SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

QUESTION BANK

III SEMESTER

1906303 DIGITAL ELECTRONICS

(Common to ECE & Medical Electronics)

Academic Year 2022 – 2023 (ODD Semester)

Prepared by

Ms.K.Sobana, Assistant Professor (O.G)

Mr.C.Saravanakumar, Assistant Professor (Sel.G)

Mr.S.Senthilmurugan, Assistant Professor (Sel.G)

Mr. M.Selvaraj, Assistant Professor (O.G)

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING (Common to ECE and Medical Electronics)

QUESTION BANK

SUBJECT CODE/NAME : 1906303 / DIGITAL ELECTRONICS

: II / III

YEAR / SEMESTER

UNIT I DIGITAL FUNDAMENTALS

Number Systems – Decimal, Binary, Octal, Hexadecimal, 1's and 2's complements, Codes – Binary, BCD, Excess 3, Gray, Alphanumeric codes, Boolean theorems, Logic gates, Universal gates, Sum of products and product of sums, Minterms and Maxterms, Karnaugh map Minimization and Quine-McCluskey method of minimization.

PART A						
Q.No	Questions	BT Level	Domain			
1.	Convert the given decimal numbers into their binary equivalent 108.364.	BTL 3	Applying			
2.	Express the function $Y = A + \overline{B}C$ in canonical POS.	BTL 2	Understanding			
3.	Convert the pair of decimal number to BCD and Add $(65)_{10}+(58)_{10}$	BTL 3	Applying			
4.	Outline the concept of duality in Boolean algebra.	BTL 1	Remembering			
5.	Convert A3B _H and 2F3 _H into Binary and Octal respectively	BTL 3	Applying			
6.	Simplify the following Boolean expression into one literal. W'X $(Z'+YZ) + X (W+Y'Z)$.	BTL 4	Analyzing			
7.	Convert (115) ₁₀ and (235) ₁₀ into hexadecimal numbers.	BTL 4	Analyzing			
8.	Define 'Minterm' and 'Maxterm'.	BTL 1	Remembering			
9.	Find Excess-3 code for the following decimal numbers. (18) ₁₀ and (56) ₁₀ .	BTL 1	Remembering			
10.	Draw the active high tri-state Gate & write its truth table.	BTL 1	Remembering			
11.	Show how to connect NAND gates to get an AND gate and OR gate?	BTL 2	Understanding			
12.	Write the principle of Distributive law.	BTL 1	Remembering			
13.	What is meant by Prime Implicants and Essential prime implicants?	BTL 1	Remembering			
14.	How can we minimize Boolean expression of the below function? F=XY+X(Y+Z)+Y(Y+Z).	BTL 3	Applying			
15.	Implement the given function using NAND gates only. $F(X, Y, Z) = \sum m(0,6).$	BTL 2	Understanding			
16.	Identify the equivalent Gray code for [10110] ₂ .	BTL 2	Understanding			
17.	If A & B are Boolean variables and if A=1 & $\overline{A + B} = 0$, determine B?	BTL 4	Analyzing			

18.	Apply De-Morgan's theorem to simplify $\overline{A + B\overline{C}}$.		BTL 3	Applying
19.	Implement $Y = \sum (1,4,5,6,7)$ in SOP form using AOI logic.		BTL 4	Analyzing
20.	Determine the Boolean expression for the output of the system shown in fig A = c	gure.	BTL 2	Understanding
21.	Perform 2's complement subtraction of 010110 – 100101.		BTL 4	Analyzing
22.	Identify the Boolean function and the truth table of the given logic. $A \longrightarrow B \longrightarrow $		BTL 2	Understanding
23.	Write the Boolean expression for the output of the system shown in figure $A = A = B$ $C = B = C$ $D = C = F$ E'		BTL3	Applying
24.	Reduce the expression $A\overline{B}C + \overline{AB}C$ using Boolean theorems.		BTL 4	Analyzing
	An ISO 90pART 2BU0 Certified			
1.	Find the Minimized logic function using K-Maps. (F (A, B, C, D) = $\sum m(1,3,5,8,9,11,15) + d(2,13)$. Implement the minimal SOP using NAND and NOR gates.	13)	BTL3	Applying
2.	 (i) Simply the function F(A,B,C,D,E) = m(1,4,6,10,20,22,24,26)+d(0,11,16,27) using K-map method. Draw the circuit of the minimal expression using Basic gates. (ii) Write about Excess 3 and Gray Code with an example. 	(7)(6)13)	BTL 1	Remembering
5.	$\sum m(0,2,4,6,9,13,21,23,25,29,31)$. Draw the K-map and implement the simplified expression using basic gates.	13)	DIL 4	Anaryzing

4.	Minimize the following Boolean expressions using Boolean Algebra and draw the logic diagram.		BTL 2	Understanding
	(i) $F(X, Y, Z) = (X + Y) \left(\overline{X}(\overline{Y} + \overline{Z})\right) + \overline{XY} + \overline{XZ}.$	(5)		
	(ii) F (X, Y, Z) = $\overline{XYZ} + \overline{XYZ} + \overline{XYZ}$	(4) (4)		
	(iii) $F(X,Y,Z) = XYZ + \overline{X}Z + YZ$	(-)		
5.	Explain the different types of codes and conversion with your own example.	(13)	BTL 1	Remembering
6.	Using K-map method, Reduce the following Boolean function $F=\sum m (0,2,3,6,7) + d (8,10,11,15)$ and obtain minimal SOP.	(13)	BTL 4	Analyzing
7.	Write the minimized Boolean expression for the function using K-map and draw the logic diagram. F (w, x, y,z)= $\sum m(0,1,2,4,5,6,8,9,12,13,14)$.	(13)	BTL 1	Remembering
8.	(i) Plot the following logical Expression on a 4-variable K – map F=ABCD+AB'C'D'+AB'C+AB & realize the SOP using only NAND gates and POS using only NOR gates.	(7)	BTL 3	Applying
	(ii) Simplify the logic shown in figure	(6)		
9.	Elaborate the minimization of the given Boolean function using Quine-Mc-Cluskey method $F=\sum m (0,1,2,5,7,8,9,10,13,15)$. Realize the	(13)	BTL 4	Analyzing
	simplified function using logic gates. 0 9001 : 2000 Certifie	d		
10.	Using K-map method, simplify the given Boolean function and obtain minimum POS expression and draw the logic diagram. $X=\prod m(1,3,5,7,9) + \prod d(8,11,15).$	(13)	BTL 2	Understanding
11.	Prepare Karnaugh Map for the following functions and draw the logic diagram using basic gates.		BTL 4	Analyzing
	(i) Y (A, B,C,D)= $\prod M(0,3,4,9,10,12) + \prod d(2,7,8,13)$ (ii) Y (A, B, C) = $\prod M(0,2,4,5,6)$	(7) (6)		
12.	Develop the following Function using Tabulation method $F=\sum (1,2,3,7,8,9,10,11,14,15)$ and realize the circuit using only NAND Gates.	(13)	BTL 4	Analyzing
13.	(i) Convert (725.25) ₈ to its decimal, binary and Hexadecimal equivalent.	(7)	BTL 1	Remembering
	(ii) Find 1's and 2's Complement of 8-digit binary number 10101101.	(6)		

14.	(i) Implement $Y=(A + C)(A + \overline{D})(A + B + \overline{C})$ (ii) Solve by perfect induction (a) $A+AB = A$ (b) $A(A+B) = A$ (c) $A+A'B = A+B$ and (d) $A(A'+B) = AB$	(5) (8)	BTL 3	Applying			
15.	Simplify the following Boolean function using K-map and implement the same using only NAND gates. F(A, B, C, D) = (D'+A'B'C' + AB'C' + A'BC'D).	(13)	BTL 2	Understanding			
16.	Determine simplified SOP for the following Boolean function using Quine- McCluskey Method and realize using NAND gates. $F(A, B, C, D) = \sum m(1, 3, 4, 5, 9, 10, 11) + \sum d(6, 8).$	(13)	BTL 3	Applying			
17.	Implement the given Boolean function using tabulation method and verify with K-map. $F(A, B, C, D) = \sum m(1, 2, 3, 5, 7, 9, 10, 11, 13, 15)$	(13)	BTL 4	Analyzing			
	PART C						
1.	Design the given function using Prime implicant method and Verify your result using K map $F=\sum m(0,1,2,4,5,6,8,9,12,13,14)$.	(15)	BTL 3	Applying			
2.	A staircase light is controlled by two switches, one is at the top of the stairs and the other is at the bottom of the stairs: (i) Make a truth table for this system. (ii) Write the logic function in SOP form. (iii) Realize the circuit using AOI logic. (iv) Realize the circuit using minimum number of NAND and NOR gates.	(3) (3) (4) (5)	BTL 4	Analyzing			
3.	Determine the minimal Sum of Products for the following function $F(w,x,y,z)=\sum m(1,3,4,5,9,10,11)+\sum d(3,4,11)$ using Quine McCluskey method and apply DeMorgan's theorem for NAND -NOR implementation.	(15)	BTL 2	Understanding			
4.	Construct a Karnaugh Map for the following function $F(A,B,C,D,E) = \sum (0,5,6,8,9,10,11,16,20,24,25,26,27,29,31)$ and draw the logic diagram.	(15)	BTL 1	Remembering			
5.	Find the MSP and MPS form of the function $F = \sum m(0, 2, 6, 8, 10, 12, 14, 15)$ and implement using basic gates.	(15)	BTL 4	Analyzing			

UNIT II COMBINATIONAL CIRCUIT DESIGN

Design of Half and Full Adders, Half and Full Subtractors, Binary Parallel Adder – Carry look ahead Adder, BCD Adder, Multiplexer, Demultiplexer, Magnitude Comparator, Decoder, Encoder, Priority Encoder.

PART A							
Q.No	Questions	BT	Domain				
		Level					
1.	What is meant by combinational circuits?	BTL 1	Remembering				
2.	Enumerate some of the combinational circuits.	BTL 2	Understanding				
3.	Summarize the design procedure of combinational circuits.	BTL 2	Understanding				
4.	Write the Boolean expression for a half adder.	BTL 1	Remembering				
5.	How do you draw a full adder circuit?	BTL 3	Applying				
6.	From the truth table derive the logic equation of a half subtractor.	BTL3	Applying				
7.	Suggest a solution to overcome the limitation on the speed of an adder.	BTL 4	Analyzing				
8.	Differentiate between half adder and full adder.	BTL 4	Analyzing				
9.	Why is MUX called data selector?	BTL 4	Analyzing				
10.	List out the applications of multiplexer.	BTL 1	Remembering				
11.	Mention the uses of demultiplexer.	BTL 2	Understanding				
12.	Can a decoder function as a demultiplexer?	BTL 4	Analyzing				
13.	What do you mean by comparator?	BTL 1	Remembering				
14.	What will be the maximum number of outputs for a decoder with a 6-bit data word?	BTL3	Applying				
15.	Identify the function of select inputs of a MUX.	BTL 2	Understanding				
16.	Draw the schematic diagram of 2X1 multiplexer.	BTL 2	Understanding				
17.	Distinguish between a demultiplexer and decoder.	BTL 4	Analyzing				
18.	Implement the given function using multiplexer. $F(x,y,z)=\sum(0,2,6,7)$.	BTL3	Applying				
19.	What is a priority encoder?	BTL 1	Remembering				
20.	State the uses of encoder.	BTL 1	Remembering				
21.	Outline the characteristics of a priority encoder and how it differs from a regular encoder?	BTL 4	Analyzing				
22.	Sketch the logic diagram of 2 to 4 decoder.	BTL 2	Understanding				
23.	Implement the Boolean function $F=\sum m(1,2,3,7)$ using 3:8 decoder.	BTL3	Applying				
24.	Design a 1-bit comparator using basic gates.	BTL3	Applying				

	PART – B					
1.	(i)Explain the design procedure for combinational circuits.(ii) Design a combinational logic circuit with three input variables that will produce a logic 1 output when more than one input variables are logic 1.	(3) (10)	BTL3	Applying		
2.	Write the truth table for full adder, reduce the equation using k-map and design full adder using logic gates.	(13)	BTL 1	Remembering		
3.	Explain how full adder can be designed by using two half adder circuits. Draw the circuit diagram.	(13)	BTL 2	Understanding		
4.	Write a brief note on the following combinational circuits: (i) Half subtractor (ii) Full subtractor	(5) (8)	BTL 1	Remembering		
5.	Explain the working of 4-bit parallel adder with necessary diagram and example.	(13)	BTL 1	Remembering		
6.	Design a 4-bit BCD adder and compute the circuit to add 1001 and 0101. Write the sum and carry output of the given binary number.	(13)	BTL 4	Analyzing		
7.	From the truth table derive the Boolean expression for 4:1 MUX and 8:1 MUX and implement using basic gates.	(13)	BTL 2	Understanding		
8.	Implement the following Boolean function using 8X1 multiplexer. $F(A,B,C,D) = \overline{A}B\overline{D} + ACD + \overline{B}CD + \overline{A}\overline{C}D$	(13)	BTL 3	Applying		
9.	(i) Analyze the design of 8 x 1 multiplexer using only 2 x 1 multiplexer. (ii) Formulate the following Boolean function using 4 x 1 multiplexers. $F(A, B, C, D) = \sum (1, 2, 3, 6, 7, 8, 11, 12, 14)$.	(7) (6)	BTL 4	Analyzing		
10.	Realize the function $F(w, x, y, z) = \Sigma (1,4,6,7,8,9,10,11,15)$ using 4 to1 Multiplexer.Am ISO 9001 : 2000 Certifie	(13)	BTL 2	Understanding		
11.	Describe about multiplexer and Simplify the following function using $8x1 \text{ Mux F}(A,B,C,D)=\sum m(0,2,6,10,11,12,13)+d(3,8,14)$	(13)	BTL 4	Analyzing		
12.	 (i) Draw and explain the working of 1:8 demultiplexer and realize it using basic gates? (ii) Implement the following functions using demultiplexer: F1(A,B,C)=∑m(0,3,7) F2(A,B,C)=∑m(1,2,5) 	(7) (6)	BTL 4	Analyzing		
13.	Discuss the concept of priority encoder with truth table, Boolean expression and logic diagram.	(13)	BTL 1	Remembering		
14.	Design a certain logic circuit using 4x1 Multiplexer which has four inputs A, B, C, and D. The output X of the circuit is logic 1 if two or more inputs are logic 1.	(13)	BTL 3	Applying		
15.	Derive the circuit that implements an 8-to-3 binary encoder with neat diagram.	(13)	BTL 2	Understanding		

16.	Discuss about the purpose of decoder and implement a full adder and full subtractor using decoder.	(13)	BTL 3	Applying
17.	 (i) Design and implement the circuit using multiplexer which has 3 inputs (A,B,C) and one output Z. The output is HIGH, when the input is less than 3, otherwise 0. (ii) Implement the function f(w1, w2, w3) = ∑m(0, 1, 3, 4, 6, 7) by using a 3-to-8 binary decoder and an OR gate. 	(7)(6)	BTL 4	Analyzing
	PART C			
1.	With necessary diagrams, explain in detail about the working of a 4- bit look ahead carry adder. Also mention its advantages over conventional adder.	(15)	BTL 4	Analyzing
2.	Implement the following Boolean function using an 8:1 multiplexer considering D as the input and A,B,C as selection lines : F(A, B, C, D) =AB'+BD+B'CD'	(15)	BTL 3	Applying
3.	Develop the following functions: (i) Full adder using multiplexer. (ii) Full subtractor using demultiplexer.	(8) (7)	BTL 2	Understanding
4.	Find the Boolean expression from the truth table of 2 to 4 decoder & 3 to 8 decoder and draw the logic diagram.	(15)	BTL 1	Remembering
5.	Design a 2-bit magnitude comparator with three outputs: A>B, A=B and A <b.< td=""><td>(15)</td><td>BTL 4</td><td>Analyzing</td></b.<>	(15)	BTL 4	Analyzing

UNIT III SYNCHRONOUS SEQUENTIAL CIRCUITS

Flip flops – SR, JK, T, D, Master/Slave FF – operation and excitation tables, Triggering of FF, Analysis and design of clocked sequential circuits – Design - Moore/Mealy models, state minimization, state assignment, circuit implementation – Design of Counters- Ripple Counters, Ring Counters, Shift registers, Universal Shift Register.

PART A					
Q.No	Questions	BT Level	Domain		
1.	List the classification of Sequential circuits.	BTL 1	Remembering		
2.	Distinguish between combinational and sequential circuits.	BTL 2	Understanding		
3.	Define a flip-flop.	BTL 1	Remembering		
4.	What are the four types of flip-flop?	BTL 1	Remembering		
5.	Differentiate between latch and flip-flop.	BTL 2	Understanding		
6.	Write the excitation table for JK Flip flop.	BTL 1	Remembering		

7.	Draw the state transition diagrams of flip-flops.		BTL 2	Understanding
8.	Derive the characteristic equation from the truth table of SR flip-flop.		BTL 2	Understanding
9.	Convert D flip-flop to T flip-flop.		BTL3	Applying
10.	Mention any two differences between the edge triggering and level trigg	gering.	BTL 2	Understanding
11.	Write down the characteristic equation and truth table for D flip-flop.		BTL 1	Remembering
12.	Interpret the significance of state assignment.		BTL 2	Understanding
13.	Draw the state diagram of Mod-10 counter.		BTL 4	Analyzing
14.	Sketch the circuit diagram of ring Counter.		BTL 4	Analyzing
15.	How many flip-flops are required to build a binary counter that counts f to 1023?	rom 0	BTL3	Applying
16.	State the difference between Mealy and Moore state machines.		BTL 4	Analyzing
17.	Compute the minimum number of flip-flops needed to design a counter Modulus 10.	of	BTL3	Applying
18.	List out the applications of shift registers.		BTL 1	Remembering
19.	Distinguish between synchronous sequential circuits and asynchronous sequential circuits.	BTL 4	Analyzing	
20.	Model a NAND based logic diagram of JK FF.		BTL3	Applying
21.	Define universal shift register.	BTL 1	Remembering	
22.	Classify the types of shift registers.		BTL3	Applying
23.	A J-K flip-flop with $J = 1$ and $K = 1$ has a 20 kHz clock input. calculate output.	the Q	BTL 4	Analyzing
24.	Draw the 4-bit Johnson counter.	ъ	BTL 4	Analyzing
	PART – B	LL.		
1.	(i)What is Flip flops? Write about the operations of different flip flops.(ii) List the application of Flip flop.	BTL 1	Remembering	
2.	Describe about JK flip-flop with truth table, characteristic equation and input & output waveforms.	BTL 2	Understanding	
3.	Realize SR flip-flop using D flip-flop and JK flip-flop.	BTL3	Applying	
4.	(i) Explain the steps for the design of clocked synchronous sequential circuit.(ii) Reduce the following state table and tabulate the reduced state table.	BTL 2	Understanding	

	Presen state	t Next Sta	te	Output					
		X = 0	X =1	X =0	X=1				
	a	f	b	0	0				
	b	d	c	0	0				
	с	f	e	0	0				
	d	g	a	1	0				
	e	d	c	0	0				
	f	f	b	1	1				
	g	g	h	0	1				
	h	g	a	1	0				
5.	Explain the fun	ctions with	the state	diagram	and chara	acteristics	(13)		D 1 .
	equation of T FF			ENGI	EERIA			BTL I	Remembering
6.	Develop a state SR Flip Flop.	table, charac	teristic tab	ole and an	excitation	table for	(13)	BTL 1	Remembering
7.	7. Design a clocked sequential machine using T flip-flops for the following state diagram. Use state reduction if possible. Also use straight binary state assignment. $0/0 \qquad 0/0 $							BTL 4	Analyzing
8.	Illustrate the desi JK flip-flops and	gn procedure implement i	e of a MOI t.	D-5 synchr	onous cour	nter using	(13)	BTL 4	Analyzing
9.	Using D flip-flop sequence 000,00	o, design a sy 1,010,011,10	nchronou: 0,101,110,	s counter y ,111,000.	which coun	ts in the	(13)	BTL3	Applying
10.	Using SR flip flo sequence 000,11	ops, design a 1,1101,100,0	counter wl 011,010,00	hich count 1, 000,	s in the foll	owing	(13)	BTL3	Applying

11.	Develop a counter to count the sequence 0,1,2,4,5,6 using SR FFs.	(13)	BTL 4	Analyzing
12.	Implement a J-K counter for the states 3, 4, 6, 7 and 3.	(13)	BTL3	Applying
13.	Describe the operation of universal shift register with neat block diagram.	(13)	BTL 1	Remembering
14.	Explain in detail about the working of mod-3 counter with neat diagram.	(13)	BTL 2	Understanding
15.	Discuss about the operation of 4-bit ring counter with waveforms.	(13)	BTL 2	Understanding
16.	Illustrate the design of a synchronous decade counter using D flip- flop.	(13)	BTL3	Applying
17.	Design a synchronous sequential circuit using JK Flip-flop for the given state diagram.	(13)	BTL 4	Analyzing
1.	Design a clocked synchronous sequential logic circuit using JK flip flops for the following state diagram. Use state reduction if possible.	(15)	BTL 3	Applying

2.	Design a BCD ripple counter using JK flip-flop and draw the logic diagram.	(15)	BTL 3	Applying
3.	Devise a model of a D FF counter for the states 1, 5, 8,9,10, 11 with necessary diagram.	(15)	BTL 2	Understanding
4.	Design and implement 4-bit binary counter (using D flip-flop) which counts all possible odd numbers only.	(15)	BTL 1	Remembering
5.	Analyze the operation of 4-bit SISO SIPO, PIPO and PISO shift register and draw its waveforms.	(15)	BTL 4	Analyzing

UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS

Stable and Unstable states, output specifications, cycles and races, state reduction, race free assignments, Hazards, Essential Hazards, Pulse mode sequential circuits, Design of Hazard free circuits.

PART A				
Q.No	Questions	BT Level	Domain	
1.	Mention the steps for the design of asynchronous sequential circuit.	BTL 2	Understanding	
2.	Classify Asynchronous sequential circuits.	BTL 3	Applying	
3.	Differentiate between fundamental mode and pulse mode sequential circuits	BTL 4	Analyzing	
4.	Define dynamic hazard. When do they occur?	BTL 1	Remembering	
5.	What are pulse mode circuits?	BTL 1	Remembering	
6.	Distinguish between stable and unstable state.	BTL 3	Applying	
7.	Specify the significance of state assignment. 01 : 2000 Certified	BTL 2	Understanding	
8.	What is the role of asynchronous sequential circuit in digital design?	BTL 1	Remembering	
9.	Draw the general model of ASM.	BTL 3	Applying	
10.	Define Hazards. How it can be avoided?	BTL 1	Remembering	
11.	Compare the ASM chart with a conventional flow chart.	BTL 4	Analyzing	
12.	With an example interpret the critical race condition in asynchronous sequential circuits.	BTL 4	Analyzing	
13.	Outline the causes of essential Hazard.	BTL 2	Understanding	
14.	Distinguish between critical race and non-critical race.	BTL 2	Understanding	
15.	Outline the characteristics of critical race.	BTL 2	Understanding	
16.	List the different techniques used in State assignment.	BTL 1	Remembering	

17.	Identify the most important consideration in making state assignments for asynchronous network.		BTL 1	Remembering
18.	List the types of hazards.		BTL 1	Remembering
19.	Summarize the methods for critical-race free state assignment.		BTL 4	Analyzing
20.	How can a race in digital circuits can be avoided?		BTL 3	Applying
21.	State the term state machine.		BTL 2	Understanding
22.	Why Hazard free design is preferred?		BTL 4	Analyzing
23.	Contrast cycles and races.		BTL 1	Remembering
24.	Is the state reduction modifies the circuit operation? Justify your answer	•	BTL 3	Applying
	PART – B			
1.	Analyze an asynchronous sequential circuit with 2 inputs T and C. The output attains a value of 1 when T=1 and C moves from 1 to 0. Otherwise, the output is 0.	(13)	BTL 4	Analyzing
2.	What are the types of hazards? Check whether the following circuit contains a hazard or not $Y = X_1X_2 + X_2'X_3$. If the hazard is present, Demonstrate its removal.	(13)	BTL 2	Understanding
3.	 An asynchronous sequential circuit is described by the following excitation and output function. Y= X1X2+(X1+X2) Y, Z=Y. (i) Draw the logic diagram. (ii) Derive the transition table and output map. (iii) Illustrate the behavior of the circuit 	(3) (5) (5)	BTL 3	Applying
4.	 (i) What is a Hazard? Give hazard free realization for the following Boolean function. F (A, B, C, D) = ∑m (1,5,6,7) using AND- OR gate network. (ii) Define Essential Hazards. 	(10) (3)	BTL 1	Remembering
5.	(i) Summarize the design procedure for an asynchronous sequential circuit.(ii) Deduce the state table of serial binary adder with neat diagram.	(10) (3)	BTL 4	Analyzing
6.	Design a circuit that has no static hazards and implement the Boolean function $F(A,B,C,D) = \Sigma (0,2,6,7,8,10,12)$ using AND-OR logic.	(13)	BTL 3	Applying
7.	Identify the problems arises in an asynchronous sequential circuit and explain any two problems in detail.	(13)	BTL 1	Remembering
8.	(i) Illustrate in detail about Races.(ii) Explain the different methods of state assignment.	(5) (8)	BTL 2	Understanding

9.	(i) Explain ASM chart for binary multiplier.(ii) What is Hazard? Explain about Static hazard, dynamic hazard and essential hazard.	(7) (6)	BTL 3	Applying
10.	Describe how a state graph for a sequential machine can be convened to an equivalent ASM chart?	(13)	BTL 1	Remembering
11.	Illustrate about different hazards that occur in sequential circuits and also about the way to eliminate them.	(13)	BTL 2	Understanding
12.	What is the objective of state assignment in an asynchronous circuit? Give example circuit for hazard free realization.	(13)	BTL 1	Remembering
13.	Classify the methods of Race Free State assignment and explain in detail.	(13)	BTL 3	Applying
14.	Design an Asynchronous sequential circuit with input A and B and an output Y. Initially at any time if both the inputs are 0, the output, Y=0. When A or $B = 1$, Y =1. When the other input also become 1, Y=0. The output stays at 0 until circuit goes back to initial state.	(13)	BTL 4	Analyzing
15.	Explain in detail about state table, stable and unstable state with examples.	(13)	BTL 4	Analyzing
16.	Write note about the following with example: (i) State Machine (ii) Cycles (iii) Races (iv) Hazards	 (3) (3) (3) (4) 	BTL 2	Understanding
17.	How the Hazard free circuit is designed? Explain with suitable example.	(13)	BTL 3	Applying
	Am ISO 90 PART COO Contified	A		
1.	Design an asynchronous sequential circuit with two inputs X and Y and with one output Z. Whenever Y is one, input X is transferred to Z. When Y is zero, the output does not change for any change in X.	(15)	BTL 4	Analyzing
2.	With suitable state reduction table and state diagram explain an asynchronous sequential circuit.	(15)	BTL 2	Understanding
3.	Develop an asynchronous D- type latch with two inputs C and D and output Q. Assume fundamental mode of operation.	(15)	BTL 4	Analyzing
4.	Construct a circuit with primary inputs A and B to give an output Z equal to 1 when A becomes 1 if B is already 1. Once $Z = 1$ it will remain so until A goes to 0. Draw timing diagram, state diagram and Primitive flow table for designing the circuit.	(15)	BTL 3	Applying
5.	Assess an asynchronous circuit that will output only the first pulse received and will ignore any other pulses.	(15)	BTL 3	Applying

UNIT - V MEMORY DEVICES AND INTRODUCTION TO HDL PROGRAMMING

Basic memory structure- ROM-PROM-EPROM-EEPROM-EAPROM, RAM – Static and Dynamic RAM-Programmable Logic Devices-Programmable Logic Array (PLA) – Programmable Array Logic (PAL). Introduction to HDL: Behavioral – data flow, and algorithmic and structural description, lexical elements, data objects types, attributes, operators for Verilog HDL. Examples for Combinational and Sequential circuits.

PART A				
Q.No	Questions	BT Level	Domain	
1.	Write the difference between ROM and RAM. Also list the types of ROMs.	BTL 1	Remembering	
2.	Distinguish between volatile and non-volatile memory.	BTL 2	Understanding	
3.	Mention the advantages of DRAM cell over SRAM cell.	BTL 4	Analyzing	
4.	What is programmable logic array? Analyze how it differs from ROM?	BTL 4	Analyzing	
5.	A certain memory has a capacity of 32k x 16. How many bits are there in each word? How many words are being stored and how many memory cells does this memory contain?	BTL 2	Understanding	
6.	What is memory decoding?	BTL 1	Remembering	
7.	Show the circuitry used to realize 2-bit multiplier using ROM.	BTL 3	Applying	
8.	Realize the Ex OR function into the PROM.	BTL 3	Applying	
9.	Enumerate the advantages of EEPROM over EPROM.	BTL 4	Analyzing	
10.	How programmable logic devices are classified?	BTL 3	Applying	
11.	Distinguish between PAL and PLA.	BTL 2	Understanding	
12.	List the operators used in Verilog HDL. 9001 : 2000 Certified	BTL 1	Remembering	
13.	What are the primitive gates supported by Verilog HDL? Also specify which gates are tristate gates?	BTL 1	Remembering	
14.	Express the modelling styles used in Verilog HDL along with the way they are realized.	BTL 2	Understanding	
15.	Develop the Verilog HDL code for half subtractor in data flow model.	BTL 4	Analyzing	
16.	Differentiate logical AND and bitwise AND operation in Verilog HDL with example.	BTL 2	Understanding	
17.	Explain how top-down and bottom-up design followed in Verilog HDL.	BTL 3	Applying	
18.	Write the Verilog HDL code for D-Latch.	BTL 1	Remembering	
19.	Mention the conditional and unconditional loops supported in Verilog HDL.	BTL 3	Applying	
20.	Write the Verilog code for T-flip-flop.	BTL 1	Remembering	
21.	What is a Module?	BTL 1	Remembering	

22.	List any 2 examples for system task in Verilog.		BTL 2	Understanding
23.	Differentiate blocking from nonblocking assignments.		BTL 3	Applying
24.	What does the operator === is used in Verilog?		BTL 4	Analyzing
	PART – B			
1.	Describe the classification of semiconductor memories in detail.	(13)	BTL 1	Remembering
2.	Differentiate static and dynamic RAM. Draw the circuits of one cell of each and explain its working principle.	(13)	BTL 2	Understanding
3.	Explain how Read operation and Write operation is performed in random Access Memory with suitable timing diagram.	(13)	BTL 4	Analyzing
4.	Derive a combinational circuit defined by the function, F1 = AB'C'+AB'C+ABC and $F2 = A'BC+AB'C+ABC$ using PLA with minimal AND gates.	(13)	BTL 1	Remembering
5.	List the types of PLDs and explain the architecture of PLAs.	(13)	BTL 1	Remembering
6.	Write the simplified form of Boolean functions, $F1(x, y, z) = \sum (0, 1, 3, 5); F2(x, y, z) = \sum (3, 5, 7)$ and obtain its circuit using 3×4×2 PLA.	(13)	BTL 1	Remembering
7.	Obtain the circuitry used to realize the following functions using PAL. $F1(A, B, C) = \sum (1, 2, 4, 6); F2(A, B, C) = \sum (0, 1, 6, 7);$ $F3(A, B, C) = \sum (1, 2, 3, 5, 7).$	(13)	BTL 2	Understanding
8.	Analyze the design of BCD to Excess 3 code converter using PLA. Illustrate the design detail along with the PLA program table?	(13)	BTL 4	Analyzing
9.	Write a Verilog code for Carry Look Ahead (CLA) adder.	(13)	BTL 3	Applying
10.	 (i) Tabulate and explain the different category of operators supported in Verilog HDL along with its symbol. 9001 : 2000 Certifie (ii) Describe about the modeling styles available in Verilog HDL with suitable example. 	(7) (6)	BTL 1	Remembering
11.	Write Verilog HDL code for full adder using data flow modeling, and behavioral modelling styles with necessary illustration.	(13)	BTL 3	Applying
12.	Apply data flow modeling style in Verilog HDL to code for 4:1 multiplexer along with detailed explanation.	(13)	BTL 3	Applying
13.	Design a 3-bit magnitude comparator and write the Verilog HDL code to realize it using structural modelling.	(13)	BTL 3	Applying
14.	Write the Verilog HDL code for 4-bit synchronous counter.	(13)	BTL 4	Analyzing
15.	Use any one modeling style to describe a 3 to 8 decoder in Verilog HDL.	(13)	BTL 4	Analyzing

16.	Draw the state diagram for Moore state machine with four states, and single input single output. Justify the state diagram chosen. Also write the Verilog HDL code for the state machine and explain.	(13)	BTL 2	Understanding
17.	Write the Verilog code to construct a 4-bit ripple carry adder from half adders and full adders.	(13)	BTL 4	Analyzing
	PART C	1		
1.	Design the following code converters and derive the circuitry used to realize them using PROM device. (i) Binary to gray code (ii) Gray to Binary code	(8) (7)	BTL 3	Applying
2.	Construct a combinational circuit using ROM that accepts a three-bit binary number and outputs a binary number equal to the square of the input number.	(15)	BTL 4	Analyzing
3.	Explain the utilization of top down and bottom-up design approach in writing Verilog HDL code for coding 4-bit parallel binary adder design, using full adders and half adders.	(15)	BTL 4	Analyzing
4.	Evaluate the task carried out by the following state machine and also describe it using Verilog HDL code.	(15)	BTL 4	Analyzing
5.	Using $4 \times 3 \times 4$ PALS, determine the circuit used to realize the following Boolean functions. (i) W(A,B,C,D) = $\sum (0,2, 6,7,8,9,12,13)$ (ii) X(A,B,C,D) = $\sum (0, 2, 6, 7, 8, 9, 12, 13, 14)$ (iii) Y(A, B, C, D) = $\sum (2, 3, 8, 9, 10, 12, 13)$ (iv) Z(A,B,C,D) = $\sum (1, 3, 4, 6, 9, 12, 14)$	(15)	BTL 3	Applying