the state diagram of any coder. (13)                                                                                                                                                                     | BTL2     | Understand |
| 17.  | Expla             | ain Viterbi decoding algorithm .Make suitable assumptions. (13)                                                                                                                                                                                                                                         | BTL2     | Understand |
|      |                   | PART – C                                                                                                                                                                                                                                                                                                | <u> </u> |            |
| Q.No |                   | Questions                                                                                                                                                                                                                                                                                               | BT Level | Competence |
| 1.   | Consie<br>statist | der a discrete memoryless source with source alphabet= $\{x_1, x_2, x_3\}$ and source ics $\{0.7, 0.15, 0.15\}$ .                                                                                                                                                                                       | BTL5     | Evaluate   |
|      | (a)               | ) Calculate the Entropy of a source X.                                                                                                                                                                                                                                                                  |          |            |
|      | (b)               | Verify that $H(s^2)=2H(s)$ (15)                                                                                                                                                                                                                                                                         |          |            |
| 2.   | (i)               | Give the procedure for Shannon Fano coding and use the procedure to obtain the code for the source symbols $S_0$ , $S_1$ , $S_2$ , $S_3$ , $S_4$ , $S_5$ with their respective probabilities $\frac{1}{2}$ , $\frac{1}{3}$ , $\frac{1}{12}$ , $\frac{1}{15}$ , $\frac{1}{120}$ , $\frac{1}{120}$ . (10) | BTL5     | Evaluate   |
|      | (ii)              | Compare the merits and demerits of Shannon fano coding with other coding. (5)                                                                                                                                                                                                                           |          |            |

| 3. | The parity check matrix of a particular (7,4) linear block code is given by,<br>[H]= 1110100<br>1101010<br>1011001                                                                                                    | BTL6 | Create |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|
|    | (i) Find the generator matrix (G).(4)(ii) List all the code vectors.(4)(iii) What is the minimum distance between code vectors?(4)(iii) How many errors can be detected and corrected(3)                              |      |        |
| 4. | A discrete memoryless source has 6 symbols $S_1$ , $S_2$ , $S_3$ , $S_4$ , $S_5$ , $S_6$ with probabilities 0.4, 0.1, 0.2, 0.1, 0.1 and 0.1 respectively. Construct a Huffman Code and calculate its efficiency. (15) | BTL6 | Create |
| 5. | A rate $1/3$ convolution encoder has generating vectors as $g1=(1\ 0\ 0)$ , $g2=(1\ 1\ 1)$ and $g3 = (1\ 0\ 1)$ (i) Sketch the encoder configuration.(ii) Draw the code tree, state diagram and trellis diagram.      | BTL6 | Create |

| UNIT-V<br>SPREAD SPECTRUM AND MULTIPLE ACCESS |                                                                                                                                              |           |                |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| PN se<br>trackir                              | quences – properties – m-sequence – DSSS – Processing gain, Jamming – FHS<br>ng – Multiple Access – FDMA, TDMA, CDMA                         | S – Synch | ronization and |
|                                               | PART – A                                                                                                                                     |           |                |
| Q. No                                         | Questions                                                                                                                                    | BT Level  | Competence     |
| 1.                                            | List any four primary applications of FDMA.                                                                                                  | BTL1      | Remember       |
| 2.                                            | Define Pseudo-Noise (PN) sequence. List its application                                                                                      | BTL1      | Remember       |
| 3.                                            | Illustrate the balance property of M sequences.                                                                                              | BTL3      | Apply          |
| 4.                                            | Point out the properties of M sequences.                                                                                                     | BTL4      | Analyze        |
| 5.                                            | List out the benefits of spread spectrum.                                                                                                    | BTL3      | Apply          |
| 6.                                            | Write the classification of direct sequences spread spectrum.                                                                                | BTL2      | Understand     |
| 7.                                            | Give the applications of DS-SS system.                                                                                                       | BTL2      | Understand     |
| 8.                                            | Summarize the advantages of frequency hopped spread spectrum (FHSS)                                                                          | BTL5      | Evaluate       |
| 9.                                            | What is called processing gain?                                                                                                              | BTL1      | Remember       |
| 10.                                           | State the Purpose of synchronization and tracking.                                                                                           | BTL2      | Understand     |
| 11.                                           | What are the benefits of multiple access techniques in communication engineering?                                                            | BTL1      | Remember       |
| 12.                                           | Point out the most critical requirement of TDMA technique.                                                                                   | BTL4      | Analyze        |
| 13.                                           | Evaluate the number of channels available if the system bandwidth is 10 MHz , channel spacing is 20 KHz and the edge guard spacing is 5 KHz. | BTL5      | Evaluate       |
| 14.                                           | List out the merits of TDMA system.                                                                                                          | BTL1      | Remember       |
| 15.                                           | Define FDMA.                                                                                                                                 | BTL1      | Remember       |
| 16.                                           | Point out the advantages of FDMA                                                                                                             | BTL4      | Analyze        |
| 17.                                           | Generalize time division multiplexing and frequency division multiplexing.                                                                   | BTL6      | Create         |
| 18.                                           | Illustrate the popular coding sequences of CDMA system.                                                                                      | BTL3      | Apply          |

| 19.  | Gene                | eralize the spectral efficiency calculation for FDMA.                                                                                                                 | BTL6     | Create     |
|------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| 20.  | Disc                | uss the applications of CDMA system.                                                                                                                                  | BTL2     | Understand |
| 21.  | Defi                | ne near –far problem in CDMA.                                                                                                                                         | BTL2     | Understand |
| 22.  | Diffe               | erentiate SDMA with CDMA.                                                                                                                                             | BTL4     | Analyze    |
| 23.  | Dem                 | onstrate the working principle of SDMA.                                                                                                                               | BTL3     | Apply      |
| 24.  | Eval<br>Char        | uate the total number of bits per frame, if the frame duration is 10 ms and<br>anel bit rate is 5000 bit per second.                                                  | BTL5     | Evaluate   |
|      |                     | PART – B                                                                                                                                                              |          |            |
| Q.No |                     | Questions                                                                                                                                                             | BT Level | Competence |
| 1.   | Drav<br>comi        | w the block diagram and explain in detail the model of spread spectrum digital munication system. (13)                                                                | BTL2     | Understand |
| 2.   | (i)                 | What are PN sequences? What are the properties of PN sequences? (4)                                                                                                   | BTL1     | Remember   |
|      | (ii)                | What are the differences between the FHSS and DSSS? (4)                                                                                                               | -        |            |
|      | (iii)               | What are the advantages of spread spectrum? (5)                                                                                                                       | -        |            |
| 3.   | (i)                 | Describe in detail about generation of PN codes. (7)                                                                                                                  | BTL2     | Understand |
|      | ( <b>ii</b> )       | Discuss the properties of PN sequences. (6)                                                                                                                           | -        |            |
| 4.   | (i)                 | How Maximal-length sequence will be obtained from PN sequence? (3)                                                                                                    | BTL6     | Create     |
|      | ( <b>ii</b> )       | Develop and discuss about the Maximal –length sequence involving 3 flip<br>flops and discuss about its properties. (10)                                               | -<br>)   |            |
| 5.   | (i)                 | Explain the functioning of DS spread spectrum with coherent binary PSK processing. (9)                                                                                | BTL5     | Evaluate   |
|      | ( <b>ii</b> )       | Discuss the access techniques used for wireless communication. (4)                                                                                                    |          |            |
| 6.   | (i)                 | Explain the principle of operation of FHSS with necessary diagrams. (9)                                                                                               | BTL2     | Understand |
|      | (ii)                | Also Compare fast frequency hopping and slow frequency hopping. (4)                                                                                                   |          |            |
| 7.   | (i)                 | Describe the various multiple access techniques with neat diagram. (9)                                                                                                | BTL1     | Remember   |
|      | ( <b>ii</b> )       | List the advantages and disadvantages of various multiple access techniques.<br>(4)                                                                                   | -        |            |
| 8.   | Disc<br>com<br>wire | uss in detail the multiple access techniques that are used in wireless<br>munications. What difference is taken into account here as the channel is now<br>less? (13) | BTL3     | Apply      |
| 9.   | Expl                | ain the principle of FDMA with neat diagram. (13)                                                                                                                     | BTL4     | Analyze    |
| 10.  | (i)                 | With neat block diagram explain the Frequency Division Multiple Access technique. (9)                                                                                 | BTL4     | Analyze    |
|      | ( <b>ii</b> )       | Discuss the application of FDMA in communication. (4)                                                                                                                 |          |            |
| 11.  | (i)<br>(ii)         | Demonstrate the operation of a typical TDMA system with neat block<br>diagram. (7)<br>Distinguish TDMA with FDMA. (6)                                                 | BTL2     | Understand |
| 12.  | Desc<br>chara       | ribe about the allocation of time slot in TDMA and time frequency acteristics of synchronous TDMA. (13)                                                               | BTL1     | Remember   |

| 13. | Drav                                                           | v and explain the block diagram of transmitter and receiver of CDMA.  | (13) | BTL1 | Remember |
|-----|----------------------------------------------------------------|-----------------------------------------------------------------------|------|------|----------|
| 14. | Illustrate the concept of using CDMA scheme in FDD and TDD. (1 |                                                                       |      | BTL3 | Apply    |
| 15. | (i)                                                            | What is CDMA? Explain in detail.                                      | (7)  | BTL5 | Evaluate |
|     | (ii)                                                           | Assess the basic features of CDMA systems. Explain soft hand over.    | (6)  |      |          |
| 16. | Illus                                                          | rate how interference is avoided by using code division multiplexing. | (13) | BTL3 | Apply    |
| 17. | Expl                                                           | ain with a neat block diagram the SDMA technique.                     | (13) | BTL4 | Analyze  |

| Q.No | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BT Level | Competence |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| 1.   | (i) A spread spectrum communication system is characterized by the following parameters.<br>Duration of each information bit $T_b=5.045ms$<br>Chip duration of a PN sequence $T_c=1.5\mu s$<br>Calculate the processing gain and jamming margin if $E_b/N_0 = 20$ and the average probability of error $P_e=0.5 \times 10^{-5}$ (7)                                                                                                                                                                   | BTL6     | Create     |
|      | (ii) If a normal GSM slot consists of six trailing bits, 8.25 guard bits 26 training bits and two traffic bursts of 58 bits of data, find the frame efficiency. (8)                                                                                                                                                                                                                                                                                                                                   |          |            |
| 2.   | 500 users employ FDMA to transmit 1000-bit packets of data. The channel bandwidth is 100MHz and QPSK is used at each of<br>employedthe 5000 carrier frequencies(i) What is the maximum bandwidth allocated to<br>(ii) What is the bit rate employed by each user?(5)(iii) How long does it take to transmit a packet?(5)                                                                                                                                                                              | BTL6     | Create     |
| 3.   | Summarize Spread Spectrum modulation technique based upon the operating concept and compare about DSSS and FHSS. (15)                                                                                                                                                                                                                                                                                                                                                                                 | BTL5     | Evaluate   |
| 4.   | <ul> <li>(i) In the AMPS system the system bandwidth is 12.5 MHz, the channel spacing is 30kHz, and the edge guard spacing is 10 kHz. The number of channel allocated for control signalling is 21. Estimate the number of channels available for message transmission and spectral efficiency of FDMA. (9)</li> <li>(ii) A PN sequence generator using feedback shift register of length 4.1f the chip rate is 10<sup>8</sup> chips/sec. Calculate the chip and PN sequence duration. (6)</li> </ul> | BTL6     | Create     |
| 5.   | Design a PN sequence generator and evaluate the sequence length for the following (a) 4 shift registers (b) 9 shift registers (c) 13 shift registers. (15)                                                                                                                                                                                                                                                                                                                                            | BTL5     | Evaluate   |

