SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

QUESTION BANK

VII SEMESTER

1906701 – ANTENNAS AND MICROWAVE ENGINEERING Department Of Electronics and Communication Engineering

Regulation - 2019

Academic Year 2022 – 2023

Prepared by

Dr. S. Ramesh, Associate Professor /ECE Dr. N. Subhashini, Assistant Professor(Sel.G)/ECE Ms. S. Abirami, Assistant Professor(O.G)/ECE

UNIT I - INTRODUCTION TO MICROWAVE SYSTEMS AND ANTENNAS

Microwave frequency bands, Physical concept of radiation, Fields and Power radiated by an antenna, Antenna pattern characteristics, Antenna Gain and Efficiency, Antenna Noise Temperature, Impedance matching, Friis transmission equation and Radar range equation, Link budget and link margin, Noise characterization of a microwave receiver.

PART – A					
Q.No	Questions	BT	Competence		
		Level			
1.	What is the need of an antenna?	BTL 1	Remembering		
2.	Define the term antenna.	BTL 1	Remembering		
3.	List out the microwave frequency bands in electromagnetic	BTL 1	Remembering		
	spectrum				
4.	State the condition to be satisfied with respect to current and	BTL 1	Remembering		
	charge for emitting radiation.				
5.	Categorize the antenna parameters.	BTL 4	Analyzing		
6.	How the field regions of an antenna are classified?	BTL 4	Analyzing		
7.	Obtain the total power radiated by an antenna over an entire solid	BTL 3	Applying		
	angle of 4π .				
8.	A radio link has a 15 W transmitter connected to an antenna of	BTL 3	Applying		
	$2.5m^2$ effective aperture at 5 GHz. The receiving antenna has an				
	effective aperture of 0.5 m ² and is located at a 15 Km line-of-sight				
	distance from the transmitting antenna. Assuming lossless,				
0	matched antennas, find the power delivered to the receiver.	DTI 1	Demonstrations		
9.	Sketch the two dimensional radiation pattern of a directional	BILI	Remembering		
10	Antenna.	DTI 1	Domomhoring		
10.	The performance of a linearily polarized entering are defined by		Analyzing		
11.	the principal patterns. Justify	DIL 4	Anaryzing		
12	Relate the gain and directivity of an antenna through an	BTI 3	Applying		
12.	appropriate mathematical expression	DILJ	rpprying		
13.	Differentiate Radian and Steradian.	BTL 4	Analyzing		
14	Find the equation for antenna noise temperature with it's	BTL 3	Applying		
	definition				
15.	If the noise figure of an antenna at room temperature is 2 dB,	BTL 3	Applying		
	compute the effective noise temperature.				
16.	Illustrate the significance of G/T calculation.	BTL 3	Applying		
17.	Explore the need for impedance matching in antennas.	BTL 4	Analyzing		
18.	Summarize the different types of matching techniques	BTL 2	Understanding		
19.	Write an equation that relates the received and transmitted power	BTL 2	Understanding		
	based on the distance between the antennas.				
20.	Mention the importance of Friis equation in communication.	BTL 2	Understanding		
21.	Interpret the expression for the radar range equation.	BTL 4	Analyzing		
22.	Compare link budget and link margin in the field of antenna	BTL 2	Understanding		
	design				
23.	Outline the noise contribution of various components in a	BTL 2	Understanding		
	receiver.				
24.	Discuss the need for noise characterization of a microwave	BTL 2	Understanding		
	receiver.				

	PART - B						
1.		How radiation is accomplished using two wire antenna?	(13)	BTL1	Remembering		
2.		List the antenna parameters and explain any four parameters in detail.	(13)	BTL1	Remembering		
3.	(i)	Derive the power radiated from an antenna in terms of the radiation intensity.	(8)	BTL3	Applying		
	(ii)	Find the power radiated by an antenna if the radiation intensity is given by $A\sin\theta$.	(5)	BTL3	Applying		
4.		Explain the two dimensional normalized field pattern and power pattern of a linear array of an isotropic sources.	(13)	BTL2	Understanding		
5.		Summarize radiation pattern with a three dimension model. Also explain HPBW, FNBW and the other lobes.	(13)	BTL2	Understanding		
6.	(i)	An antenna has a field pattern given by $E(\theta)=\cos\theta\cos2\theta$ for $0^{\circ} \le \theta \le 90^{\circ}$. Compute (a) HPBW (b) FNBW.	(7)	BTL3	Applying		
	(ii)	Interpret the concept of radiation pattern and directivity of an antenna.	(6)	BTL3	Applying		
7.	(i)	Analyze the characteristics of omnidirectional, directional and an isotropic radiators.	(8)	BTL4	Analyzing		
	(ii)	Examine how the space around the antenna is subdivided.	(5)	BTL4	Analyzing		
8.		Define gain of an antenna. Explain with mathematical expression about the relative gain and absolute gain of an antenna.	(13)	BTL2	Understanding		
9.		For a source with a radiation intensity $U = 6\cos\theta$, find the directivity and half power beamwidth when the radiation is unidirectional.	(13)	BTL3	Applying		
10.	(i)	Considering the losses of an antenna determine the overall efficiency of an antenna.	(7)	BTL2	Understanding		
	(ii)	Explain the classification of polarization observed in the radiation of an antenna.	(6)	BTL2	Understanding		
11.		Describe the importance of the impedance matching in the transmission line involving antenna.	(13)	BTL1	Remembering		
12.		Mention the different types of impedance matching techniques available in the microwave frequency range applications, explain in detail.	(13)	BTL1	Remembering		
13.	(i)	Write a note on antenna noise temperature and deduce the noise equivalent temperature expression.	(8)	BTL1	Remembering		
	(ii)	If the noise figure of an antenna is 2 dB, what is the effective noise temperature?	(5)	BTL1	Remembering		
14.	(i)	Examine the Friis transmission equation relating the power received to the power transmitted between the antennas separated by a distance of 'R' units.	(7)	BTL4	Analyzing		
	(ii)	Consider two similar dipoles of length 3 cm used as transmitting and receiving antennas. Find the power received if the receiving antenna is placed at a distance of 10 m from the transmitting antenna which is radiating 15 W average power at $f = 1$ GHz.	(6)	BTL4	Analyzing		

15.	Generalize the radar range equation based on the	(13)	BTL4	Analyzing
	transmitted power and delivered power to the load			
	considering the conduction-dielectric losses.			
16.	Illustrate the concept of link budget and link margin	(13)	BTL3	Applying
	with equation and suitable examples.			
17.	Analyze the noise characteristics of a microwave	(13)	BTL4	Analyzing
	receiver front end with necessary diagram and			
	mathematical expression.			

		PART - C			
1.		Explain the radiation mechanism with different	(15)	BTL2	Understanding
		configurations of single wire as radiator.			
2.		An antenna receives a maximum power of 2 μ W from	(15)	BTL4	Analyzing
		a radio station. Estimate the maximum effective area if			
		the antenna is located in the far field region of the			
		station where $ E =50 \text{ mV/m}$.			
3.		Derive the relationship between gain of an antenna and	(15)	BTL4	Analyzing
		the antenna aperture. Also analyse the significance of			
		directivity gain of an antenna.			
4.		The normalized radiation intensity of an antenna is	(15)	BTL3	Applying
		represented by U(θ)= cos ² (θ)cos ² (3 θ), where 0° $\leq \theta \leq$			
		90° , $0^{\circ} \le \phi \le 360^{\circ}$. Compute the half power beamwidth			
		and first null beamwidth in radians and in degrees.			
5.	(i)	Outline the characteristics of the components required	(8)	BTL1	Remembering
		to build a microwave receiver.			C C
	(ii)	Draw the geometrical arrangement of a target and	(7)	BTL1	Remembering
		receiver and obtain the appropriate radar range			
		equation.			

UNIT II - RADIATION MECHANISM AND DESIGN ASPECTS

Radiation mechanisms of Dipole/Monopole, Linear Wire, Loop and Slot antennas, Aperture antennas, Reflector antennas, Microstrip antennas and Frequency independent antennas, Wide Band Antennas, Design considerations and applications.

	PART - A					
Q.No	Questions	BT Level	Competence			
1.	What is meant by Hertzian dipole?	BTL1	Remembering			
2.	How does the radiation occurs from the current element?	BTL1	Remembering			
3.	Define radiation resistance of an antenna.	BTL1	Remembering			
4.	A radiating element of 1 cm carries an effective current of 0.5 A at 3GHZ, calculate the power radiated by the element.	BTL3	Applying			
5.	Under which condition, the radiation pattern of loop antenna is same as the Hertzian dipole antenna?	BTL4	Analyzing			
6.	Mention the features of slot antenna.	BTL2	Understanding			

7.	Write the relationship between the terminal impedances of the slot antenna and the dipole.	BTL1	Remembering
8.	State Babinet's principle.	BTL1	Remembering
9.	Summarize the field equivalence approach.	BTL2	Understanding
10.	Interpret the design considerations for an aperture antenna.	BTL3	Applying
11.	Outline the characteristics of corner reflector antenna.	BTL2	Understanding
12.	List the advantages of cassegrain feed system.	BTL1	Remembering
13.	Interpret how spillover happens during the reception of signal in an antenna.	BTL3	Applying
14.	Illustrate the nature of secondary antennas.	BTL3	Applying
15.	Analyze how the aperture blockage can be prevented in reflector antenna.	BTL4	Analyzing
16.	Summarize the advantages of microstrip antennas	BTL2	Understanding
17.	Categorize the feeding methods of microstrip antenna.	BTL4	Analyzing
18.	Examine the applications of microstrip antenna.	BTL4	Analyzing
19.	Illustrate the expressions for design ratio, spacing factor of log periodic antenna.	BTL3	Applying
20.	Name the regions based on the length of dipole in LPDA.	BTL2	Understanding
21.	What is the main idea of frequency independent antenna?	BTL2	Understanding
22.	Classify the types of horn antennas.	BTL4	Analyzing
23.	Calculate the beam width of the pyramidal horn with the aperture dimension of 12×6 cm. Its operating frequency is given as 10 GHz.	BTL3	Applying
24.	Generalize the features of pyramidal horn antenna.	BTL4	Analyzing

		PART – B			
1.		Interpret the electric and magnetic field quantities	(13)	BTL3	Applying
		of an infinitesimal dipole and draw the radiation			
		pattern.			
2.		What is a current element? Obtain the expression	(13)	BTL 1	Remembering
		for the power radiated by the current element.			
3.		Show that the radiation resistance of a half wave	(13)	BTL 2	Understanding
		dipole antenna is 73 Ω .			
4.		Obtain the radiation resistance and directivity of a	(13)	BTL 2	Understanding
		small loop antenna.			
5.	(i)	Explain the radiation mechanism of a slot antenna.	(7)	BTL3	Applying
	(ii)	Find the dimensions and terminal resistance of a	(6)	BTL3	Applying
		complementary slot for a cylindrical dipole with			

having terminal impedance of $710 + j 0 \Omega$.6.Describe rectangular apertures and derive expressions for its uniform distribution on an infinite ground plane and space.(13)BTL 2Understanding7.(i)With field equivalence principle, explain radiation mechanism.(6)BTL 4Analyzing(ii)A rectangular aperture with a constant field distribution, with $a = 3 \lambda$ and $b = 2 \lambda$, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane.(7)BTL 4Analyzing8.Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used.(13)BTL 2Understanding		(13)	BTL 2	Understanding
6.Describe rectangular apertures and derive expressions for its uniform distribution on an infinite ground plane and space.(13)BTL 2Understanding7.(i)With field equivalence principle, explain radiation mechanism.(6)BTL 4Analyzing(ii)A rectangular aperture with a constant field distribution, with $a = 3 \lambda$ and $b = 2 \lambda$, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane.BTL 2Understanding8.Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used.(13)BTL 2Understanding	having terminal impedance of $710 + j 0 \Omega$.	(13)	BTL 2	Understanding
expressions for its uniform distribution on an infinite ground plane and space.Image: Constant field (i)Image: Constant field (ii)Image: Constant field (iii)Image: Constant field (iiii)Image: Constant field (iiii)Image: Constant field (iiii)Image: Constant field (iiii)Image: Constant field (iiiii)Image: Constant field (iiiii)Image: Constant field (iiiiii)Image: Constant field (iiiiiii)Image: Constant field (iiiiiii)Image: Constant field (iiiiiiii)Image: Constant field (iiiiiiiiiiiii)Image: Constant field (iiiiiiiiii)Image: Constant field (iiiiiiiii)Image: Constant field (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Describe rectangular apertures and derive	(13)		
infinite ground plane and space.Image: Second space	expressions for its uniform distribution on an			
7.(i)With field equivalence principle, explain radiation mechanism.(6)BTL 4Analyzing(ii)A rectangular aperture with a constant field distribution, with a = 3λ and b = 2λ , is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane.(7)BTL 4Analyzing8.Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used.(13)BTL 2Understanding	infinite ground plane and space.		DTI 4	
mechanism.mechanism.(ii)A rectangular aperture with a constant field distribution, with a = 3λ and b = 2λ , is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane.(7)BTL 4Analyzing8.Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used.(13)BTL 2Understanding	(i) With field equivalence principle, explain radiation	(6)	DIL 4	Analyzing
(ii)A rectangular aperture with a constant field distribution, with $a = 3 \lambda$ and $b = 2 \lambda$, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane.(7)BTL 4Analyzing8.Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used.(13)BTL 2Understanding	mechanism			
distribution, with $a = 3 \lambda$ and $b = 2 \lambda$, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane.Understanding8.Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used.(13)BTL 29.(i)Compare the flat reflector flat reflector7	in containibiliti	(7)	BTL 4	Analyzing
an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Image: Compute the FNBW and HPBW in the E-plane. 8. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. Image: Compare the flot reflector 9. (i) Compare the flot reflector Image: Compare the flot reflector	(ii) A rectangular aperture with a constant field			5 0
HPBW in the E-plane. HPBW in the E-plane. 8. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (13) BTL 2 Understanding 9. (i) Compare the flot reflector and explain the types of feed used. 7	(ii) A rectangular aperture with a constant field distribution, with $a = 3 \lambda$ and $b = 2 \lambda$, is mounted on			
8. Elaborate the principle of parabolic reflector (13) BTL 2 Understanding antenna with the neat diagram and explain the types of feed used. 9 (i) Compare the flat reflectored and the flat reflat the flat reflectored	(ii) A rectangular aperture with a constant field distribution, with $a = 3 \lambda$ and $b = 2 \lambda$, is mounted on an infinite ground plane. Compute the FNBW and			
antenna with the neat diagram and explain the types of feed used.	(ii) A rectangular aperture with a constant field distribution, with $a = 3 \lambda$ and $b = 2 \lambda$, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane.		BTL 2	Understanding
9 (i) Compare the flat reflectors 1	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector 	· (13)		C
9 (i) Compare the flat wall actions 1 a	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types 	(13)		
BTL3 Applying	(ii) A rectangular aperture with a constant field distribution, with $a = 3 \lambda$ and $b = 2 \lambda$, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used.	(13)		
(ii) Calculate the diameter of dish antenna that will (6) BTL3 Applying	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. 	(13)	BTL3	Applying
form a hear having 0.50 LIDDW -4 C	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will 	(13)	BTL3 BTL3	Applying Applying
1011111111111111111111111111111111111	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 	(13) (7) (6)	BTL3 BTL3	Applying Applying
8.2 GHz. Assume an efficiency constant of 0.6,	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, 	(13) (7) (6)	BTL3 BTL3	Applying Applying
8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture.	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. 	(13) (7) (6)	BTL3 BTL3	Applying Applying
Item a beam naving 0.5HPBW at a frequency of8.2GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture.10. (i)Describe the radiation pattern and fields on the axis(6)BTL3	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis 	(13) (7) (6) (6)	BTL3 BTL3 BTL3	Applying Applying Applying
10. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (6) BTL3 Applying	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. 	(13) (7) (6) (6)	BTL3 BTL3 BTL3	Applying Applying Applying Applying
10. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (6) BTL3 Applying (ii) A pyramidal horn antenna having aperture (7) BTL3 Applying	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture 	(13) (7) (6) (6) (6) (7)	BTL3 BTL3 BTL3 BTL3	Applying Applying Applying Applying Applying Applying
10. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (6) BTL3 Applying (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at (7) BTL3 Applying	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at 	(13) (7) (6) (6) (7) (7)	BTL3 BTL3 BTL3 BTL3	Applying Applying Applying Applying Applying Applying Applying
IterationIterationIterationIterationIterationIterationIteration10.(i)Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns.(6)BTL3Applying(ii)A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW.(7)BTL3Applying	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. 	(13) (7) (6) (6) (7)	BTL3 BTL3 BTL3 BTL3	Applying Applying Applying Applying Applying Applying Applying
Item a beam naving 0.5HPB w at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture.BTL310. (i)Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns.(6)BTL3(ii)A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW.(7)BTL311. (i)With necessary sketches, explain in detail the (7)(7)BTL 1Remembering	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the 	(13) (7) (6) (6) (7) (7) (7) (7) (7) (7) (7)	BTL3 BTL3 BTL3 BTL3 BTL1	Applying Applying Applying Applying Applying Applying Remembering
IterationIteration a second naving 0.5Iteration and a frequency of the second and effective aperture.Iteration10. (i)Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns.(6)BTL3Applying(ii)A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW.(7)BTL3Applying11. (i)With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna.(7)BTL 1Remembering	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. 	(13) (7) (6) (6) (7) (7) (7)	BTL3 BTL3 BTL3 BTL3 BTL1	Applying Applying Applying Applying Applying Applying Remembering
Item a ocan naving 0.5HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture.Applying10.(i)Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns.(6)BTL3Applying(ii)A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW.(7)BTL3Applying11.(i)With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna.(6)BTL 1Remembering	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. 	(13) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (6)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL 1	Applying Applying Applying Applying Applying Applying Remembering Remembering
IOFINITYINFORM at ocean naving 0.5INFBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture.Implement10.(i)Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns.(6)BTL3Applying(ii)A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW.(7)BTL3Applying11.(i)With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna.(6)BTL 1Remembering(ii)With suitable figures, explain the various feed techniques of a microstrip antenna(6)BTL 1Remembering	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. 	(13) (7) (6) (6) (7) (7) (7) (7) (7) (7) (6)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL 1	Applying Applying Applying Applying Applying Applying Remembering Remembering
InformationInformatio	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. 	(13) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (6) (13)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL1	Applying Applying Applying Applying Applying Applying Remembering Remembering Remembering
InstructionInstructin	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. 	(13) (7) (6) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (6) (7) (7) (7) (6) (7) (6) (7) (6) (7) (7) (6) (7) (7) (6) (7) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	BTL3 BTL3 BTL3 BTL3 BTL1 BTL 1 BTL 1	Applying Applying Applying Applying Applying Applying Remembering Remembering Remembering Remembering
Image: Second a begin naving 0.5 HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. Image: Second and the second an	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. A lso draw the normalized patterns for the same 	(13) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (13)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL1 BTL1	Applying Applying Applying Applying Applying Remembering Remembering Remembering Remembering
Image: An analyzing U.S. TIPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. Image: Applying 10. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (6) BTL3 Applying (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (7) BTL3 Applying 11. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (7) BTL 1 Remembering (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. (6) BTL 1 Remembering 12. Explain radiation mechanism of a microstrip antenna considering square microstrip antenna. (13) BTL 1 Remembering 13 Analyze the feeding techniques for the same. (13) BTL 4 Analyzing	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. Also draw the normalized patterns for the same. 	(13) (7) (6) (7) (6) (7) (7) (7) (7) (7) (6) (7) (13) (13)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL1 BTL1 BTL1	Applying Applying Applying Applying Applying Applying Remembering Remembering Remembering Applying
InformationInformatio	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. Also draw the normalized patterns for the same. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams 	(13) (7) (6) (7) (6) (7)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL1 BTL1 BTL1 BTL4	Applying Applying Applying Applying Applying Applying Remembering Remembering Remembering Analyzing
Image: Construct a ocam naving 0.5 mmBW at a trequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. Image: Construct a treatment of 0.6, calculate the antenna gain and effective aperture. 10. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (6) BTL3 Applying (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (7) BTL1 Remembering 11. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (7) BTL 1 Remembering 12. Explain radiation mechanism of a microstrip antenna considering square microstrip antenna. (13) BTL 1 Remembering 13. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. (13) BTL 4 Analyzing	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. Also draw the normalized patterns for the same. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. 	(13) (7) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (13) (13) (13)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL1 BTL1 BTL4 BTL1	Applying Applying Applying Applying Applying Applying Remembering Remembering Remembering Analyzing Remembering
10. Information (i) Information	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. Explain radiation mechanism of a microstrip antenna. Also draw the normalized patterns for the same. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. 	(13) (13) (7) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (13) (13) (13)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL1 BTL1 BTL4 BTL1	Applying Applying Applying Applying Applying Applying Remembering Remembering Remembering Analyzing Remembering
Image: A contract occan maying 0.5 IPPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. Image: Applying 10. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (6) BTL3 Applying (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz. Find its gain and HPBW. (7) BTL1 Remembering 11. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (7) BTL 1 Remembering 12. Explain radiation mechanism of a microstrip antenna considering square microstrip antenna. (13) BTL 1 Remembering 13. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. (13) BTL 4 Analyzing 14. What are the different types of horn structures? Draw the radiation pattern of horn antenna and bence describe the radiation mechanism with neat (13) BTL 1 Remembering	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. What are the different types of horn structures? Draw the radiation pattern of horn antenna and hence describe the radiation mechanism with neat diagrams. 	(13) (13) (7) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (13) (13) (13)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL1 BTL1 BTL4 BTL1	Applying Applying Applying Applying Applying Applying Remembering Remembering Remembering Analyzing Remembering
ISIM a beam naving 0.5 TIPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture.10. (i)Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns.(6)BTL3Applying(ii)A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW.(7)BTL1Applying11. (i)With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna.(7)BTL 1Remembering(ii)With suitable figures, explain the various feed techniques of a microstrip antenna.(6)BTL 1Remembering12.Explain radiation mechanism of a microstrip antenna. Also draw the normalized patterns for the same.(13)BTL 4Analyzing13.Analyze the feeding techniques for the rectangular patch antenna with neat diagrams.(13)BTL 1Remembering14.What are the different types of horn structures? Draw the radiation mechanism with neat diagramBTL 1Remembering	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. Explain radiation mechanism of a microstrip antenna. Also draw the normalized patterns for the same. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. 	(13) (13) (7) (6) (7) (6) (7) (7) (7) (7) (7) (7) (13) (13) (13)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL1 BTL1 BTL4 BTL1	Applying Applying Applying Applying Applying Applying Remembering Remembering Remembering Remembering Remembering Remembering Remembering Remembering
10.0111 a ocam naving 0.0 FIFBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. 10. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (6) BTL3 Applying (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (7) BTL3 Applying 11. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (7) BTL 1 Remembering 12. Explain radiation mechanism of a microstrip antenna considering square microstrip antenna. (13) BTL 1 Remembering 13. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. (13) BTL 4 Analyzing 14. What are the different types of horn structures? Draw the radiation pattern of horn antenna and hence describe the radiation mechanism with neat diagram. BTL 1 Remembering	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. Also draw the normalized patterns for the same. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. What are the different types of horn structures? Draw the radiation mechanism with neat diagram. 	(13) (13) (7) (6) (7) (6) (7) (7) (7) (7) (7) (7) (13) (13) (13) (13) (13)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL1 BTL1 BTL4 BTL1 BTL1	Applying Applying Applying Applying Applying Applying Remembering Remembering Analyzing Remembering Remembering Analyzing Remembering
Image: Construction of the state of the	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. Explain radiation mechanism of a microstrip antenna. Also draw the normalized patterns for the same. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. What are the different types of horn structures? Draw the radiation resistance of a single turn and hence describe the radiation mechanism with neat diagram. 	(13) (13) (7) (6) (6) (7) (7) (7) (7) (7) (7) (7) (13) (13) (13) (13)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL1 BTL1 BTL4 BTL1 BTL1 BTL1	Applying Applying Applying Applying Applying Applying Remembering Remembering
Image: Serie a ocam naving 0.5 mrBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. Image: Serie approximation of the series of the s	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. (ii) What are the different types of horn structures? Draw the radiation pattern of horn antenna and hence describe the radiation mechanism with neat diagram. Identify the radiation resistance of a single turn and an eight-turn small circular loop when the radius of the loop is λ/20 and the medium is free space 	(13) (13) (7) (6) (6) (7) (6) (7) (7) (7) (7) (7) (13) (13) (13) (13)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL1 BTL1 BTL4 BTL1 BTL1	Applying Applying Applying Applying Applying Applying Remembering
10.11 a beam naving 0.3 HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. 10. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (6) BTL3 Applying (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (7) BTL1 Applying 11. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (7) BTL 1 Remembering 12. Explain radiation mechanism of a microstrip antenna considering square microstrip antenna. (13) BTL 1 Remembering 13. Analyze the feeding techniques for the same. (13) BTL 4 Analyzing 14. What are the different types of horn structures? (13) BTL 1 Remembering 15. Identify the radiation resistance of a single turn and an eight-turn small circular loop when the radius of the loop is $\lambda/20$ and the medium is free space. (13) BTL 1 Remembering 15. Identify the radiation resistance of a single turn and an eight-turn small circular loop when the radius of the loop is $\lambda/20$ and the medium is free space. (13) BTL 4 Analyzing	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. What are the different types of horn structures? Draw the radiation pattern of horn antenna and hence describe the radiation mechanism with neat diagram. Identify the radiation resistance of a single turn and an eight-turn small circular loop when the radius of the loop is λ/20 and the medium is free space. 	(13) (13) (7) (6) (6) (7) (7) (6) (7) (7) (7) (13) (13) (13) (13) (13) (13) (13)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL1 BTL1 BTL4 BTL1 BTL1 BTL1	Applying Applying Applying Applying Applying Applying Remembering Remembering Remembering Remembering Remembering Remembering Remembering Remembering Analyzing Remembering
10.11 a beam naving 0.3 FIFBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. 10. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (6) BTL3 Applying (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (7) BTL1 Applying 11. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (7) BTL 1 Remembering 12. Explain radiation mechanism of a microstrip antenna considering square microstrip antenna. (13) BTL 1 Remembering 13. Analyze the feeding techniques for the reating patch antenna with neat diagrams. (13) BTL 1 Remembering 14. What are the different types of horn structures? (13) BTL 1 Remembering 15. Identify the radiation resistance of a single turn and an eight-turn small circular loop when the radius of the loop is $\lambda/20$ and the medium is free space. (13) BTL 1 Remembering 16. Design a 50 to 200 MHz log periodic dipole for the loop is a corresponds to scale factor 0.8 and (13) BTL 4 Analyzing	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. Also draw the normalized patterns for the same. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. What are the different types of horn structures? Draw the radiation pattern of horn antenna and hence describe the radiation mechanism with neat diagram. Identify the radiation resistance of a single turn and an eight-turn small circular loop when the radius of the loop is λ/20 and the medium is free space. 	(13) (13) (7) (6) (6) (7) (7) (7) (7) (7) (7) (7) (13) (13) (13) (13) (13)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL1 BTL1 BTL4 BTL1 BTL1 BTL1 BTL4	ApplyingApplyingApplyingApplyingApplyingApplyingApplyingRememberingRememberingRememberingRememberingRememberingRememberingRememberingAnalyzingRememberingAnalyzingAnalyzingAnalyzing
10. ion a beam naving 0.5 FIFBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. iiii 10. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (6) BTL3 Applying (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (7) BTL1 Applying 11. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (7) BTL 1 Remembering 12. Explain radiation mechanism of a microstrip antenna. Also draw the normalized patterns for the same. (13) BTL 4 Analyzing 13. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. (13) BTL 1 Remembering 14. What are the different types of horn structures? Draw the radiation pattern of horn antenna and hence describe the radiation mechanism with neat diagram. (13) BTL 1 Remembering 15. Identify the radiation resistance of a single turn and an eight-turn small circular loop when the radius of the loop is $\lambda/20$ and the medium is free space. (13) BTL 4 Analyzing	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz. Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. Explain radiation mechanism of a microstrip antenna. Explain radiation mechanism of a microstrip antenna. Also draw the normalized patterns for the same. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. What are the different types of horn structures? Draw the radiation pattern of horn antenna and hence describe the radiation mechanism with neat diagram. Identify the radiation resistance of a single turn and an eight-turn small circular loop when the radius of the loop is λ/20 and the medium is free space. Design a 50 to 200 MHz log periodic dipole for antenna for gain corresponds to scale factor 0.8 and space factor 0.15. Assume the gam space factor 0.15. 	(13) (13) (13) (6) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (13) (13) (13) (13) (13) (13)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL1 BTL1 BTL1 BTL4 BTL1 BTL1 BTL1 BTL1 BTL1	Applying Applying Applying Applying Applying Applying Applying Remembering Remembering Analyzing Remembering Analyzing Analyzing Analyzing
Image: Contract of Contract on Contrecontering Contract on Contract on Contract on	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz. Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. Explain radiation mechanism of a microstrip antenna. Also draw the normalized patterns for the same. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. What are the different types of horn structures? Draw the radiation pattern of horn antenna and hence describe the radiation mechanism with neat diagram. Identify the radiation resistance of a single turn and an eight-turn small circular loop when the radius of the loop is λ/20 and the medium is free space. Design a 50 to 200 MHz log periodic dipole for antenna for gain corresponds to scale factor 0.8 and space factor 0.15. Assume the gap spacing at the smallest dinole is 3 form 	(13) (13) (7) (6) (6) (7) (7) (7) (7) (7) (7) (7) (13) (13) (13) (13) (13) (13)	BTL3 BTL3 BTL3 BTL3 BTL 1 BTL 1 BTL 1 BTL 1 BTL 1 BTL 1 BTL 1 BTL 1 BTL 1	Applying Applying Applying Applying Applying Applying Applying Remembering Remembering Analyzing Remembering Analyzing Analyzing Analyzing
Image: Contract operating the end of the end operation of the end operation operatect operatect operation operation operation operation	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. Explain radiation mechanism of a microstrip antenna. Also draw the normalized patterns for the same. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. What are the different types of horn structures? Draw the radiation pattern of horn antenna and hence describe the radiation mechanism with neat diagram. Identify the radiation resistance of a single turn and an eight-turn small circular loop when the radius of the loop is λ/20 and the medium is free space. Design a 50 to 200 MHz log periodic dipole for antenna for gain corresponds to scale factor 0.8 and space factor 0.15. Assume the gap spacing at the smallest dipole is 3.6mm. 	(13) (13) (7) (6) (7) (6) (7) (7) (7) (7) (7) (7) (13) (13) (13) (13) (13) (13) (13) (13)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL1 BTL1 BTL4 BTL1 BTL1 BTL1 BTL4 BTL4	Applying Applying Applying Applying Applying Applying Remembering Remembering Remembering Analyzing Remembering Analyzing Analyzing Analyzing
Image: Contract opening of a calculate the antenna gain and effective gonstant of 0.6, calculate the antenna gain and effective aperture. Image: Contract opening openin	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. Explain radiation mechanism of a microstrip antenna. Explain radiation mechanism of a microstrip antenna. Also draw the normalized patterns for the same. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. What are the different types of horn structures? Draw the radiation pattern of horn antenna and hence describe the radiation mechanism with neat diagram. Identify the radiation resistance of a single turn and an eight-turn small circular loop when the radius of the loop is λ/20 and the medium is free space. Design a 50 to 200 MHz log periodic dipole for antenna for gain corresponds to scale factor 0.8 and space factor 0.15. Assume the gap spacing at the smallest dipole is 3.6mm. 	(13) (13) (13) (6) (6) (7) (6) (7) (7) (7) (7) (7) (7) (13) (13) (13) (13) (13) (13) (13) (13)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL1 BTL1 BTL4 BTL1 BTL1 BTL1 BTL4 BTL4 BTL4	ApplyingApplyingApplyingApplyingApplyingApplyingApplyingRememberingRememberingRememberingRememberingRememberingAnalyzingRememberingAnalyzingAnalyzingAnalyzingAnalyzingAnalyzing
Interpretation Interpretation Interpretation Interpretation Interpretation 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. Interpretation Interpretation Interpretation Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. Interpretation Interpretation Interpretation (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. Interpretation I	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. Explain radiation mechanism of a microstrip antenna. Also draw the normalized patterns for the same. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. What are the different types of horn structures? Draw the radiation resistance of a single turn and an eight-turn small circular loop when the radius of the loop is λ/20 and the medium is free space. Design a 50 to 200 MHz log periodic dipole for antenna for gain corresponds to scale factor 0.8 and space factor 0.15. Assume the gap spacing at the smallest dipole is 3.6mm. 	(13) (13) (7) (6) (7) (6) (7) (7) (7) (7) (7) (7) (13) (13) (13) (13) (13) (13)	BTL3 BTL3 BTL3 BTL3 BTL1	ApplyingApplyingApplyingApplyingApplyingApplyingRememberingRememberingRememberingAnalyzingRememberingAnalyzingAnalyzingAnalyzingAnalyzingAnalyzingAnalyzing
Image: Some a beam naving 0.5 FIFBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. Image: Some and Some ano	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. Explain radiation mechanism of a microstrip antenna. Also draw the normalized patterns for the same. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. What are the different types of horn structures? Draw the radiation pattern of horn antenna and hence describe the radiation mechanism with neat diagram. Identify the radiation resistance of a single turn and an eight-turn small circular loop when the radius of the loop is λ/20 and the medium is free space. Design a 50 to 200 MHz log periodic dipole for antenna for gain corresponds to scale factor 0.8 and space factor 0.15. Assume the gap spacing at the smallest dipole is 3.6mm. For transmission of signal with 2.4 GHz, design a microstrip patch antenna with an inset feed. Parameters for the design are : Operating frequency (f) · 2 4 GHz 	(13) (13) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (13) (13) (13) (13) (13) (13) (13)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL1	ApplyingApplyingApplyingApplyingApplyingApplyingRememberingRememberingRememberingAnalyzingRememberingAnalyzingRememberingAnalyzingAnalyzingAnalyzingAnalyzingAnalyzingAnalyzing
Intr B w at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. 10. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (6) BTL3 Applying (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (7) BTL3 Applying 11. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (7) BTL 1 Remembering (ii) With suitable figures, explain the various feed techniques of a microstrip patch antenna. (6) BTL 1 Remembering 12. Explain radiation mechanism of a microstrip antenna considering square microstrip antenna. Also draw the normalized patterns for the same. Also draw the normalized patterns for the rectangular (13) BTL 4 Analyzing 14. What are the different types of horn structures? Draw the radiation pattern of horn antenna and hence describe the radiation mechanism with neat diagram. (13) BTL 1 Remembering 15. Identify the radiation resistance of a single turn and an eight-turn small circular loop when the radius of the loop is $\lambda/20$ and the medium is free space. (13) BTL 4 Analyzing 16. Design a 50 to 200 MHz log periodic dipole for antenna for gain correspon	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. Explain radiation mechanism of a microstrip antenna. Also draw the normalized patterns for the same. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. What are the different types of horn structures? Draw the radiation resistance of a single turn and an eight-turn small circular loop when the radius of the loop is λ/20 and the medium is free space. Design a 50 to 200 MHz log periodic dipole for antenna for gain corresponds to scale factor 0.8 and space factor 0.15. Assume the gap spacing at the smallest dipole is 3.6mm. For transmission of signal with 2.4 GHz, design a microstrip patch antenna with an inset feed. Parameters for the design are : Operating frequency(f) : 2.4 GHz 	(13) (13) (13) (6) (6) (7) (6) (7) (7) (7) (7) (7) (13) (13) (13) (13) (13) (13) (13)	BTL3 BTL3 BTL3 BTL3 BTL 1 BTL 1 BTL 1 BTL 1 BTL 1 BTL 1 BTL 4 BTL 1 BTL 4 BTL 1	Applying Applying Applying Applying Applying Applying Applying Remembering Remembering Analyzing Remembering Analyzing Analyzing Analyzing Analyzing
Intr BW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. 10. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral homs. (6) BTL3 Applying (ii) A pyramidal hom antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (7) BTL1 Applying 11. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. (7) BTL 1 Remembering (ii) With suitable figures, explain the various feed techniques of a microstrip antenna. (6) BTL 1 Remembering antenna considering square microstrip antenna. 12. Explain radiation mechanism of a microstrip antenna considering square microstrip antenna. Also draw the normalized patterns for the same. (13) BTL 4 Analyzing 14. What are the different types of horn structures? Draw the radiation pattern of horn antenna and hence describe the radiation mechanism with neat diagram. (13) BTL 1 Remembering antenna for gain corresponds to scale factor 0.8 and space factor 0.15. Assume the gap spacing at the smallest dipole is 3.6mm. I17. For transmission of signal with 2.4 GHz, design a microstrip patch antenna with an inset feed. Parameters for the design are : Operating frequency(f) : 2.4 GHz I13) BTL 4 Analyzing	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna thav will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, calculate the antenna gain and effective aperture. (i) Describe the radiation pattern and fields on the axis of an E-plane and H-plane sectoral horns. (ii) A pyramidal horn antenna having aperture dimensions of a = 5.2 cm and b = 3.8 cm is used at a frequency of 10 GHz.Find its gain and HPBW. (i) With necessary sketches, explain in detail the radiation mechanism of a microstrip patch antenna. Explain radiation mechanism of a microstrip antenna. Explain radiation mechanism of a microstrip antenna. Also draw the normalized patterns for the same. Analyze the feeding techniques for the rectangular patch antenna with neat diagrams. What are the different types of horn structures? Draw the radiation resistance of a single turn and an eight-turn small circular loop when the radius of the loop is λ/20 and the medium is free space. Design a 50 to 200 MHz log periodic dipole for antenna for gain corresponds to scale factor 0.8 and space factor 0.15. Assume the gap spacing at the smallest dipole is 3.6mm. For transmission of signal with 2.4 GHz, design a microstrip patch antenna with an inset feed. Parameters for the design are : Operating frequency(f) : 2.4 GHz Dielectric constant of substrate(ε_r): 4.3 Height of the dielectric substrate(ε_r): 4.3 	(13) (13) (7) (6) (7) (6) (7) (7) (7) (7) (7) (13) (13) (13) (13) (13) (13)	BTL3 BTL3 BTL3 BTL3 BTL1 BTL1 BTL1 BTL4 BTL1 BTL1 BTL1 BTL4 BTL4	Applying Remembering Analyzing Analyzing Analyzing Analyzing
8.2 GHz. Assume an efficiency constant of 0.6,	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. (ii) Calculate the diameter of dish antenna that will form a beam having 0.5° HPBW at a frequency of 8.2 GHz. Assume an efficiency constant of 0.6, 	(13) (7) (6)	BTL3 BTL3	Applying Applying
(ii) Calculate the diameter of dish antenna that will (6) RTI 3 Applying	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector 	(13)	PTI 2	Applying
(ii) Calculate the diameter of dish antenna that will (6) BTL3 Applying	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. 	(13)	BTL3	Applying
(ii) Calculate the diameter of dish antenna that will (6) BTL3 Applying	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and corner reflector. 	(13)	BTL3	Applying
(i) Colorlate the disease of the extense that will () DTL2 Applying	 (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (i) Compare the flat reflector and compare reflector. 	(13)		Amplying
BTL3 Applying	(ii) A rectangular aperture with a constant field distribution, with $a = 3 \lambda$ and $b = 2 \lambda$, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used.	(13)		
9 (i) Compare the flat set set -1	(ii) A rectangular aperture with a constant field distribution, with $a = 3 \lambda$ and $b = 2 \lambda$, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types	(13)		
9 (i) Compare the flot reflections 1	(ii) A rectangular aperture with a constant field distribution, with $a = 3 \lambda$ and $b = 2 \lambda$, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Elaborate the principle of parabolic reflector	• (13)		
9 (i) Compare the flot reflectors 1	(ii) A rectangular aperture with a constant field distribution, with $a = 3 \lambda$ and $b = 2 \lambda$, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane.	(12)	BTL 2	Understanding
8. Elaborate the principle of parabolic reflector (13) BTL 2 Understanding antenna with the neat diagram and explain the types of feed used.	(ii) A rectangular aperture with a constant field distribution, with $a = 3 \lambda$ and $b = 2 \lambda$, is mounted on an infinite ground plane. Compute the FNBW and			
8. Elaborate the principle of parabolic reflector (13) BTL 2 Understanding understanding 9. (i) Compare the flat reflector 1 7	(ii) A rectangular aperture with a constant field distribution, with $a = 3 \lambda$ and $b = 2 \lambda$, is mounted on			
an infinite ground plane. Compute the FNBW and HPBW in the E-plane. HPBW in the E-plane. 8. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. Understanding	(ii) A rectangular aperture with a constant field distribution with $a = 2 \lambda$ and $b = 2 \lambda$ is mounted on			
an infinite ground plane. Compute the FNBW and HPBW in the E-plane. Image: Head of the first state o	(ii) A rectangular aperture with a constant field	(,)	212	1 1111 / 21118
distribution, with $a = 3 \lambda$ and $b = 2 \lambda$, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane.HPBW and HPBW in the E-plane.8.Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used.(13)BTL 29.(i)Compare the flot reflector flot reflector7		. (7)	BTL 4	Analyzing
(ii)A rectangular aperture with a constant field(7) $BTE 4$ Anaryzingdistribution, with a = 3 λ and b = 2 λ , is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane.(13) $BTE 4$ Anaryzing8.Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used.(13) $BTL 2$ Understanding		(7)	BTI /	Analyzing
(ii)A rectangular aperture with a constant field distribution, with $a = 3 \lambda$ and $b = 2 \lambda$, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane.(7)BTL 4Analyzing8.Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used.(13)BTL 2Understanding	mechanism			
mechanism. mechanism. (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. (7) BTL 4 Analyzing 8. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (13) BTL 2 Understanding	(i) With field equivalence principle, explain radiation	(6)	DIL 4	Analyzing
7.(i)With field equivalence principle, explain radiation mechanism.(6)BTL 4Analyzing(ii)A rectangular aperture with a constant field distribution, with $a = 3 \lambda$ and $b = 2 \lambda$, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane.(7)BTL 4Analyzing8.Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used.(13)BTL 2Understanding	infinite ground plane and space.		DTI 1	
7.(i)With field equivalence principle, explain radiation mechanism.(6)BTL 4Analyzing(ii)A rectangular aperture with a constant field distribution, with a = 3λ and b = 2λ , is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane.(7)BTL 4Analyzing8.Elaborate the principle of parabolic reflector of feed used.(13)BTL 2Understanding	expressions for its uniform distribution on an	_		
$infinite ground plane and space.infinite ground plane and space.7. (i)With field equivalence principle, explain radiationmechanism.(6)BTL 4Analyzing(ii)A rectangular aperture with a constant fielddistribution, with a = 3 \lambda and b = 2 \lambda, is mounted onan infinite ground plane. Compute the FNBW andHPBW in the E-plane.(7)BTL 4Analyzing8.Elaborate the principle of parabolic reflectorantenna with the neat diagram and explain the typesof feed used.(13)BTL 2Understanding$	expressions for its uniform distribution on an	()		
infinite ground plane and space.Image: Second space	expressions for its uniform distribution on an			
infinite ground plane and space.Image: Compare the flet reflectorImage: Compare	expressions for its uniform distribution on an			
infinite ground plane and space. infinite ground plane and space. 7. (i) With field equivalence principle, explain radiation mechanism. (6) BTL 4 Analyzing (ii) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane. (7) BTL 4 Analyzing 8. Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used. (13) BTL 2 Understanding	expressions for its uniform distribution on an		DTI 4	
$infinite ground plane and space.infinite ground plane and space.7. (i)With field equivalence principle, explain radiationmechanism.(6)BTL 4Analyzing(ii)A rectangular aperture with a constant fielddistribution, with a = 3 \lambda and b = 2 \lambda, is mounted onan infinite ground plane. Compute the FNBW andHPBW in the E-plane.(7)BTL 4Analyzing8.Elaborate the principle of parabolic reflectorantenna with the neat diagram and explain the typesof feed used.(13)BTL 2Understanding$	expressions for its uniform distribution on an			
expressions for its uniform distribution on an infinite ground plane and space. (i) With field equivalence principle, explain radiation mechanism. (6) BTL 4Analyzing(ii)A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ , is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane.(7)BTL 4Analyzing8.Elaborate the principle of parabolic reflector of feed used.(13)BTL 2Understanding	Describe rectangular apertures and derive	(13)		
6.Describe rectangular expressions for its uniform distribution on an infinite ground plane and space.(13)BTL 2Onderstanding7.(i)With field equivalence principle, explain radiation mechanism.(6)BTL 4Analyzing(ii)A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ , is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane.(7)BTL 4Analyzing8.Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used.(13)BTL 2Understanding	Describe meeten callen en extension and desired		BIL 2	Understanding
6.Describe rectangular apertures and derive expressions for its uniform distribution on an infinite ground plane and space.(13)BTL 2Understanding7.(i)With field equivalence principle, explain radiation mechanism.(6)BTL 4Analyzing(ii)A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ , is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane.(7)BTL 4Analyzing8.Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used.(13)BTL 2Understanding	having terminal impedance of $710 + i 0 \Omega$.	(13)	BTL 2	Understanding
6.Describe rectangular apertures and derive expressions for its uniform distribution on an infinite ground plane and space.(13)BTL 2Understanding7.(i)With field equivalence principle, explain radiation mechanism.(6)BTL 4Analyzing(ii)A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ , is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane.BTL 4Analyzing8.Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used.BTL 2Understanding	having terminal impodence of 710 ± 100	(13)	BTL 2	Understanding
6.Describe rectangular apertures and derive expressions for its uniform distribution on an infinite ground plane and space.(13)BTL 2Understanding7.(i)With field equivalence principle, explain radiation mechanism.(6)BTL 4Analyzing(ii)A rectangular aperture with a constant field distribution, with $a = 3 \lambda$ and $b = 2 \lambda$, is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane.BTL 4Analyzing8.Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used.BTL 2Understanding	having terminal immediance of $710 \pm i00$	(13)	BTL 2	Understanding
6.Describe rectangular apertures and derive expressions for its uniform distribution on an infinite ground plane and space.(13)BTL 2Understanding7.(i)With field equivalence principle, explain radiation mechanism.(6)BTL 4Analyzing(ii)A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ , is mounted on an infinite ground plane. Compute the FNBW and HPBW in the E-plane.(13)BTL 2Understanding8.Elaborate the principle of parabolic reflector antenna with the neat diagram and explain the types of feed used.(13)BTL 2Understanding		(13)	BTL 2	Understanding
having terminal impedance of $710 + j 0 \Omega$.Image: Construct of the second	8	(13)	BTL 2	Understanding
8.	(i) A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ, is mounted on 	(b) with field equivalence principle, explain radiation (b) mechanism. (i) A rectangular aperture with a constant field (7) distribution, with $a = 3 \lambda$ and $b = 2 \lambda$, is mounted on	i)With field equivalence principle, explain radiation mechanism.(6)BTL 4ii)A rectangular aperture with a constant field distribution, with a = 3 λ and b = 2 λ , is mounted on(7)BTL 4

		PART – C			
1.		An electric field strength 10 μ V/m is to be measured at		BTL 3	Applying
		an observation point $\theta = \pi/2$, 500 km from a half wave			
		dipole antenna operating in air at 50 MHz			
		(a) What is the length of dipole?	(5)		
		(b) Calculate the current that must be fed to antenna	(5)		
		(c) Find the average power radiated by antenna	(5)		
2.	(i)	Compare the field quantities and the other relevant	(8)	BTL 4	Analyzing
		parameter of a small loop antenna with a short dipole			
		antenna.			
	(ii)	By applying the Poynting theorem determine the	(7)	BTL 4	Analyzing
		radiation resistance of a circular loop antenna.			
3.		The dimensions of an aperture of a pyramidal horn is	(15)	BTL 4	Analyzing
		given by $10 \text{ cm x} 5 \text{ cm}$. When the horn is operated at 6			
		GHz frequency, find beamwidth, power gain and			
		directivity.			
4.		Derive the parabola geometry that makes it a suitable	(15)	BTL 2	Understanding
		for antenna reflectors. Design an antenna employing a			
		parabolic reflector that is likely to be a highly directive			
		receiving antenna.			
5.		Draw the structure of log periodic dipole array and	(15)	BTL 1	Remembering
		explain the operating principle and mention its			
		applications.			

UNIT III - ANTENNA ARRAYS AND APPLICATIONS

Two-element array, Array factor, Pattern multiplication, Uniformly spaced arrays with uniform and non-uniform excitation amplitudes, Concept of phased arrays, Frequency scanning arrays, Smart antennas.

	PART - A						
Q.No	Questions	BT Level	Competence				
1.	What is mean by uniform linear array?	BTL 1	Remembering				
2.	Define phased array and frequency scanning array.	BTL 1	Remembering				
3.	Write about pattern multiplication and its advantages.	BTL 1	Remembering				
4.	List the features of smart antennas and where it is employed?	BTL 1	Remembering				
5.	Draw the radiation pattern of isotropic point sources of same	BTL 1	Remembering				
	amplitude and opposite phase that are $\lambda/2$ apart along X-axis						
	symmetric with respect to the origin.						
6.	How to eliminate minor lobes?	BTL 1	Remembering				
7.	Interpret the meaning of array factor.	BTL 2	Understanding				
8.	Summarize the advantages and disadvantages of binomial array.	BTL 2	Understanding				
9.	Draw the radiation pattern for broad side and end fire array.	BTL 2	Understanding				
10	Enumerate the basic principle of reconfigurable antennas.	BTL 2	Understanding				
11	Distinguish Binomial and Chebyshev distributions.	BTL 2	Understanding				
12	Write the expression that represents the pattern multiplication.	BTL 2	Understanding				
13	Show the conditions to obtain end fire array antenna.	BTL 3	Applying				
14	Identify the feed networks used in a phased array antenna.	BTL 3	Applying				
15	Illustrate the meaning and need for the binomial array.	BTL 3	Applying				
16	Select the active antennas towards the wide interest for industrial	BTL 3	Applying				
	applications.						
17	Solve the directivity of a broadside array of length is 10λ .	BTL 3	Applying				
18	Classify different types of antenna arrays.	BTL 3	Applying				

19	Find the directivity of broadside forms of arrays when a uniform	BTL 4	Analyzing
	linear array contains 50 isotropic radiation with an inter element		
	spacing of $\lambda/2$.		
20	Classify smart antennas.	BTL 4	Analyzing
21	Explore the need for phase shifter in phased array antennas.	BTL 4	Analyzing
22.	Compare beam steering and beamforming.	BTL 4	Analyzing
23.	A linear end fire, uniform array of 10 elements has a separation	BTL 4	Analyzing
	of $\lambda/4$ between elements. Calculate the directivity of an array.		
24	Inspect the angle where the transmitted power has dropped by	BTL 4	Analyzing
	from the maximum power in the direction at which the antenna		
	array is directing.		

	PART - B					
1.	Enumerate the principle of phased array antenna and frequency scanning arrays. Give account of beam forming networks for phased array antenna.	(13)	BTL 1	Remembering		
2.	Find the expression for the field and the radiation pattern produced by a N element array of infinitesimal with distance of separation $\lambda/2$ and currents of unequal magnitude and phase shift 180 ⁰ .	(13)	BTL 1	Remembering		
3.	 (i) Quote and derive the expression for field pattern of broad side array of N point sources. (ii)A linear broadside array consists of 4 equal isotropic inphase point sources with λ/3 spacing. Identify the directivity and beamwidth. 	(7)	BTL 1	Remembering		
4.	For a 2 element linear antenna array separated by a distance d = $3\lambda/4$, derive the field quantities and draw its radiation pattern for the phase difference of 45° .	(13)	BTL 1	Remembering		
5.	Describe in detail about the resultant radiation pattern of two element array.	(13)	BTL 1	Remembering		
6.	Summarize the expression for the array factor of a linear array of four isotropic element spaced $\lambda/2$ apart fed with signals of equal amplitude and phase. Obtain the directions of maxima and minima.	(13)	BTL 2	Understanding		
7.	(i) Demonstrate the radiation mechanisms of broad side antenna array and end fire antenna array with neat sketches.	(7)	BTL 2	Understanding		
	(ii) What is binomial array? Draw the pattern of 10 elements binomial array with spacing between the elements of $3\lambda/4$ and $\lambda/2$.	(6)				
8.	Discuss in details the concept, design principles and types of phased arrays.	(13)	BTL 2	Understanding		
9.	(i) Derive expression for directivity of end fire array.(ii) Write the properties of end fire array and frequency scanning arrays.	(7) (6)	BTL 2	Understanding		
10.	(i) Show the expression for the field produced by linear array and deduces it for an end fire array.(ii) Express the properties of linear broadside array.	(7)	BTL 3	Applying		
11.	(i) Illustrate about the method of pattern multiplication.(ii) Solve the expression for directions of pattern minima, pattern maxima, BWFN due to broad side array.	(7) (6)	BTL 3	Applying		
12.	Derive array factor of an uniform linear array. Explain the	(13)	BTL 3	Applying		

	significance of array factor.			
13.	Illustrate about the adaptive arrays and smart antennas.	(13)	BTL 3	Applying
14.	Examine how analog and digital beam forming is achieved	(13)	BTL 4	Analyzing
	with an antenna array with a neat diagram.			
15.	(i)Analyze the working principle of phased array antenna with	(7)	BTL 4	Analyzing
	neat diagram.			
	(ii)Describe the radiation mechanisms of binomial array with	(6)		
	neat sketches and derive the expression for array factor.			
16.	Identify the direction of maximum and minimum radiation	(13)	BTL 4	Analyzing
	from the resultant radiation of two identical radiators which			
	are spaced d = 3 $\lambda/4$ meters apart and fed with currents of			
	equal magnitude but with 180° phase difference.			
17.	Inspect the maxima, minima and half power directions if two	(13)	BTL 4	Analyzing
	point sources are fed with currents equal in magnitude but			
	opposite in phase.			

	PART - C					
1.	Derive and draw the radiation pattern of 4 isotropic sources of equal amplitude and same phase.	(15)	BTL 1	Remembering		
2.	Summarize in detail about the conditions for two-point sources with currents unequal in magnitude and with any phase.	(15)	BTL 2	Understanding		
3.	For an end fire consisting of several half wave length isotropic radiator is to have a directive gain of 30°. Formulate the array length and width of the major lobe. What will be these values for a broadside array?	(15)	BTL 3	Applying		
4.	(i) Deduce the directivity of a given linear broadside, uniform array of 10 isotropic elements with a separation of $\lambda/4$ between the elements.	(8)	BTL 4	Analyzing		
	(ii) A linear broadside array consists of four equal isotropic in-phase point sources with $\lambda/3$ spacing. Construct the directivity and beamwidth if the total length of the array is λ .	(7)				
5.	A uniform linear array consists of 16 isotropic point sources with a spacing of $\lambda/4$. If the phase difference is -90°, Determine the directivity, HPBW, beam solid angle and effective apertures.	(15)	BTL 4	Analyzing		

UNIT IV - PASSIVE AND ACTIVE MICROWAVE DEVICES
Microwave Passive components: Directional Coupler, Power Divider, Magic Tee, attenuator, resonator,
Principles of Microwave Semiconductor Devices: Gunn Diodes, IMPATT diodes, Schottky Barrier
diodes, PIN diodes, Microwave tubes: Klystron, TWT, Magnetron.

PAKI - A						
Q.No	Questions	BT Level	Competence			
1.	Outline the properties of power dividers with examples.	BTL 1	Remembering			
2.	Identify the use of matched termination in microwave	BTL 1	Remembering			
	communication setup.					
3.	Draw the equivalent circuit of a Gunn diode.	BTL 1	Remembering			
4.	Write the effect of transit time.	BTL 1	Remembering			
5.	What are the differences between TWTA and klystron	BTL 1	Remembering			
	amplifier?					

6.	List the basic parameters to measure the performance of a	BTL 1	Remembering
	directional coupler?		
7.	Summarize sum and difference arm of magic Tee.	BTL 2	Understanding
8.	Discuss about attenuator and resonator.	BTL 2	Understanding
9.	Summarize the condition for oscillation and applications in	BTL 2	Understanding
	reflex klystron.		
10.	Review the principle of Faraday's rotation.	BTL 2	Understanding
11.	Distinguish between microwave passive components and	BTL 2	Understanding
	ssemiconductor ddevices.		
12.	How the performance of directional coupler can be determined?	BTL 2	Understanding
13.	Demonstrate Gunn diode and list the modes.	BTL 3	Applying
14.	Exhibit the negative resistance property in Gunn diode.	BTL 3	Applying
15.	Interpret about the Schottky barrier diodes.	BTL 3	Applying
16.	Pointout the various types of Tee used in microwave.	BTL 3	Applying
17.	Show the features of power divider.	BTL 3	Applying
18.	Illustrate the transferred electron effect.	BTL 3	Applying
19.	Examine the factors reducing the efficiency of IMPATT diode.	BTL 4	Analyzing
20.	Categorize the applications of magic-Tee.	BTL 4	Analyzing
21.	Compare PIN and PN diode.	BTL 4	Analyzing
22.	Why magnetron is called as cross field device?	BTL 4	Analyzing
23.	Determine the purpose of slow wave structures in TWT.	BTL 4	Analyzing
24.	Inspect the frequency pulling and frequency pushing in	BTL 4	Analyzing
	magnetrons.		

	PART - B			
1.	With neat diagram explain the operation of attenuators in detail.	(13)	BTL 1	Remembering
2.	Show the operation and properties of power divider. Derive their S parameters.	(13)	BTL 1	Remembering
3.	(i) With the help of a neat diagram describe the magic Tee working principle.	(7)	BTL 1	Remembering
	(ii) Find scattering matrix and applications of magic Tee.	(6)		
4.	(i) Write notes on high frequency limitations of conventional vacuum devices.	(7)	BTL 1	Remembering
	(ii) What are the characteristics of travelling wave tube?	(6)		
5.	Examine the operation mechanism of two-cavity Klystron amplifier with neat sketch and write the expression for its output power.	(13)	BTL 1	Remembering
6.	(i) From the first principles derive the scattering matrix of a multi hole directional coupler.	(7)	BTL 2	Understanding
	(ii) Infer the characteristics of directional coupler in terms of S parameters and explain in detail two-hole directional coupler.	(6)		
7.	(i) Discuss the working principle of reflex klystron oscillator with necessary diagrams.	(7)	BTL 2	Understanding
	(ii) Derive velocity modulation, transit time of reflex klystron oscillator.	(6)		
8.	(i) Summarize the power output mode curve/frequency characteristics of reflex klystron.	(7)	BTL 2	Understanding
	(ii) Draw the equivalent circuit and obtain the electronic spiral	(6)		

	curve of reflex klystron.			
9.	Discuss the working principle of Gunn diode oscillator and its	(13)	BTL 2	Understanding
	modes.			
10.	With neat diagrams, explain the operation of transmission line	(13)	BTL 3	Applying
	resonators and its application.			
11.	Demonstrate the Schottky barrier diodes and its application in	(13)	BTL 3	Applying
	microwave communication.			
12.	Illustrate with interaction region diagram the mechanism of	(13)	BTL 3	Applying
	operation of TWT amplifier, its applications and the			
	expression for the gain of a TWT.	(-)		
13.	(i) Solve the directivity in dB for a coupler if same power is	(7)	BTL 3	Applying
	applied in turn in to input and output of the coupler with			
	output terminated in each case in a matched impedance. The			
	auxiliary output readings are 450 mW and 0.710μ W.	(0)		
	(11) Calculate the operating frequency of a silicon based	(6)		
	INPATI atode with drift length of 2 μ m and drift velocity of 10^7 sm/s			
1.4	TU CIII/S.	(12)	DTI 1	Analyzina
14.	Explain in detail about PIN diodes, control circuits and its	(13)	DIL 4	Anaryzing
15	Discuss the working principle of Gunn diode as a transferred	(13)	BTI /	Analyzing
15.	electron device with two valley model also draw the	(15)		Anaryzing
	structure equivalent circuit and V-I characteristics of Gunn			
	diode.			
16.	(i) What are avalanche transit time devices? Explain the	(7)	BTL 4	Analyzing
	operation and construction of IMPATT diode.			5 0
	(ii) Explain mechanism of oscillation of IMPATT and as	(6)		
	power amplifier.			
17.	Discuss the following :		BTL 4	Analyzing
	(i) T-junction power divider.	(7)		
	(ii) Cylindrical Magnetron.	(6)		

	PART - C			
1.	What is Circulator? With neat diagram, explain the working	(15)	BTL 1	Remembering
	principle, construction, operation of four port circulator using			
	magic-tee. Verify the circulator theory with necessary S-			
	parameter equations.			
2.	With neat diagram, discuss the characteristics of series Tee and	(15)	BTL 2	Understanding
	shunt Tee and derive the S matrix.			
3.	A TWT operates under the parameters: beam voltage = 3 KV ,	(15)	BTL 3	Applying
	beam current = 30 mA , characteristics impedance of helix = 10			
	Ω , circuit length = 50, frequency = 10 GHz. Calculate gain			
	parameter, output power gain in dB, four propagation			
	constants.			
4.	Analyze the cross-sectional view of magnetron tube and	(15)	BTL 4	Analyzing
	explain how bunching occurs with equations of electron			
	trajectory and derive the expression for Hull cut-off voltage.			
5.	With the help of two valley, explain how negative resistance	(15)	BTL 4	Analyzing
	can be created in Gunn diode and compare with tunnel diode.			

UNIT V - MICROWAVE DESIGN PRINCIPLES

Impedance transformation, Impedance Matching, Microwave Filter Design, RF and Microwave Amplifier Design, Microwave Power amplifier Design, Low Noise Amplifier Design, Microwave Mixer Design, Microwave Oscillator Design

PART – A					
Q.No	Questions	BT Level	Competence		
1.	Why impedance matching is required?	BTL 1	Remembering		
2.	Define about a perfect filter.	BTL 1	Remembering		
3.	List out the constraints of impedance matching.	BTL 1	Remembering		
4.	What is the need of Rollet factor, K? Write its expressions.	BTL 1	Remembering		
5.	Name the uses of microwave filters.	BTL 1	Remembering		
6.	Identify the considerations in selecting a matching network.	BTL 1	Remembering		
7.	State the significance of microstrip matching networks.	BTL 2	Understanding		
8.	Draw typical output stability circle and input stability circle.	BTL 2	Understanding		
9.	Distinguish single stub matching and double stub matching.	BTL 2	Understanding		
10.	Write down the expression that relates the nodal quality factor	BTL 2	Understanding		
	(Q_n) with loaded quality factor (Q_L) .				
11.	Summarize the filter realization steps in RF filter design.	BTL 2	Understanding		
12.	Discuss the stability requirements in RF amplifier design.	BTL 2	Understanding		
13.	Define about RF and microwave filter.	BTL 3	Applying		
14.	Outline the VSWR circle for the reflection coefficient equal to 1.	BTL 3	Applying		
15.	Define transducer power gain.	BTL 3	Applying		
16.	Calculate the VSWR of an amplifier if the amplifier has the reflection co-efficient 0.2533.	BTL 3	Applying		
17.	State the concept unilateral power gain.	BTL 3	Applying		
18.	Write necessary and sufficient conditions for an amplifier to be unconditionally stable.	BTL 3	Applying		
19.	Quote about low noise amplifier.	BTL 4	Analyzing		
20.	Correlate the formula for noise voltage and noise figure.	BTL 4	Analyzing		
21.	Recall the concept of mixers with neat diagram.	BTL 4	Analyzing		
22.	Summarize the major components used in the mixer design.	BTL 4	Analyzing		
23.	Compare the diode and FET mixer design with neat diagram.	BTL 4	Analyzing		
24.	Formulate the conditions for oscillations of an amplifier.	BTL 4	Analyzing		

PART – B					
1.	Examine the transducer power gain, unilateral power gain,	(13)	BTL 1	Remembering	
	available power gain and operating power gain of a				
	microwave amplifier using S parameters.				
2.	Derive the expression for unilateral power gain with	(13)	BTL 1	Remembering	
	necessary signal flow diagram.				
3.	Discuss about impedance matching using discrete component	(13)	BTL 1	Remembering	
	and formulate the conditions for impedance matching.				
4.	Elaborate in detail about the concept of single ended, double-	(13)	BTL 1	Remembering	
	balanced and triple balanced mixer.	(1.5)			
5.	Explain about microwave amplifier power design with the	(13)	BTL 1	Remembering	
	neat diagram of general amplifier system.	(10)		XX 1 / 1'	
6.	Classify the methods to design the filter for microwave	(13)	BTL 2	Understanding	
7	Irequencies.	(12)		I.I., do unto undiano	
/.	Explain the concepts of 1 and P1 matching networks and	(13)	BIL 2	Understanding	
0	(i) Interpret the store involved to design a low poise amplifier	(7)	DTI 2	Understanding	
0.	(i) Interpret the steps involved to design a low holse amplifier	(/)	DIL 2	Understanding	
	(11) Distinguish the power match and noise match in a low	(6)			
0	noise amplifier.	(7)	DTI 2	I.I. de unter d'une	
9.	(1) Explain the significance of impedance matching and	(/)	BIL 2	Understanding	
	(ii) Design a microwaya amplifier for maximum transducer	(6)			
	nower gain	(0)			
10	(i) Compare the different types of mixers	(6)	BTL 3	Applying	
10.	(i) Show the distinction between the following parameters of	(0) (7)	DILJ	rippiying	
	Conversion gain. Linearity and isolation of a mixer.	(')			
11.	(i) Describe the characteristics of amplifier.	(7)	BTL 3	Applying	
	(ii) Discuss about the basic concepts of RF design.	(.)			
12.	Elaborate about constant VSWR circles and different types of	(13)	BTL 3	Applying	
	transducer power gain.				
13.	Explain in detail about microwave filter design.	(13)	BTL 3	Applying	
14.	Describe about RF mixer with neat diagram and list the mixers	(13)	BTL 4	Analyzing	
	used in microwaves.				
15.	Show that noise figure of three stage amplifier is $F=F_1+(F_2-$	(13)	BTL 4	Analyzing	
	F_1 /(GA ₁) + (F ₃ -F ₁)/GA ₂ where F_1 , F_2 and F_3 are noise figures				
	and GA_1 , GA_2 are power gains.				
16.	Analyze about multistage low noise amplifier with neat	(13)	BTL 4	Analyzing	
	diagram.				
17.	Explain about one port negative resistance oscillator and RF	(13)	BTL 4	Analyzing	
	transistor model.				

PART – C					
1.	An RF amplifier has the following S parameters: $S_{11} = 0.3 \sqcup -$	(15)	BTL 1	Remembering	
	70°, $S_{21}=3.5 \perp 85^{\circ}$, $S_{12}=0.2 \perp -10^{\circ}$, $S_{22}=0.4 \perp -45^{\circ}$. Further				
	Vs=5V \perp 0°, Zs=40 Ω and ZL=73 Ω . Assuming Zo=50 Ω .				
	Evaluate G _T , G _{TU} , G _A and G.				
2.	An antenna is connected to a low-noise amplifier with a piece	(15)	BTL 2	Understanding	
	of coaxial transmission line. The amplifier bas a gain of 15				
	dB, a bandwidth of 100 MHz. and a noise temperature of 150				

	K. The coaxial line has an attenuation of 2 dB. Find the noise			
	figure of the transmission line-amplifier cascade. What would			
	be the noise figure if the amplifier wert placed at the antenna			
	eliminating the transmission line. Assume all components are			
	at an ambient temperature of $T = 300$ K.			
3.	Explain the different types of balanced microwave mixers	(15)	BTL 3	Applying
	with its operation.			
4.	(i)Explain RF and Microwave amplifier design parameters.	(8)	BTL 4	Analyzing
	(ii)Discuss about stability considerations in microwave circuit	(7)		
	design.			
5.	Elaborate about low noise amplifier design process in detail.	(15)	BTL 4	Analyzing