SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

S.R.M Nagar, Kattankulathur – 603 203.

Department of Electronics and Communication Engineering

<u>1906501 – DIGITAL COMMUNICATION</u>

UNIT I – INFORMATION THEORY

Discrete Memoryless source, Information, Entropy, Mutual Information – Discrete Memoryless channels – Binary Symmetric Channel, Channel Capacity – Hartley – Shannon law – Source coding theorem – Shannon – Fano & Huffman codes.

PART - A

Q.No	Questions	BT	Competence
		Level	
1.	Draw the basic block diagram of digital communication system.	BTL 3	Applying
2.	What are the merits of digital communication?	BTL 1	Remembering
3.	State the concept of discrete memory less source.	BTL 1	Remembering
4.	Write the two properties of information.	BTL 2	Understanding
5.	Define information rate.	BTL 2	Understanding
6.	Calculate the amount of information if $p_k = 1/4$.	BTL 3	Applying
7.	Prove the following statement "if receiver knows the message being transmitted, the amount of information carried is zero".	BTL 4	Analyzing
8.	Find the total amount of information, when a source emits 02 symbols whose probabilities are 0.2 and 0.1.	BTL 1	Remember
9.	Write the formulae to find the code length and code efficiency.	BTL 3	Apply
10.	State entropy.	BTL 1	Remembering
11.	Write the two properties of entropy.	BTL 2	Understanding
12.	Identify the entropy of the system for an event that has six possible	BTL 2	Understanding
	outcomes with probabilities 1/2,1/4,1/8,1/16,1/32?		
13.	What is mutual information?	BTL 1	Remembering
14.	List out the properties of mutual information.	BTL 4	Analyzing
15.	Outline the concept of discrete memory less channel.	BTL 3	Applying
16.	Write down the expression for Kraft-McMillan inequality.	BTL 3	Applying
17.	List out the special type of channels apart from the continuous and	BTL 2	Understanding
	discrete channels.		
18.	State the concept of BSC.	BTL 4	Analyzing
19.	Examine the channel capacity.	BTL 4	Analyzing
20.	Write down the formulae of Hartley law.	BTL 4	Analyzing

21.	Point out the concept of Shannon law.	BTL 4	Analyzing
22.	Name the source coding techniques.	BTL 1	Remembering
23.	Write the steps for Huffman coding algorithm.	BTL 3	Applying
24.	Why is Huffman code called as minimum redundancy code?	BTL 2	Understanding

	PART – B					
1.	(i)	Sketch the block diagram of digital communication system	(9)	BTL 1	Remembering	
		and elaborate it.				
	(ii)	Write the merits of digital communication	(4)			
2.	(i)	Explain about the information source, amount of	(6)	BTL 2	Understanding	
		information.	(7)			
	(ii)	Find the total amount of information, when a source emits				
		03 symbols whose probabilities are 0.2, 0.3 and 0.1.		So		
3.	Discu	ss the following		BTL 3	Applying	
	(i)	Discrete memoryless source	(4)			
	(ii) Channel matrix	(5)		m	
	(ii	i)List the types of channel	(4)		G	
4.	Explai	in the following		BTL 2	Understanding	
	(i)	Entropy	(2)			
	(ii) Comentropy	(3)			
	(ii	i)Properties of Entropy	(8)			
5.	(i)	Write the extension of a discrete memoryless source.	(3)	BTL 1	Remembering	
	(ii)	Define rate of information.	(3)			
	(iii)	How the error-free communication will be achieved and	(7)			
		calculate the entropy of a source which emits 2 symbols				
		which are equally likely. S_1 and $S_2 = \frac{1}{2}$.				
6.	Explai	in the types of channels in detail.	(13)	BTL 3	Applying	
7.	(i)	Elaborate the conditional and joint entropies.	(5)	BTL 4	Analyzing	
	(ii)	Write the mutual information properties with proof.	(8)			
8.	(i)	What is the main idea of discrete memory-less channel and	(6)	BTL 1	Remembering	
		its matrix form involving transition probabilities?				
	(ii)	Explain the concept of Binary symmetric channel with	(7)			
		Binary communication channel.				

9.	A sou	arce "S" emits a symbols S1, S2 and S3 with probabilities of	(13)	BTL 2	Understanding
	0.25,	0.5 and 0.25. Calculate self-information and Entropy of a			
	sourc	e S. (13)			
10.	Expre	ss the expression for channel capacity of a continuous	(13)	BTL 1	Remembering
	chann	el. Comment on the trade-off between SNR and capacity.			
11.	A voi	ce grade telephone channel has a bandwidth of 3400 Hz.	(13)	BTL 4	Analyzing
	Calcu	late channel capacity of the telephone channel for a SNR of			
	30 dB	and estimate minimum SNR required to support a rate of 4.8			
	kbps.				
12.	A so	arce generates five messages m ₀ ,m ₁ ,m ₂ ,m ₃ and m ₄ with	(13)	BTL 3	Applying
	proba	bilities 0.55,0.15,0.15,0.10 and 0.05 respectively. The	IN.		
	succes	ssive messages emitted by the source are statistically			
	indepe	endent. Determine the code words for the messages and		C	
	efficie	ency using Shannon Fano Algorithm.		0	
13.	Write	Shannon's first theorem on Source Coding and deduce the	(13)	BTL 2	Understanding
	equati	ons for average number of bits, coding efficiency and			T
	redun	dancy.			G
14.	Four	symbols of the alphabet of discrete memory less source and	(13)	BTL 4	Analyzing
	their	probabilities are given as $\{S_1, S_2, S_3, S_4\}$ and $\{1/3, 1/6, 1/4,\}$			
	1/4}.	Point out the symbols using Shannon fano coding and			
	calcu	late the average code word length and efficiency.	10		
15.	A so	urce emits one of four symbols S_1, S_2, S_3 and S_4 with	(13)	BTL 4	Analyzing
	proba	bilities {1/3, 1/6, 1/4, 1/4}. Calculate Entropy, average code			
	word	length and coding efficiency using Huffman coding.			
16.	(i)	Calculate the Huffman code for a discrete memoryless	(9)	BTL 3	Applying
		source with probability statistics {0.1,0.1,0.2,0.2,0.4}.			
	(ii)	Identify the drawbacks of Huffman coding.	(4)		
17.	Five s	ymbols of the alphabet of discrete memory less source and	(13)	BTL 4	Analyzing
	their	probabilities are given as $\{S_1, S_2, S_3, S_4, S_5\}$ and			
	{0.4,0	.19,0.16,0.15,0.15}. Construct using Shannon fano Coding			
	and ca	lculate the code efficiency.			

		FARI - C				
1.	The	source of information A generates the symbols	(15)	BTL 4	Analyzing	
	{A ₁ ,A	A_2, A_3, A_4, A_5, A_6 with the corresponding probabilities				
	{0.2,0	.3,0.11,0.16,0.18,0.05}. Explain the code for source symbols				
	using	Huffman and Shannon-Fano encoder and compare its efficiency.				
2.	(i)	Deduce by Shannon's theorem on source coding with need,	(8)	BTL 2	Understanding	
		average no of bits, code efficiency, redundancy and variance.				
		Find out the average number of bits per symbol for the code				
	(ii)	words 10, 11,010,011,000 and 001.	(7)			
3.	Summ	harize the different data compaction entropy coding algorithms	(15)	BTL 4	Analyzing	
	and gi	ve detail on the differences between them.				
4.	Five s	sources messages are probable to appear as symbols {m1, m2,	(15)	BTL 1	Remembering	
	m3, n	14, m5} with the corresponding probabilities {0.4, 0.15, 0.15,		0		
	0.15,	0.15}. Find the code for source symbols using Huffman and		0		
	Shann	on-Fano encoder and compare its efficiency.		5		
5.	Consi	der a discrete memoryless source with source alphabet X = {x ₁ ,	(15)	BTL 3	Applying	
	X 2, X 3	and source statistics {0.7, 0.15, 0.15}. Calculate the Entropy of		6	0	
	a sour	ce X and the Entropy of the second order extension of the source			11	
	and al	so verify that $H(S^2) = 2 H(S)$.				

UNIT II - WAVEFORM CODING & REPRESENTATION

Prediction filtering and DPCM - Delta Modulation - ADPCM & ADM principles-Linear Predictive Coding-Properties of Line codes- Power Spectral Density of Unipolar / Polar RZ & NRZ – Bipolar NRZ – Manchester – HDBP.

PART - A				
Q.No	Questions	BT	Competence	
		Level		
1.	What is linear predictor? On what basis are predictor coefficients are	BTL 1	Remembering	
	determined.			
2.	Identify the need of prediction filtering.	BTL 3	Applying	
3.	List the two properties of linear prediction.	BTL 4	Analyzing	
4.	What are the disadvantages of DPCM?	BTL 1	Remembering	
5.	State the principle of working of DM.	BTL 2	Understanding	

6.	Write the advantages of delta modulator.	BTL 2	Understanding
7.	Explain the techniques to overcome slope overload and granular noise	BTL 2	Understanding
	in delta modulation system.		
8.	Why delta modulation is superior to differential pulse code modulation?	BTL 1	Remembering
9.	State the concept of ADPCM.	BTL 4	Analyzing
10.	Define APF.	BTL 1	Remembering
11.	What is meant by Pulse code modulation?	BTL 1	Remembering
12.	What are the drawbacks of ADM?	BTL 1	Remembering
13.	Outline the concept of APB.	BTL 4	Analyzing
14.	Give the difference between DM and ADM.	BTL 3	Applying
15.	Mention the concept of quantization.	BTL 3	Applying
16.	Assess the principle of linear predictive coder.	BTL 3	Applying
17.	Sketch the model of LPC.	BTL 4	Analyzing
18.	Summarize the need of line codes.	BTL 2	Understanding
19.	Mention the properties of line coding.	BTL 3	Applying
20.	Compare unipolar and RZ code for the binary data 01101001.	BTL 4	Analyzing
21.	Draw the power spectral density for Bipolar NRZ format.	BTL 3	Applying
22.	Infer the technique of Manchester coding.	BTL 4	Analyzing
23.	Express the data 10011 using the Manchester code format.	BTL 2	Understanding
24.	Summarize the concept of HDBP waveform coding.	BTL 2	Understanding

	PART - B						
1.	(i)	Evaluate in detail speech generation model.	(7)	BTL 4	Analyzing		
	(ii)	Assess the process of LPC encoder and decoder.	(6)				
2.	(i)	In a binary PCM system, the output signal to quantization noise	(6)	BTL 4	Analyzing		
		ratio is to be minimum of 40 dB. Determine the number of required					
		levels and find the corresponding output signal to quantization					
		noise ratio.					
	(ii)	A binary channel with bit rate = $36,000$ bits/sec is available for	(7)				
		PCM voice transmission. Find number of bits per sample, number					
		of quantization levels and sampling frequency assuming highest					
		frequency component of voice signal is 3.2 kHz.					

3.	Expla	in DPCM system transmitter and receiver with suitable diagrams.	(13)	BTL 1	Remembering
4.	Descr	ibe delta modulation transmitter and receiver with their block	(13)	BTL 1	Remembering
	diagra	ms.			
5.	A sign	hal having bandwidth of 3 kHz is to be encoded using 8 bit PCM	(13)	BTL 3	Applying
	and D	M system. If 10 cycles of signal are digitized, state how many bits			
	will b	e digitized in each case if sampling frequency is 10 kHz? Also find			
	bandw	vidth required in each case.			
6.	(i)	Consider a DM system designed to accommodate analog message		BTL 1	Remembering
		signals limited to bandwidth $W = 5$ kHz. A sinusoidal test signal			
		of amplitude $A = 1$ volt and frequency $f_m = 1$ kHz is applied to			
		the system. The sampling rate of the system is 50 kHz.	1		
		(a) Calculate the minimum step size Δ required to minimize slope	(8)		
		overload.			
		(b) Calculate signal-to (quantization) noise ratio of the system for		0	
		the specified sinusoidal test signal.		5	
	(ii)	Compare time domain and frequency domain coder.	(5)	m	
7.	State	and explain the functioning of ADPCM system with neat block	(13)	BTL 2	Understanding
	diagra	ms.			
8.	Expla	in ADM with transmitter and receiver block diagrams.	(7)	BTL 2	Understanding
9.	(i)	Summarize the advantages of adaptive delta modulation.	(5)	BTL 2	Understanding
	(ii)	Distinguish between the temporal waveform and spectral	(8)		
		waveform coding.			
10.	Expla	in about the linear prediction with necessary equations.	(13)	BTL 2	Understanding
11.	(i)	Write down the properties of linear prediction.	(5)	BTL 3	Applying
	(ii)	Compare source coding methods with various parameters.	(8)		
12.	Briefl	y explain the properties of line coding.	(13)	BTL 3	Applying
13.	What	is the need for line coding of signals? Explain on the power spectral	(13)	BTL 1	Remembering
	proper	rties of different line coding signals.			
14.	Analy	ze with waveforms of different types of line coding signals with	(13)	BTL 4	Analyzing
	their s	ignal representation equations.			
15.	For th	e following bit sequence 1101010011 draw the waveforms for RZ	(13)	BTL 4	Analyzing
	unipo	lar, NRZ polar, AMI, Manchester, RZ polar and NRZ line coding			
	techni	ques.			

16.	Consider a binary sequence with a long sequence of 1's followed by a	(13)	BTL 3	Applying
	single '0' and then a long sequence of 1's. Draw the waveform for this			
	sequence using the following signaling formats such as Unipolar NRZ,			
	Bipolar RZ, AMI RZ and Manchester signaling.			
17.	Formulate on slope overload distortion which occurs if $A_m > (\delta/2\pi f_m T_s)$	(13)	BTL 4	Analyzing
	for a sine wave of frequency f_m and amplitude A_m applied to a delta			
	modulator of step size δ , where T_s is the sampling period.			

PART - C					
1.		A DM system is designed to operate at 3 times the Nyquist rate for a		BTL 4	Analyzing
		signal with 3 kHz bandwidth. The quantizing step size is 250 mV.			
	(i)	Determine the maximum amplitude of a 1 kHz input sinusoid for which	(8)		
		delta modulator does not show slope overload.	S		
	(ii)	Evaluate the post filtered output SNR for the signal.	(7)		
2.	In a	single integration DM scheme th <mark>e voice signal is sampled at a rate of 6</mark> 4		BTL 4	Analyzing
	kHz,	the maximum signal amplitude is 1 volt, voice signal bandwidth is 3.5			
	kHz.				
	(i) D	etermine the minimum value of step size to avoid slope overload.	(5)		
	(ii) I	Evaluate the granular noise N _{o.}	(5)		
	(iii)A	ssuming the signal to be sinusoidal, calculate the signal power and signal	(5)		
	to	o noise ratio.			
3.	A 1]	cHz signal of voice channel is sampled at 4 kHz using 12 bit PCM and a		BTL 2	Understanding
	DM	system. If 25 cycles of voice signal are digitized. Solve in each case.			
	(i) Signaling rate	(5)		
	(ii) Bandwidth required	(5)		
	(iii)No of bits required to be transmitted.	(5)		
4.	For t	he sequence 11001001 sketch the waveforms for bipolar NRZ, Split phase	(15)	BTL 3	Applying
	Man	chester, Polar RZ and AMI. Sketch also their power spectral densities for			
	the s	ame.			
5.	List	and compare the various line coding techniques with necessary diagrams.	(15)	BTL 1	Remembering
		UNIT III - BASEBAND TRANSMISSION & RECEPT	ION		
ISI -	- Nyq	uist criterion for distortion less transmission - Pulse shaping - Correl	ative o	oding –I	Eye pattern –
Rece	iving	Filters- Matched Filter, Correlation receiver, Adaptive Equalization.			

PART - A					
Q.N	Questions	BT	Competence		
0		Level			
1.	Outline the causes for ISI.	BTL 3	Applying		
2.	Justify the statement 'ISI cannot be avoided'.	BTL 3	Applying		
3.	Devise a method to minimize ISI in communication system.	BTL 4	Analyzing		
4.	List the practical difficulties of ideal Nyquist channel.	BTL 1	Remembering		
5.	Summarize the Nyquist criteria for distortionless baseband transmission	BTL 2	Understanding		
6.	Distinguish the Nyquist second and third criteria to realize zero ISI.	BTL 4	Analyzing		
7.	Outline the concept behind the raised cosine spectrum.	BTL 2	Understanding		
8.	Define roll off factor.	BTL 1	Remembering		
9.	The output of a digital computer is at a rate of 64 kbps. If the roll off factor $\alpha =$	BTL 3	Applying		
	0.5, find the bandwidth required to transmit the data in each case.	S			
10.	Discuss how pulse shaping reduce ISI.	BTL 2	Understanding		
11.	Examine correlative coding.	BTL 4	Analyzing		
12.	Draw the frequency response of duo binary conversion filter.	BTL 1	Remembering		
13.	Mention the drawbacks of duo binary system.	BTL 4	Analyzing		
14.	Mention the need of precoding in a duobinary scheme.	BTL 2	Understanding		
15.	Interpret the performance of the system from the width and height of the eye	BTL 3	Applying		
	pattern.				
16.	Illustrate Eye pattern with diagram.	BTL 3	Applying		
17.	Outline the features of a matched filter.	BTL 2	Understanding		
18.	When does the matched filter is called as integrate and dump filter?	BTL 2	Understanding		
19.	Compare the matched filter and correlation receiver.	BTL 3	Applying		
20.	State the assumptions based on which the average probability of the symbol	BTL 1	Remembering		
	error can be minimized.				
21.	Write the necessity of Equalization.	BTL 1	Remembering		
22.	Categorize the methods to implement the adaptive equalizer.	BTL 4	Analyzing		
23.	What is the need of adaptive equalization in a switched telephone network?	BTL 1	Remembering		
24.	Classify the modes of operation of an adaptive equalizer.	BTL 4	Analyzing		

		PART – B			
1.	Elab	orate how ISI occurs in base-band binary data transmission system.	(13)	BTL 2	Understanding
2.	Wha	tt is ISI? List the different methods to remove ISI in s	(13)	BTL 1	Remembering
	com	munication system. Also state and prove Nyquist first criterion for			
	Zero	ISI.			
3.	(i)	Summarize the benefits of Nyquist pulse shaping.	(7)	BTL 3	Applying
	(ii)	Explain the information provided in eye diagram.	(6)		
4.	Exp	ain how Nyquist criterion eliminates interference in the absence of	(13)	BTL 2	Understanding
	nois	e for distortion less baseband binary transmission.			
5.	(i)	Outline the concept of Matched filter receiver.	(7)	BTL 2	Understanding
	(ii)	Determine the principle of signal reception using a correlator type	(6)		
		receiver.	'G		
6.	Illus	trate "raised cosine spectrum". Discuss how it helps to avoid ISI.	(13)	BTL 2	Understanding
7.	Cate	gorize the M-ary baseband system and explain in detail with an	(13)	BTL 4	Analyzing
	exar	nple. CPM		-	
8.	Exa	nine the principle of obtaining eye pattern and mark important	(13)	BTL 4	Analyzing
	obse	ervations made from the eye pattern.		G)
9.	(i)	Analyze the differential encoder with neat block diagram.	(7)	BTL 4	Analyzing
	(ii)	Identify the merits and demerits of Duo binary signaling.	(6)		
10.	Desc	cribe the modified Duo binary coding technique and its	(13)	BTL 1	Remembering
	perf	ormance by illustrating its frequency and impulse response.			
11.	(i)	Draw the simple duo-binary encoder without precoder and	(7)	BTL 1	Remembering
		explain in detail.			
	(ii)	Explain the frequency response of duo-binary encoding scheme.	(6)		
12.	Illus	trate the basic idea of correlative coding with a specific example.	(13)	BTL 3	Applying
13.	(i)	Draw the sub systems of a correlation receiver and explain in	(7)	BTL 1	Remembering
		detail.			
	(ii)	Write about an optimum receiver based on the matched filter with	(6)		
		an appropriate block diagram.			
14.	(i)	Interpret the pulse shaping method to minimize ISI.	(7)	BTL 3	Applying
	(ii)	Explain how eye pattern illustrates the performance of data	(6)		
		transmission system with respect to Inter Symbol Interference			
		with neat sketch.			

15.	Ded	uce the expression for the maximum signal to noise ratio of a	(13)	BTL 4	Analyzing
	mate	ched filter.			
16.	(i)	Outline the importance of the matched filter in a communication	(7)	BTL 3	Applying
		system.			
	(ii)	Summarize the properties of the matched filter in detail.	(6)		
17.	Exp	lain the types of adaptive equalizers in detail with neat diagrams.	(13)	BTL 1	Remembering

	PART - C			
1.	Explain in detail about the realizations of the receiving filters based on	(15)	BTL 3	Applying
	the signal correlator and matched filter.			
2.	Analyze in detail about inter symbol interference (ISI) and the Nyquist	(15)	BTL 4	Analyzing
	criterion for minimizing ISI. Elaborate the difficulties in implementing it	G		
	in a practical system.		2	
3.	Describe in detail about correlative coding to eliminate ISI.	(15)	BTL 1	Remembering
4.	Consider the input binary sequence 0010110 to a precoded duobinary	(15)	BTL 4	Analyzing
	scheme and explain the process of generating original binary sequence		IT	
	with the necessary diagram.		G	
5.	Summarize the adaptive equalization techniques with neat diagram.	(15)	BTL 2	Understanding

UNIT IV - DIGITAL MODULATION SCHEME

Geometric Representation of signals - Generation, detection, PSD & BER of Coherent BPSK, BFSK & QPSK -QAM - Carrier Synchronization - Structure of Non-coherent Receivers - Principle of DPSK--MSK-Gaussian MSK.

PART - A					
Q. No	Questions	BT Level	Competence		
1.	Outline the need for geometric representation of signals.	BTL 2	Understanding		
2.	Draw the block diagram of a coherent BFSK receiver.	BTL 1	Remembering		
3.	Interpret the decision rule for BFSK.	BTL 3	Applying		
4.	Identify the difference between BPSK and QPSK techniques.	BTL 2	Understanding		
5.	What is QPSK? Write down the expression for the QPSK signal.	BTL 4	Analyzing		
6.	Sketch the BER curve for ASK, FSK and BPSK digital modulation schemes.	BTL 1	Remembering		

7.	How to improve the Bit Error Rate of a system?	BTL 1	Remembering
8.	A BFSK system employs two signaling frequencies f_1 and f_2 . The lower frequency f_1 is 1200 Hz and signaling rate is 500 Baud. Compute f_2 .	BTL 3	Applying
9.	A BPSK system makes errors at the average rate of 100 errors per day. Data rate is 1 kbps. The single-sided noise power spectral density is 10 W/Hz. Assume the system to be wide sense stationary, predict the average bit error probability.	BTL 3	Applying
10	Compare coherent and non-coherent reception.	BTL 2	Understanding
11	Distinguish the error probability for BPSK and QPSK.	BTL 4	Analyzing
12	Summarize the features of DPSK.	BTL 2	Understanding
13	Indicate why PSK always preferable over ASK in Coherent detection?	BTL 2	Understanding
14	Examine the special features of QAM.	BTL 4	Analyzing
15	Illustrate the signal space diagram for QAM signal for M=8.	BTL 3	Applying
16	Write about the constellation diagram.	BTL 1	Remembering
17	Define carrier synchronization.	BTL 1	Remembering
18	When does the non coherent receiver is preferred?	BTL 4	Analyzing
19	State the principle of Differential Phase Shift Keying.	BTL 1	Remembering
20	Express the error probability of DPSK in terms of E_b/N_o .	BTL 3	Applying
21	Why MSK referred to as fast FSK? Justify.	BTL 3	Applying
22	Differentiate between MSK and GMSK.	BTL 2	Understanding
23	Analyze the concept of spectral efficiency.	BTL 4	Analyzing
24	Outline the importance of a Gaussian filter in GMSK	BTL 4	Analyzing

		PART – B			
1.	(i)	Define basis set. In what way it is useful in representing the signal.	(5)	BTL 1	Remembering
	(ii)	With an example explain how the basis set is determined by Gram	(8)		
		Schmidt procedure.			
2.	(i)	Explain about digital modulation schemes.	(7)	BTL 2	Understanding
	(ii)	Elaborate the geometrical representation of signal and explain in	(6)		
		detail for BPSK signal.			
3.	Desc	ribe the process of generation and detection of a coherent binary PSK	(13)	BTL 2	Understanding
	signa	al and derive the power spectral density of binary PSK signal and plot			
	it.				
4.	A Ba	andpass transmission uses a signaling scheme with	(13)	BTL 3	Applying
	x1(t)	$= A\cos 2\pi f_0 t$			

	$x_2(t) = A\cos 2\pi f_0 t$ $0 \le t \le Th$			
	where the hit duration is 0.2ms. The carrier amplitude at the receiver is 1.			
	where the off duration is 0.2118. The earlier amplitude at the receiver is 1 mV and the PSD of AWGN is 10^{-12} W/Hz. Assume that ideal correlation			
	receiver is used. Calculate the probability of hit error for the given signaling			
	receiver is used. Calculate the probability of bit error for the given signaling			
5	Scheme.	(12)	DTI 2	Understanding
5.	Describe the concrete detection of FSK signal and derive the expression for	(15)	DIL 2	Understanding
		(12)		D 1 '
6.	Draw the transmitter, receiver block diagram of QPSK and explain its	(13)	BILI	Remembering
	signal space diagram in detail.			
7.	In a QPSK system, the bit rate of NRZ stream is 10 Mbps and carrier	(13)	BTL 3	Applying
	frequency is 1GHz. Determine the symbol rate of transmission and			
	bandwidth requirement of the channel.			
8.	(i) Describe QPSK signaling with diagrams.	(7)	BTL 2	Understanding
	(ii) Sketch the constellation diagram of QPSK scheme and explain.	(6)		
9.	Compare the BER of coherent PSK, coherent QPSK and coherent FSK.	(13)	BTL 4	Analyzing
10.	(i) State the principle of working of an "early late bit synchronizer".	(6)	BTL 1	Remembering
	(ii) Obtain the expression for bit error probability of QPSK system.	(7)	5	
11.	With neat block diagram explain the transmitter and receiver of a QAM	(13)	BTL 4	Analyzing
	signal.		Ö	
12.	Explain the power spectral density and bandwidth of QAM signal with neat	(13)	BTL 4	Analyzing
	diagrams and mention its advantages.			
13.	(i) Distinguish how QAM differs from QPSK, explain in detail.	(7)	BTL 4	Analyzing
	(ii) Analyze the error performance of coherent detection QAM system	(13)		
14.	(i) Illustrate about Carrier Synchronization.	(7)	BTL 3	Applying
	(ii) Summarize the features of the non-coherent receivers.	(6)		
15.	Identify the principle of DPSK? Explain the transmitter and receiver of	(13)	BTL 3	Applying
	DPSK scheme.			
16.	How would you describe the generation and demodulation of Minimum	(13)	BTL 1	Remembering
	Shift Keying (MSK) signals? Explain in detail.			
17.	Explain in detail about Gaussian Minimum Shift Keying (GMSK)	(13)	BTL 1	Remembering
	transmission and reception with necessary block diagram	× - /		0
	same reception and reception and recebbury order diagram.			

	PART - C			
1.	A set of binary data is sent at the rate of R_b = 100 Kbps over a channel with	(15)	BTL 3	Applying
	60 dB transmission loss and power spectral density $\eta = 10^{-12}$ W/Hz at the			

	manimum Explorations the two amitted manual for a hit amon much shility	. D		
	receiver. Evaluating the transmitted power for a bit error probability	$P_e =$		
	10^{-3} for the following modulation schemes. (a) FSK (b) PSK (c) DPSF	K (d)		
	16 QAM			
2.	Draw the signal space diagram of a coherent QPSK modulation scheme	e and (15)	BTL 1	Remembering
	also find the probability of error if the carrier takes on one of four equ	ually		
	spaced values at 0°,90°, 180° and 270°.			
3.	In digital CW communication system, the bit rate of NRZ data stream	n in 1 (15)	BTL 2	Understanding
	Mbps and carrier frequency is 100 MHz. Solve for the symbol rate	te of		
	transmission and bandwidth requirement of the channel in the follow	wing		
	cases of different techniques used.			
	(i) BPSK system	IA.		
	(ii) QPSK system	G		
	(iii) 16-ary PSK system	0		
4.	(i) Find the error probability of BFSK system for following parame	eters. (5)	BTL 4	Analyzing
	PSD of white noise $N_0/2 = 10^{-10}$ Watt/Hz		5	
	Amplitude of carrier is , $A = 1 \text{mV}$ at receiver input.		m	
	Frequency of baseband NRZ signal is f _b =1kHz.		ö	
	(ii) Binary data is transmitted using PSK at rate 2Mbps over RF	link (10)	m	
	having bandwidth 2MHz. Find signal power required at the reco	eiver 🛛		
	input so that error probability is less than or equal to 10^{-4} Ass	sume		
	noise PSD to be 10 ⁻¹⁰ Watt/Hz.			
5.	Determine the average probability of error and Euclidean distance of B	PSK (15)	BTL 4	Analyzing
	and BFSK and compare the values. Consider the following parameters	s:		
	Data rate : 2.5 Mbps			
	PSD of AWGN (N ₀ /2) : 10 ⁻²⁰ W/Hz			
	Received carrier amplitude : $1\mu V$			

UNIT V - ERROR CONTROL CODING

Channel coding theorem - Linear Block codes - Hamming codes - Cyclic codes - Convolutional codes - Viterbi Decoder.

PART - A					
Q.No.	Questions	BT	Competence		
		Level			
1.	State Channel Coding Theorem and its need.	BTL 1	Remembering		
2.	Analyze the need for error control codes.	BTL 4	Analyzing		
3.	List the applications of error correction codes.	BTL 1	Remembering		
4.	Outline the features of linear code.	BTL 2	Understanding		
5.	Point out the code rate of a block code.	BTL 3	Applying		
6.	Mention the significance of minimum distance of a block code.	BTL 2	Understanding		
7.	Express the syndrome properties of linear block code.	BTL 2	Understanding		
8.	Distinguish Hamming Distance and Hamming weight.	BTL 4	Analyzing		
9.	Deduce the Hamming distance between 101010 and 010101. If the minimum	BTL 3	Applying		
	Hamming distance of a (n, k) linear block code is 3, what is the minimum				
	Hamming weight?				
10.	Summarize the advantages and disadvantages of Hamming codes.	BTL 2	Understanding		
11.	Interpret the properties of Cyclic codes.	BTL 3	Applying		
12.	Illustrate the systematic code word with its structure.	BTL 3	Applying		
13.	Discuss the properties of Generator polynomial.	BTL 2	Understanding		
14.	When does a binary code is said to be cyclic codes?	BTL 1	Remembering		
15.	Write the generator polynomial of a cyclic codes.	BTL 1	Remembering		
16.	Generate the cyclic code for (n, k) syndrome calculator.	BTL 2	Understanding		
17.	The code vector [1110010] is sent, the received vector is [1100010]. Calculate	BTL 4	Analyzing		
	the Syndrome.				
18.	What is meant by constraint length of a convolutional encoder?	BTL 1	Remembering		
19.	Compute the code rate of a convolutional encoder with 'n' modulo 2 adders,	BTL 4	Analyzing		
	'm' flip flops and 'L' input bits.				
20.	Define convolutional code. How is it different from block codes?	BTL 1	Remembering		
21.	Mention the drawback of code tree approach in convolutional codes.	BTL 3	Applying		
22.	Outline the techniques/algorithms used. in encoding and decoding of	BTL 3	Applying		
	Convolutional code.				

23.	Classify the approaches to identify the output sequence in a convolutional	BTL 4	Analyzing
	encoder.		
24.	Examine how Trellis diagram is used to represent the code generated by	BTL 4	Analyzing
	convolutional coder and mention its advantages.		

PART - B					
1.	Consider the (7,4) linear block code with generator matrix		BTL 3	Applying	
	1000: 101 0100: 111 0010: 110 0001: 011				
	(i) Find all the code vectors.	(5)			
	(ii) Find parity check matrix.	(4)			
	(iii)Minimum weight of this code.	(4)	-		
2.	For a systematic (6, 3) linear block code, $P = \begin{bmatrix} 101\\011\\110 \end{bmatrix}$. Analyze all the possible code vectors.	(13)	BTL 4	Analyzing	
3.	(i) Outline the steps involved in the generation of linear block codes.	(7)	BTL 2	Understanding	
	(ii) Interpret the properties of syndrome.	(6)	m		
4.	Illustrate how the errors are corrected using hamming code with an example.	(13)	BTL 2	Understanding	
5.	Explain syndrome decoding and explain its property with appropriate example.	(13)	BTL 2	Understanding	
6.	Assume that the code word C=10110 for the (6,3) case is transmitted and the vector R=001110 is received. Show how a decoder using the syndrome lookup table can correct the error. Let the generator matrix as $G = \begin{bmatrix} 110100\\ 011010\\ 101001 \end{bmatrix}$	(13)	BTL 3	Applying	
7.	An error control code has the following parity check matrix $H = \begin{bmatrix} 101100\\ 110010\\ 011001 \end{bmatrix}$ (i) What is the generator matrix G?		BTL 3	Applying	
	(ii) Find the code word that begins with 101	(4)			
	(iii) Decode the received code word 110110 Comment on error correction	(4)			
	and detection capability of this code.	(5)			
8.	Describe the cyclic codes with the linear and cyclic property. Also	(13)	BTL 2	Understanding	
	represent the cyclic property of a code word in polynomial notation.				

9.	Find	the (7,4) systematic and non-systematic cyclic code words of the	(13)	BTL 1	Remembering
	mess	sage word 1101. Assume the generator polynomial as $1+x^2+x^3$			
10.	Ana	yse how to generate the output sequence from a convolutional	(13)	BTL 4	Analyzing
	enco	der using the time domain approach and transfer domain approach.			
11.	(i)	Illustrate the significance of generator polynomial with the relevant	(7)	BTL 1	Remembering
		properties			
	(ii)	Consider the message vector $m = [1 \ 0 \ 1 \ 1]$ and generator	(6)		
		polynomial $g(X) = 1 + X + X^3$. Compute the code vector using (7,4)			
		systematic cyclic coder.			
12.	Drav	v the diagram of the 1/2 rate convolutional encoder with generator	(13)	BTL 3	Applying
	poly	nomials			
	G ¹ (E	D)=1+D	3		
	$G^2(\Gamma$	$D)=1+D+D^2$	S	6	
	Com	pute the encoder output for input sequence 101101.			
13.	Sket	ch the state diagram of rate 1/2 convolutional encoder given in the	(13)	BTL 1	Remembering
	figuı	re below.		m	
	Inpu	$t \longrightarrow m m_1 m_2$ $t \longrightarrow 0 utput$ $x_1 \circ 1$ $x_2 \circ 2$ $x_2 \circ 2$ $x_2 \circ 2$		GE	
14.		A convolutional code is described by the following generator		BTL 4	Analyzing
		sequences, $g^{(1)} = \{1,0,1\}, g^{(2)} = \{1,0,0\}, g^{(3)} = \{1,1,1\}.$			
	(i)	Draw the encoder to this code	(4)		
	(ii)	Draw the state diagram	(5)		
	(iii)	If the message sequence is 10110, Frame the code word.	(4)		
15.	(i)	Compare linear block codes and convolutional codes.	(7)	BTL 1	Remembering
	(ii)	State the advantages, disadvantages and applications of convolutional codes.	(6)		
16.	Cons	struct a convolutional Encoder with the following specifications:	(13)	BTL 4	Analyzing

	Constraint length =3, Code rate = $1/2$, Generator sequence are $g^{(1)}$							
	=[1 0 1], $g^{(2)}$ =[1 1 0], input sequence =[1 0 0 1 1]. Determine the output							
	sequence using Code Tree approach.							
17.	Determine how Viterbi decoding algorithm is used for convolutional	(13)	BTL 1	Remembering				
	code.							
PART – C								
1.	For a systematic (6,3) linear block code		BTL 4	Analyzing				
	$\begin{bmatrix} G = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix},$							
	(i) Solve for all the code vectors.	(5)						
	(ii) Draw encoder circuit for the above code.	(5)						
	(iii) Predict minimum hamming weight.	(5)						
2.	For a systematic linear block code, the three parity check digits P_1 , P_2 , P_3 are	S	BTL 3	Applying				
	given by $P_{k,n-k} = \begin{bmatrix} 101\\111\\110\\011 \end{bmatrix}$ SRM		LE.					
	(i) Construct generated matrix.	(4)	G					
	(ii) Assess the t code generated by the matrix.	(4)	m					
	(iii)Determine error correcting capacity.	(4)						
	(iv)Decode the received words with an example.	(3)						
3.	Find a generator polynomial for a (7,4) cyclic code and find the code word	(15)	BTL 4	Analyzing				
	for [1 0 0 0].							
4.	Explain about code tree, code trellis and state diagrams. Compare code tree	(15)	BTL 1	Rememberin				
	with trellis diagram.			g				
5.	A convolutional code is described by $g1 = [1 \ 0 \ 0], g2 = [1 \ 1 \ 1], g3$		BTL 2	Understandin				
	= [1 0 1]			g				
	(i) Design the encoder corresponding to the code.							
	(ii) Sketch the code tree and state diagram for this code.	(5)						
	(iii)Draw the trellis diagram.	(5)						