

(An Autonomous Institution) S.R.M. Nagar, Kattankulathur - 603 203.

DEPARTMENT OF ELECTRONICS & COMMUNICAITON ENGINEERING

QUESTION BANK

Academic Year: 2022 – 2023 (Odd Semester)

1906702 – OPTICAL COMMUNICATION IV YEAR, VII SEMESTER

Prepared by

- 1. Dr. V. Suresh Kumar, (Sel.G)
- 2. Mr.S. MariRajan, A.P (Sr.G)
- 3. Mr. A. Pandian, A.P (Sr.G)

<u>Syllabus</u>

1906702 OPTICAL COMMUNICATION L T P C 3 0 0 3

OBJECTIVES:

UNIT – I:

The student should be made:

- > To analyze the optical fiber modes and configuration of optical fibers.
- > To understand the transmission characteristics of optical fibers.
- > To learn about the optical sources, detectors and transmission techniques.
- > To explore the idea about optical fiber measurements and various coupling techniques.
- > To enrich the knowledge about optical communication systems and networks.

INTRODUCTION TO OPTICAL FIBERS

Introduction-General optical fiber communication system- Basic optical laws and definitions Optical modes and configurations -Mode analysis for optical propagation through fibers modes in planar wave guide-Modes in cylindrical optical fiber-Transverse electric and transverse magnetic modes- Fiber materials-Fiber fabrication techniques-Fiber optic cables classification of optical fiber-Single mode fiber-Graded index fiber .

UNIT – II: TRANSMISSION CHARACTERISTIC OF OPTICAL FIBER

Attenuation-Absorption-Scattering losses-Bending losses-Core and Cladding losses-Signal dispersion –Inter symbol interference and bandwidth-Intra model dispersion-Material dispersion-Waveguide dispersion-Polarization mode dispersion-Intermodal dispersion Optimization of single mode fiber-Characteristics of single mode fiber-R-I Profile cutoff wave length-Dispersion calculation-Mode field diameter.

UNIT – III: OPTICAL SOURCES AND DETECTORS

Sources: Intrinsic and extrinsic material-direct and indirect band gaps-LED-LED structures surface emitting LED-Edge emitting LED-Quantum efficiency and LED power-Light source materials-Modulation of LED-LASER diodes-Modes and threshold conditions-Rate equations-external quantum efficiency-Resonant frequencies-Structures and radiation patterns-Single mode laser-External modulation-Temperature effort.

Detectors: PIN photo detector-Avalanche photo diodes-Photo detector noise-Noise sources-SNR-detector response time-Avalanche multiplication noise-Temperature effects comparisons of photo detectors.

9

9

9

UNIT – IV: OPTICAL RECEIVER, MEASUREMENTS AND COUPLING 9

Fundamental receiver operation-Preamplifiers-Digital signal transmission-Error sources-Front end amplifiers-Digital receiver performance-Probability of error-Receiver sensitivity-Quantum limit. Optical power measurement-Attenuation measurement-Dispersion measurement-Fiber numerical Aperture Measurements- Fiber cut-off Wave length Measurements- Fiber diameter measurements-Source to Fiber Power Launching-Lensing Schemes for Coupling Management-Fiber to Fiber Joints-LED Coupling to Single Mode Fibers-Fiber Splicing Optical Fiber connectors.

UNIT – V: OPTICAL COMMUNICATION SYSTEMS AND NETWORKS 9 Elements of optical networks-SONET/SDH Optical Interfaces-SONET/SDH Rings and Networks-Optical ETHERNET-Soliton.-Optical network concepts - Optical network transmission modes, layers and protocols - Wavelength routing networks - Optical switching networks - Optical network deployment - Optical Ethernet .

TOTAL PERIODS:45

OUTCOMES:

After studying this course, the student should be able to,

- Examine the basic elements in optical fibers, different modes and configurations.
- Analyse the transmission characteristics associated with dispersion and polarization techniques.
- Design optical sources and detectors with their use in optical communication system.
- Construct fiber optic receiver systems, measurements and coupling techniques.
- Understand and Design communication systems and networks.

TEXT BOOKS:

- 1. P Chakrabarti, "Optical Fiber Communication", McGraw Hill Education (India) Private Limited, 2016.
- 2. Gerd Keiser, "Optical Fiber Communication", McGraw Hill Education (India) Private Limited. Fifth Edition, Reprint 2013.
- 3. J.Senior, "Optical Communication, Principles and Practice", Prentice Hall of India, 3rd Edition, 2008.

REFERENCE BOOKS:

- 1. John M.Senior, "Optical fiber communication", Pearson Education, second edition.2007.
- 2. Rajiv Ramaswami, "Optical Networks", Second Edition, Elsevier, 2004.
- 3. J.Gower, "Optical Communication System", Prentice Hall of India, 2001.

UNIT – I: INTRODUCTION TO OPTICAL FIBERS

Introduction-General optical fiber communication system- Basic optical laws and definitions Optical modes and configurations -Mode analysis for optical propagation through fibers modes in planar wave guide-Modes in cylindrical optical fiber-Transverse electric and transverse magnetic modes- Fiber materials-Fiber fabrication techniques-Fiber optic cables classification of optical fiber-Single mode fiber-Graded index fiber

PART-A					
Q. No	Questions	BT Level	Domain		
1.	Draw the basic block diagram of an optical fiber communication system.	BTL 4	Analyzing		
2.	State the reasons to opt for optical fiber communication.	BTL 1	Remembering		
3.	Summarize the conditions for light to be propagation inside a fiber.	BTL 2	Understanding		
4.	State the Snell's Law.	BTL 2	Understanding		
5.	Detect why partial reflection does not suffice the propagation of light?	BTL 4	Analyzing		
6.	List out the outdoor fiber optic cables.	BTL 1	Remembering		
7.	The refractive indices of the core and cladding of a silica fiber are 1.48 and 1.46 respectively. Find the acceptance angle for the fiber.	BTL 3	Applying		
8.	Show the config <mark>uration of</mark> an optical fiber.	BTL 1	Remembering		
9.	Write the transverse electromagnetic modes in a planar waveguide.	BTL 1	Remembering		
10.	Infer fiber optical leaky modes.	BTL 2	Understanding		
11.	Assume that there is a glass rod of refractive index 1.5, surrounded by air. Find the critical incident angle.	BTL 3	Applying		
12.	What is the Meridonial rays?	BTL 1	Remembering		
13.	Draw the transverse field distributions of the lowest order transverse electric (TE_{01}) and lowest order transverse magnetic(TM_{01}).	BTL 1	Remembering		
14.	List the raw materials used for glass fiber.	BTL 1	Remembering		
15.	Brief about PCS fiber. Point out the advantages of this fiber over plastic fiber.	BTL 4	Analyzing		
16.	Specify about the term preform and mention its dimensions.	BTL 4	Analyzing		
17.	Mention the reason of sintering is not needed in plasma chemical	BTL 2	Understanding		

	vapor deposition.		
18.	Define modes.	BTL 2	Understanding
19.	Draw the cross sectional view of secondary coated fiber stranded around a central strength member.	BTL 4	Analyzing
20.	Classify the fibers based on index of refraction and modes.	BTL 3	Applying
21.	A single mode fiber operating at 1330 mm has a modal birefringence of 1.5×10^{-5} . Measure the fiber beat length.	BTL 4	Analyzing
22.	A manufacturing Engineer wants to make an optical fiber that has a core index of 1.480 and cladding index of 1.478. Identify the core size for single mode operation at 1550 nm.	BTL 3	Applying
23.	Mention the characteristics of graded index fiber.	BTL 3	Applying
24.	Determine the Numerical aperture of graded-index fibers.	BTL 3	Applying
	PART-B		1
1.	Label a neat block diagram explain the blocks of a practical opticalfiber communication system.(13)	BTL 1	Remembering
2.	Show the ray theory transmission behind the optical fiber communication by reflection, refraction, index of refraction, total internal reflection, Snell's law, critical angle and phase-shift in total internal reflection with neat diagrams. (13)	BTL 3	Applying
3.	(i) Explain the fiber configurations of Step-Index (SI) and GradedIndex (GI) Fibers with appropriate diagrams.(9)(ii) Explore the bound or guided modes in cylindrical optical fibers. (4)	BTL 4	Analyzing
4.	(i) Give the main idea of a single mode and multimode fibers with neat diagrams.(10)(ii) Outline the cladding modes in cylindrical optical fibers.(3)	BTL 2	Understanding
5.	Describe the following(i) Meridional and skew rays.(4)(ii) Numerical aperture (NA) and acceptance angle for meridional rayswith relevant expressions.(9)	BTL 1	Remembering

	(i) Elaborate about acceptance angle for skew rays and Numerical		
	aperture of graded-index fibers. (7)		
	(ii) A step-index silica fiber with a core radius much longer than the		
	operating wavelength of light has a core refractive index of 1.50 and a		
6.	cladding refractive index of 1.48. Estimate the values of	BTL 4	Analyzing
	a) Numerical aperture of the fiber.		
	b) Maximum acceptance angle in air.		
	c) Maximum acceptance angle in water having a refractive		
	index of 1.33. (6)	0	
	(i) Illustrate about the modes in a planar waveguide with well-ordered	~	
7	diagrams. (10)	- C	Understanding
7.	(ii) Summarize the concepts of leaky modes in cylindrical optical	BTL 2	Onderstanding
	fibers. (3)		1
	(i) A multimode step index fiber with a core diameter of 80 µm and a		
	relative index difference of 1.5% is operating at a wavelength of 0.85		177
	μm. If the core refractive index is 1.48, estimate: (a) the normalized		19
	frequency for the fiber; (b) the number of guided modes. (7)		100
8.	(ii) A graded index fiber has a core with a parabolic refractive index	BTL 4	Analyzing
	profile which h <mark>as a di</mark> ameter of 50 µm. The fiber has a numerical		
	aperture of 0.2. Estimate the total number of guided modes		
	propagating in t <mark>he fiber whe</mark> n it is operating at a wavelength <mark>of 1 μm.</mark>		
	(6)		
	(i) A step-index fiber has an acceptance angle of 18 ⁰ in air. The fiber		
	has a relative refractive index of 2.5%. Estimate the value of the		
	critical angle at the core-cladding interface of the fiber and also the		
	numerical aperture of the fiber. (8)		
9.	(ii) A silica optical fiber with a core diameter large enough to be	BTL 4	Analyzing
	considered by ray theory analysis has a core refractive index of 1.50		
	and a cladding refractive index of 1.47. Determine:(a) the critical angle		
	at the core-cladding interface; (b) the NA for the fiber; (c) the		
	acceptance angle in air for the fiber. (5)		

10	Derive the wave equations for a step-index fiber and the	normalized		Analyzing
10.	frequency or V-number for modes in cylindrical optical fibe	ers. (13)	DIL 4	Anaryzing
	Give detailed note about the following:			
11.	(i) Glass fibers.	(6)	BTL 3	Applying
	(ii) Fluoride fibers.	(7)		
	Explain the following fiber materials.			
12	(i) Active glass fibers.	(6)	р ті 1	Domomboring
12.	(ii) Chalcogenide glass fibers.	(4)	DILI	Kemembering
	(iii) Plastic Clad Silica (PCS) fiber.	(3)	0	
13	(i) Interpret the fiber material of Plastic Optical Fiber (POF)). (8)	BTL 2	Understanding
10.	(ii)Discuss the Plasma Chemical Vapor Deposition (PCVD)	of fiber	- C	
	fabrication techniques.	(5)		Ο.
	Contrast the following fiber fabrication techniques w	ith proper		5
14	diagrams.		ρτι 1	Analyzing
14.	(i) Outside Vapor Deposition (OVD).	(8)	DIL 4	Anaryzing
-	(ii) Vapor Phase Axial Deposition (VAD).	(5)		6
15.	Elaborate the outdoor optical fiber cables with relevant figure	res. (13)	BTL 1	Remembering
	(1) Write the difference between indoor and outdoor fiber op	otic cables.		
16.		(5)	BTL 3	Applying
	(ii) Explain the indoor optical fiber cables and conne	ectors with		
	relevant figures.	(8)		
17.	Specify the importance of single mode fibers and birefrin	ngence in a	BTL 3	Applying
	single-mode fiber.	(13)		

	PART-C					
1.	Describe the mode analysis for optical propagation through fibers significant illustration and expressions.	with (15)	BTL 2	Understanding		
2.	Elaborate the following of modes in cylindrical optical fibers(i) Relationship between number of modes and V-number.(ii) Linearly Polarized Modes.	(5) (10)	BTL 4	Analyzing		

100

3.	Assess the Transverse Electric (TE) and Transverse Magnetic (TM) modesin cylindrical optical fibers with necessary diagram.(15)	BTL 4	Analyzing
4.	Write in detail about the following fiber fabrication techniques with suitable figures.(i)(i) Fiber pulling from a preform.(7)(ii) Fabrication of fiber preforms.(3)(iii) Modified Chemical Vapour Deposition (MCVD).(5)	BTL 1	Remembering
5.	(i) Explain the fiber fabrication method without involving preforms. (7)(ii) Write the advantages of optical fiber communication in detail. (8)	BTL 3	Applying

UNIT - II: TRANSMISSION CHARACTERISTIC OF OPTICAL FIBER

Attenuation-absorption-scattering losses-bending losses-core and cladding losses-signal dispersion –inter symbol interference and bandwidth-intra model dispersion-material dispersion- waveguide dispersionpolarization mode dispersion-intermodal dispersion, dispersion optimization of single mode fiber-characteristics of single mode fiber-R-I Profile- cutoff wave length-dispersion calculation-mode field diameter.

	PART-A		G
O No	Questions	BT	Domain
Q.110	Questions	Level	
1.	Infer about attenuation.	BTL 2	Understanding
	A fiber has an attenuation of 0.5 dB/Km at 1500nm. If 1500nm. If		
2.	0.5 mW of optical power is initially launched into the fiber, estimate the	BTL 4	Analyzing
	power level after 25Km?		
3.	List the different mechanisms which cause absorption.	BTL 4	Analyzing
4.	How does the scattering loss occur?	BTL 1	Remembering
5.	Define fictive temperature.	BTL 1	Remembering
	Light is launched from an injection laser diode operating at $1.55 \mu m$ to		
6.	an8/(125 μ m) single mode fiber. The bandwidth of the laser source is		
	500 <i>MHz</i> . The single mode fiber offers an average loss of $0.3 \frac{dB}{km}$.	BTL 3	Applying
	Compute the values of threshold optical power for the cases of		

	stimulated Brillouin scattering.		
7.	How to reduce the Mie scattering?	BTL 4	Analyzing
8.	Why scattering losses occurs more in multimode fibers?	BTL 4	Analyzing
9.	Give note about bending losses. Mention the types of bending losses.	BTL 1	Remembering
10.	Draw and label the significance of microscopic bending.	BTL 1	Remembering
11.	State the causes of dispersion.	BTL 1	Remembering
12.	Rephrase the bandwidth of RZ and NRZ in a fiber.	BTL 2	Understanding
13.	Explain chromatic dispersion.	BTL 2	Understanding
14.	Outline the zero-material dispersion	BTL 2	Understanding
15.	Interpret waveguide dispersion.	BTL 3	Applying
16.	Define polarization mode dispersion and write the expression for it.	BTL 3	Applying
17.	Explore the expression for the delay difference responsible for intermodal dispersion.	BTL 3	Applying
18.	Mention the parameters used in the design optimization of single mode fiber.	BTL 4	Analyzing
19.	Justify the attributes of single mode fibers.	BTL 4	Analyzing
20.	Brief about depressed cladding fibers.	BTL 1	Remembering
21.	Recall the effective cut off wavelength in a fiber.	BTL 1	Remembering
22.	Explain dispersion shifted fiber.	BTL 5	Evaluating
23.	What is large effective core area fibers?	BTL 4	Analyzing
24.	Write note about mode field diameter.	BTL 3	Applying
	PART-B		
1.	Explain the following:(4)(i) Attenuation.(4)(ii) Absorption loss by Intrinsic Absorption.(9)	BTL 1	Remembering
2.	Write in detail about the absorption loss by extrinsic absorption. (13)	BTL 3	Applying

3	List in detail about the linear scattering losses that occur in an optical	BTL 1	Remembering
5.	fiber with relevant diagrams and expressions. (13)		
4.	Specify the non-linear scattering losses in a fiber and examine the	BTI 4	Analyzing
	Stimulated Brillouin Scattering and Stimulated Raman Scattering. (13)	DILI	ThuryZing
5.	Explain the bending losses of an optical fiber with neat diagrams. (13)	BTL 4	Analyzing
	(i) With suitable expressions point out the Core-Cladding Loss. (5)		
	(ii) Two step index fibers exhibit the following parameters: (8)		
	(a) A multimode fiber with a core refractive index of 1.500, a relative	0	
	refractive index difference of 3% and an operating wavelength of 0.82	× ,	
6.	μm;	BTL 3	Applying
	(b) An 8 μ m core diameter single-mode fiber with a core refractive index	2120	0
	the same as (a), a relative refractive index difference of 0.3% and an		e
	operating wavelength of 1.55 µm. Estimate the critical radius of		1
	curvature at which large bending losses occur in both cases.		len.
7	Contrast the relationship between Inter Symbol Interference (ISI) and	DTI 4	Analyzing
7.	Bandwidth in an optical fiber. (13)	DIL 4	Anaryzing
	(i) Give short note about Intramodal Dispersion. (4)		
	(ii) A 20 km long optical fiber exhibits anrms pulse broadening of		
	20 ns due to material dispersion alone, when the power is launched from		
	an LED operating at 850 nm with a spectral width of 30nm. Estimate		
8	the material dispersion parameter of the fiber. (4)		Amelaina
0.	(iii) A silica fiber operating at 650 nm has a core refractive index of	BTL 3	Apprying
	1.46. The photo elastic coefficient and isothermal compressibility of the		
	silica glass are 0.3 and $7 \times 10^{-11} m^2 / N$ respectively. Estimate the loss		
	due to Rayleigh scattering in the fiber assuming the fictive temperature		
	of glass to be $1400 k$. (5)		
	Illustrate the material dispersion mechanisms with necessary		
9.	mathematical expressions. (13)	BTL 2	Understanding
10	With suitable mathematical expressions give a brief note about the		
10.	waveguide dispersion mechanism. (13)		

11.	Outline about waveguide dispersion in a single mode fiber. (13)	BTL 2	Understanding
12.	Briefly explain the Polarization mode dispersion. (13)	BTL 2	Understanding
13.	Write about the Intermodal Dispersion and Pulse broadening in a Multimode Step-Index Fiber with necessary equations. (13)	BTL 1	Remembering
14.	Explore the following (i) RMS Pulse Broadening. (10) (ii) Intermodal Dispersion in a Multimode Graded-Index Fiber. (3)	BTL 3	Applying
	Show the functional characteristics of the following with respect to single mode fiber:	Ċ,	
15.	(i) Refractive-Index profiles. (5) (ii) Cutoff Wayalangth (2)	BTL 1	Remembering
	(ii) Cutori wavelength.(3)(iii) Dispersion calculation.(5)		~
16.	(i) What is dispersion optimization of single mode fibers?(3)(ii) Explain the dispersion-shifted and dispersion-flattened fibers.(10)	BTL 1	Remembering
17.	(i) A 50 km long optical fiber link operating at 850 nm offers an average attenuation of 0.5 dB / km. An optical power of 100 μ W is launched into the fiber at the input. What is the value of optical power at a distance of 30 km from the input? Also express the power in μ W and in dBm. What is the output power at the end of the link? (7) (ii) Consider a 10 km optical fiber link using a multimode step-index fiber with the following parameters: Core refractive index, $n_1 = 1.458$; Relative index deviation $\Delta = 0.002$. Estimate the delay time difference between the axial ray and the most oblique ray. What is the value of rms pulse broadening due to intermodal dispersion? Estimate the bandwidth and the maximum bit-rate of transmission assuming RZ formatting and neglecting intramodal dispersion. (6)	BTL 3	Applying

	PART-C		
1.	(i) Elaborate attenuation and formulate the attenuation units in an optical		
	fiber. (3)		
	(ii) When the mean optical power launched into an $8km$ length of fiber		
	is $120 \mu W$, the mean optical power at the fiber output is $3 \mu W$.		
	 Estimate: a) The overall signal attenuation or loss in decibels through the fiber assuming there are no connectors or splices. b) The signal attenuation per kilometre for the fiber. c) The overall signal attenuation for a 10 km optical link using the same fiber with splices at 1km intervals, each giving an attenuation of 1dB. d) The numerical input and output power ratio in (c). (8) (iii) 150 μW Optical power is launched at the input of a 10 km long optical fiber link operating at 850 nm. The output power available is 5μW. Estimate the total attenuation in dB over the link length neglecting 	BTL 3	Applying
	all connector and splice losses. Evaluate the average attenuation per km ? (4)		m
2.	(i) A $\frac{50}{125}$ mm GI fiber with a parabolic index profile has a core refractive index of 1.458 at the centre of the core and a relative index deviation of $\Delta = 0.01$. Estimate the number of modes supported by the fiber at 850 nm. The fiber is now uniformly bent with a radius of curvature of 2cm. Estimatethe expected number of modes to be radiated out due to bending of the fiber. (10) (ii) A $\frac{62.5}{125}$ mm step-index fiber has a core and cladding refractive index values of 1.50 and 1.48 respectively at a wavelength of operation of 1330 nm. Design the value of the critical radius of curvature from the view point of macro-bending loss. (5)	BTL 3	Applying
3.	Explain the various design techniques for tailoring the dispersion optimization of single mode fibers.	BTL 1	Remembering

	(i) Dispersion-flattened Fiber (DFF) (9)		
	(iii) Polarization Maintaining Fibers. (6)		
4.	(i) A multimode step-index fiber has a numerical aperture of 0.22 and a		
	core refractive index of 1.458. The fiber exhibits an overall intramodal		
	dispersion of $200 pskm^{-1}$. Compute overall value of the rms pulse		
	broadening per kilometre of the fiber when the LED source operating at		
	850nm has an rms spectral width of 40nm. Estimate the bandwidth of a	BTL 3	Applying
	$n_1 = 10km$ link based on this fiber. (5)		
	(ii) Discuss about Mode-Field Diameter with necessary diagrams and	0	
	expressions. (10)	× ,,	
5.	Explain the optimum refractive-index profile of a graded-index fiber with	PTI 2	Understanding
	relevant mathematical expressions. (15)	DIL 2	onderstanding

UNIT – III: OPTICAL SOURCES AND DETECTORS

Sources: Intrinsic and extrinsic material-direct and indirect band gaps-LED-LED structures surface emitting LED-Edge emitting LED-Quantum efficiency and LED power-Light source materials-Modulation of LED-LASER diodes-Modes and threshold conditions-Rate equations-external quantum efficiency-Resonant frequencies-Structures and radiation patterns-Single mode laser-External modulation-Temperature effort.

Detectors: PIN photo detector-Avalanche photo diodes-Photo detector noise-Noise sources-SNR-detector response time-Avalanche multiplication noise-Temperature effects comparisons of photo detectors.

	PART-A		
Q.No	Questions	BT Level	Domain
1.	Show that the indirect band gap material is preferred for optical sources.	BTL 3	Applying
2.	Draw the energy level diagram of P & N type semiconductor.	BTL 3	Applying
3.	Find the peak emission wavelength of an LED that uses Al _{0.11} GA _{0.89} AS as active region.	BTL 3	Applying
4.	Define internal quantum efficiency of LED.	BTL 1	Remembering
5.	What is meant by hetero junction? Give it advantages?	BTL 1	Remembering
6.	The carrier recombination life time for an LED is 10ns.Estimate the optical bandwidth of the LED.	BTL 4	Analyzing

7.	Why silicon is not used to fabricate LED or Laser diodes?	BT	L 1	Remembering
8.	Mention the various types of LED structures.	BTI	L 1	Remembering
9.	What are the several drawbacks of LED when compared to the injection lasers?	BTI	L 1	Remembering
10.	State the mechanisms behind the lasing action.	BTI	L 1	Remembering
11.	Give the expression for laser diode rate equation.	BTI	L 2	Understanding
12.	Solve for reflectivity's of the mirror, if A Fabry-Perot cavity resonator has uncoated facets working as mirrors. The cavity refractive index is 3.7 and th surrounding medium is air.	e BTI	L 4	Analyzing
13.	Differentiate the optical sources LED and Laser.	BTI	L 4	Analyzing
14.	Define stimulated absorption.	BTI	L 2	Understanding
15.	A FP injection laser diode operating at 850 nm and has cavity 20μm. Determine the divergence angle of emitted beam in lateral and transverse direction of the cavity assuming the thickness of active region is 2μm.	BTI	L 4	Analyzing
16.	Classify the Laser structures.	BTI	L4	Analyzing
17.	List the advantages of pin photodiodes.	BTI	L 1	Remembering
18.	Point out the drawbacks of avalanche photodiode?	BTI	L 2	Understanding
19.	Define modes of cavity.	BTI	L 2	Understanding
20.	Illustrate the factors that determine the response time of the photodiode.	BTI	L 2	Understanding
21.	Identify the noise so <mark>urces in pho</mark> todiode.	BTI	L 3	Applying
22.	Calculate the photo generated current. Photons of energy 1.53 x 10^{-19} J a incident on a photodiode which has the responsivity of 0.65 A/W. if t optical power level is 10μ W.	nre he BTI	L 3	Applying
23.	Describe the term responsivity and quantum efficiency of photodiode.	BTI	L 2	Understanding
24.	Compare any two parameters of Si, Ge, InGaAs pin and avalance photodiodes	he BTI	L 4	Analyzing
	PART-B	·		
1.	(i) What are direct band gap and indirect band gap semiconductor Explain it with necessary diagrams.	[.] s? 7) BTI	L 1	Remembering

	(ii)	Select the appropriate materials used for preparation of LED. (6)		
2.	Expl	ain the N-type semiconductor and P-type semiconductor with relevant	BTL 2	Understanding
	diag	rams. (13)	DILZ	Chaoistanding
3.	(i)	With a neat diagram explain the surface emitting LED.(10)	BTL 1	Remembering
	(ii)	What is meant by emission response time?(3)	DILI	Remembering
4.	Expl	ain the working principle of Edge emitting LED with necessary	BTL 2	Understanding
	diag	rams. (13)		e nærsennenng
	(i)	Derive the expression for internal quantum efficiency and the internal		
	(1)	power generated in the LED. (7)	5	
5.		A double hetero junction InGaAsP LED emitting at a peak wavelength	BTL 2	Understanding
	(ii)	of 1310 nm has radiative and non-radiative recombination times of 30	153	
	(11)	and 100 ns resp. The drive current of 40mA. Find bulk recombination	_ C	· · · ·
		time, the internal quantum efficiency, internal power level. (6)		5
6.	Expi	ess about external quantum efficiency and the external power generated	BTL 2	Understanding
	in th	e LED with necessary equation. (13)		
	(i)	Brief the concept of modulation in an LED. (3)		0
		The minority carrier recombination life time for an LED is 5ns.when a		101
		constant d.c current is applied to the device the optical power is 300μ W.		111
7.		Calculate the optical output power when the device is modulated with	BTL 3	Applying
	(ii)	an rms drive current corresponding to the d.c drive current at		
		frequencies of (a) 20 MHz (b) 100MHz.		
		Further determine the 3dB optical bandwidth for the device and estimate		
		the 3dB electrical bandwidth assuming Gaussian response (10)		
	(i)	Construct the Fabry-Perot resonator cavity laser diode with necessary		
	. ,	diagram also Derive the threshold condition for lasing. (8)		
_		A Fabry-Perot laser diode with a 400µm long cavity uses GaAs as the		
8.		material in the active region with uncoated facets. The cavity offers an	BTL 3	Applying
	(ii)	average loss of 1000 m ⁻¹ at the operating wavelength. Find the value of		
		the threshold gain assuming the refractive index of GaAs to be 3.6.		
		(5)		
9.	(i)	Determine the expression for Laser diode rate equation (8)	BTL 2	Understanding

		A given GaAlAs laser diode has an optical cavity length of 300µm and		
		100µm width. At a normal operating temperature, the gain factor β =		
	(ii)	21×10^{-3} Acm ³ and loss coefficient $\alpha = 10$ cm ⁻¹ . Assume the reflectivity		
		is R1=R2=R=0.32 for each end face. What is the threshold current		
		density and threshold current for the device? (5)		
10	Clas	sify the various structures of laser diode and its radiation pattern with neat		Analyzing
10.	diag	ram. (13)	DIL 4	Anaryzing
	(i)	Specify the nature of double heterostructure laser diode with energy		
	(1)	band diagram and refractive index profile. (8)	N	
11		A double heterostructure laser diode operating at 0.87µm has an active	DTI 2	Applying
11.	(;;)	layer thickness of $0.2\mu m$. The refractive index of active region is 3.59	DILJ	Apprying
	(11)	and that the confining region is 3.25.Estimate the optical confining	- C	>
		factor (5)		
	(i)	Compute the expression for resonant frequency in laser diode. (8)		1. Contraction 1. Con
	7	A GaAs laser operating at 850nm has a 500µm length and refractive	1	ret.
12		index n=3.7.find the following		America
12.	(ii)	a) Frequency spacing	BILS	Applying
		b) Wavelength spacing		
		c) Number of modes (5)		
	(i)	Justify how lasing occurs in Lasers with the help of population inversion		
13	(1)	and optical fee <mark>dback. (</mark> 6)		Analyzing
15.	(ii)	Compare the DFB, DBR and DR laser structures with built in frequency	DIL 4	Anaryzing
	(11)	selective resonator gratings. (7)		
	(i)	Explain the working principle of p-i-n photodiode with a neat diagram.		
14	(1)	(10)	BTI 1	Remembering
	(ii)	Find the responsivity of p-i-n photodiode if the quantum efficiency is		Kennennbernig
	(11)	around 90 percent and operating wavelength is 1300nm. (3)		
	(i)	Describe the working principle of Avalanche photodiode (10)		
15		A silicon avalanche photodiode has a quantum efficiency of 65 percent	BTI 1	Remembering
1.5.	(ii)	at a wavelength of 900 nm. Suppose $0.5\mu W$ of optical power produces a	DILI	Kemenidering
		multiplied photocurrent of 10μ A.what is the multiplication M? (3)		

16.	Asse	Asses excess noise in APD and derive the expression for excess noise factor. (13)		Applying
17.	Disc	uss the characteristics of a general photo detector. (13)	BTL 3	Applying
		Part-C	1	
1.	Expl	ain in detail about various LED structures with a neat diagram. (15)	BTL 2	Understanding
	(i)	Discriminate the electro optic phase modulator and electro absorption modulator. (7)		
2.	(ii)	The threshold current of AlGaAs laser diode at 20° C is 3100mA. The threshold temperature of the device is To=180K. Evaluate the percentage change in threshold current when the temperature of the device is increased to 60° C. (8)	BTL 4	Analyzing
	(i)	Assess the Signal -to -Noise ratio of p-i-n photo diode. (8)	0	
3.	(ii)	An InGaAs pin photo diode has the following parameters at a wavelength of 1300 nm.ID=4nA, η =0.90, RL=1000 Ω and the surface leakage current is negligible. The incident optical power is 300nW and the receiver bandwidth is 20MHz. Find the various noise terms of the receiver. (7)	BTL 3	Applying
4.	(i) (ii)	Explain the different factors that determine the response time of photo detector. (8) In Si P-i-n photo detector, the width of i-region is 5µm and a device area is 0.5×10^{-7} m ² . The load resistance and input resistance of the amplifier are 1k Ω and 3k Ω resp. The input capacitance of the amplifier is 5pF. The relative permittivity of Si is11.9 and the saturation velocity of the carriers in Si is 10 ⁵ m/s. calculate junction capacitance, bandwidth of photo detector, total resistance and capacitance and bandwidth of photo detector in absence of circuit elements. (7)	BTL 4	Analyzing
5.		Explain the photo detector and compare the photo detectors by their generic operating parameters of Si, Ge and InGaAs.	BTL 1	Remembering

UNIT - IV: OPTICAL RECEIVER, MEASUREMENTS AND COUPLING

Fundamental receiver operation-Preamplifiers-Digital signal transmission-Error sources-Front end amplifiers-Digital receiver performance-Probability of error-Receiver sensitivity-Quantum limit. Optical power measurement-Attenuation measurement-Dispersion measurement- Fiber numerical Aperture Measurements- Fiber cut-off Wave length Measurements- Fiber diameter measurements-Source to Fiber Power Launching-Lensing Schemes for Coupling Management-Fiber to Fiber Joints-LED Coupling to Single Mode Fibers-Fiber Splicing ERIA Optical Fiber connectors. 0.51.1

Q.No	Questions	BT Level	Domain
		Level	
1.	What is bit period T_b ?	BTL 1	Remembering
2.	Define threshold level.	BTL 1	Remembering
3.	List the error sources associated with fiber optic receiver section.	BTL 1	Remembering
4.	Describe the term 'Quantum limit'.	BTL 2	Understanding
5.	Interpret the term 'bit error rate'.	BTL 3	Applying
6.	List out the different types of preamplifiers.	BTL 2	Understanding
7.	Point out advantages of the trans-impedance amplifier.	BTL 4	Analyzing
8.	What is meant by receiver sensitivity?	BTL 1	Remembering
9.	Label the methods employed for measuring dispersion in optical fiber?	BTL 1	Remembering
10.	State the significance of maintaining the fiber outer diameter constant.	BTL 2	Understanding
11.	Write short note abo <mark>ut cutback technique.</mark>	BTL 3	Applying
12.	Identify some dispersion measurement techniques for optical fiber.	BTL 4	Analyzing
13.	Discriminate average power from the peak power, also suggest which power measured in digital transmission and reception.	BTL 5	Evaluating
	An OTDR is used to measure the attenuation of a long length of fiber. If the		
14.	optical power level measured by the OTDR at 8-km point is 0.5 of the	BTL 3	Applying
	measured value at the 3-km point, what is the fiber attenuation?		
15.	Define radiance and write down the expression for lambertian source.	BTL 1	Remembering
16.	Mention the principal requirements of a good connector?	BTL 1	Remembering

17.	Discuss some lensing scheme to improve optical source to fiber coupling efficiency	BTL 2	Understanding
18.	Write the 3-dB optical bandwidth.	BTL 2	Understanding
19.	Classify some common end face defects happen in fiber.	BTL 2	Understanding
20.	An optical source with circular output pattern is closely coupled to step-index fiber that has a numerical aperture of 0.22. if the source radius $Rs = 50\mu m$ and fiber core radius $a=25\mu m$, Solve for the maximum coupling efficiency from the source into the fiber?	BTL 3	Applying
21.	An engineer makes a joint between two identical step-index fibers. Each fiber has a core diameter of $50\mu m$. If the two fibers have an axial or lateral misalignment of $5\mu m$, Inspect the insertion loss at the joint?	BTL 4	Analyzing
22.	Two identical step index fibers each have a 25μ m core radius and an acceptance angle of 14° . Assume the two fibers are perfectly axially and angularly. Measure the insertion loss for a longitudinal separation of 0.025mm?	BTL 4	Analyzing
23.	Suppose two identical graded index fibers are misaligned with an axial offset of $d= 0.3$. What is the power coupling loss between these two fibers?	BTL 3	Applying
24.	Write the formula for the angular coupling efficiency formula.	BTL 2	Understanding
	PART-B		
1.	Draw the block diagram of fundamental optical receiver.Explain each block with the intermediate signals at each stage. (13)	BTL 1	Remembering
2.	List out the various error sources associated with the receiver system. (13)	BTL 2	Understanding
3.	With neat diagrams, explain in detail about the front end amplifiers. (13)	BTL 1	Remembering
4.	What are the performance measures of a digital receiver?Derive anexpression for bit error rate of a digital receiver.(13)	BTL1	Remembering
	(i) Explain receiver sensitivity in detail. (8)	BTL1	Remembering
5.	(ii) Define the term 'Quantum limit' and derive the expression for receiver sensitivity of an digital receiver. (5)	BTL 2	Understanding
6.	(i) Write in detail cutback technique for finding the attenuation of optical fiber (8)	BTL 3	Applying

		An engineer wants to find the attenuation at 1310 nm of a 4.95-km long		
		fiber. The only available instrument is a photo detector, which gives an		
		output reading in volts. Using this device in a cutback-attenuation setup,		
	(ii)	the engineer measures an output of 2.21 V from the photodiode at the		
		far end of the fiber, After cutting the fiber 2m from the source, the		
		output voltage from the photo detector now reads 6.58 V. what is the		
		attenuation of the fiber in dB/km? (5)		
	Expl	ain the following		
7	(i)	Power launching and coupling. (4)	BTI 2	Understanding
7.	(ii)	Source output pattern. (4)	DIL 2	Onderstanding
	(iii)	Power coupling calculations. (5)	C.	
	(i)	Show that the insertion loss method is better to measure the attenuation	5	<u> </u>
8		Evaluate the insertion loss of the device, when the power at the photo	DTI 2	Applying
0.	(ii)	detector prior to inserting filter is $P_1 = 0.51$ mW and power level with the	DILS	Apprying
	1	optical filter in the link $P_2=0.43$ mW. (5)		177
9	With	suitable diagrams explain cut off wavelength mesaurements of a fiber.	BTL 4	Analyzing
).		(13)		10.0
	(i)	With a typical experimental arrangement, brief the measurement process		111
	(1)	of diameter of the fiber. (8)		
		The shadow method is used for the on-line measurement of the outer		
10		diameter of an optical fiber. The apparatus employs a rotating mirror	BTI 3	Applying
10.	(ii)	with an angular velocity of 4 rad s ⁻¹ which is located 10 cm from the	DILJ	Apprying
	(11)	photo detector. At a particular instant in time a shadow pulse of width		
		300µs is registered by the photo detector. Estimate the outer diameter of		
		the optical fiber in μm at this instant in time. (5)		
	(i)	Describe the numerical aperture measurement of optical fiber. (10)		
11.		The trigonometrical measurement is performed in order to determine the		
		numerical aperture of the step index fiber. The screen is positioned 10.0		
	(ii)	cm from the fiber end face. When illuminated from a wide-angled	BTL 4	Analyzing
		visible source the measured output pattern size is 6.2 cm. Estimate the		

12	Com	pare the different types of lensing schemes used to improve the coupling	DTI 2	Understanding
12.	effic	iency and also derive the expression for it. (13)	DIL 2	Onderstanding
		Classify the fiber related losses occurs in joining two fibers. Also		
	(i)	calculate the coupling loss if the refractive index profiles of receiving		
13		and emitting fiber are 1.98 and 2.20 respectively. (10)	BTI 2	Understanding
15.		Consider two step index fibers that are perfectly aligned. What is the	DILZ	Onderstanding
	(ii)	coupling loss if the numerical aperture of receiving fiber and emitting		
		fiber is 0.20 and 0.22 respectively.(3)		
14.	Disti	nguish various splicing technique with necessary diagrams and also give	BTL 4	Analyzing
	the e	xpression for various losses when splicing single mode fibers. (13)	-	
15.	Expl	ain connector types and compare the six popular fiber optic connectors	BTL 2	Understanding
	with	their features and applications. (13)		
16.	(i)	Illustrate the process of fiber end face preparation. (7)	DTI 2	Applying
	(ii)	Compute the coupling efficiency of LED power to SM fiber. (6)	DILS	Applying
17	(i)	Write the fiber related losses in detail. (9)	BTL 2	Understanding
17.	(ii)	List the features of MU connector. (4)		onderstanding
	5	PART-C		<u>_</u>
1.	Expl	PART-C ain the probability of error in digital data transmission and reception.	BTL 2	Understanding
1.	Expl	PART-C ain the probability of error in digital data transmission and reception. (15)	BTL 2	Understanding
1.	Expl Anal	PART-C ain the probability of error in digital data transmission and reception. (15) yze the methods of dispersion measurements in optical fiber. (15)	BTL 2 BTL 4	Understanding Analyzing
1. 2. 3.	Expl Anal Com	PART-C ain the probability of error in digital data transmission and reception. (15) yze the methods of dispersion measurements in optical fiber. (15) pare the different mechanical misalignments in fiber coupling also derive	BTL 2 BTL 4	Understanding Analyzing
1. 2. 3.	Expl Anal Com the le	PART-C ain the probability of error in digital data transmission and reception. (15) yze the methods of dispersion measurements in optical fiber. (15) pare the different mechanical misalignments in fiber coupling also derive oss expression for those misalignments. (15)	BTL 2 BTL 4 BTL 3	Understanding Analyzing Applying
1. 2. 3. 4.	Expl Anal Com the le Deri	PART-C ain the probability of error in digital data transmission and reception. (15) yze the methods of dispersion measurements in optical fiber. pare the different mechanical misalignments in fiber coupling also derive oss expression for those misalignments. (15) ve the expression for power coupling from LED to step index and graded	BTL 2 BTL 4 BTL 3 BTL 4	Understanding Analyzing Applying Analyzing
1. 2. 3. 4.	Expl Anal Com the le Deri inde:	PART-C ain the probability of error in digital data transmission and reception. (15) yze the methods of dispersion measurements in optical fiber. (15) pare the different mechanical misalignments in fiber coupling also derive (15) oss expression for those misalignments. (15) ve the expression for power coupling from LED to step index and graded (15) x fibers. (15)	BTL 2 BTL 4 BTL 3 BTL 4	Understanding Analyzing Applying Analyzing
1. 2. 3. 4.	Expl Anal Com the le Deri inde:	PART-C ain the probability of error in digital data transmission and reception. (15) yze the methods of dispersion measurements in optical fiber. yze the methods of dispersion measurements in optical fiber. pare the different mechanical misalignments in fiber coupling also derive coss expression for those misalignments. (15) ve the expression for power coupling from LED to step index and graded at fibers. (15) An optical fiber has a core refractive index of 1.5. Two lengths of the	BTL 2 BTL 4 BTL 3 BTL 4 BTL 4	Understanding Analyzing Applying Analyzing Analyzing
1. 2. 3. 4.	Expl Anal Com the le Deri inde:	PART-C ain the probability of error in digital data transmission and reception. (15) yze the methods of dispersion measurements in optical fiber. (15) pare the different mechanical misalignments in fiber coupling also derive (15) oss expression for those misalignments. (15) ve the expression for power coupling from LED to step index and graded (15) An optical fiber has a core refractive index of 1.5. Two lengths of the (15)	BTL 2 BTL 4 BTL 3 BTL 4 BTL 4	Understanding Analyzing Applying Analyzing Analyzing
1. 2. 3. 4.	Expl Anal Com the le Deri inde:	PART-C ain the probability of error in digital data transmission and reception. (15) yze the methods of dispersion measurements in optical fiber. (15) pare the different mechanical misalignments in fiber coupling also derive poss expression for those misalignments. (15) ve the expression for power coupling from LED to step index and graded x fibers. (15) An optical fiber has a core refractive index of 1.5. Two lengths of the fiber with smooth and perpendicular (to the core axes) end faces are butted together. Assuming the fiber axes are perfectly aligned, calculate	BTL 2 BTL 4 BTL 3 BTL 4 BTL 4	Understanding Analyzing Applying Analyzing Analyzing
1. 2. 3. 4. 5.	Expl Anal Com the le Deri inde:	PART-C ain the probability of error in digital data transmission and reception. (15) yze the methods of dispersion measurements in optical fiber. (15) pare the different mechanical misalignments in fiber coupling also derive (15) pare the different mechanical misalignments. (15) over the expression for those misalignments. (15) ver the expression for power coupling from LED to step index and graded (15) ver the expression for power coupling from LED to step index and graded (15) An optical fiber has a core refractive index of 1.5. Two lengths of the (15) An optical fiber has a core refractive index of 1.5. Two lengths of the fiber with smooth and perpendicular (to the core axes) end faces are butted together. Assuming the fiber axes are perfectly aligned, calculate the optical loss in decibels at the joint (due to Fresnel reflection) when	BTL 2 BTL 4 BTL 3 BTL 4 BTL 4	Understanding Analyzing Applying Analyzing Analyzing
1. 2. 3. 4. 5.	Expl Anal Com the le Deri inde:	PART-C ain the probability of error in digital data transmission and reception. (15) yze the methods of dispersion measurements in optical fiber. (15) pare the different mechanical misalignments in fiber coupling also derive (15) oss expression for those misalignments. (15) ve the expression for power coupling from LED to step index and graded at fibers. (15) An optical fiber has a core refractive index of 1.5. Two lengths of the fiber with smooth and perpendicular (to the core axes) end faces are butted together. Assuming the fiber axes are perfectly aligned, calculate the optical loss in decibels at the joint (due to Fresnel reflection) when there is a small air gap between the fiber end faces.	BTL 2 BTL 4 BTL 3 BTL 4 BTL 4	Understanding Analyzing Applying Analyzing Analyzing
1. 2. 3. 4. 5.	Expl Anal Com the le Deri inde:	PART-C ain the probability of error in digital data transmission and reception. (15) yze the methods of dispersion measurements in optical fiber. (15) pare the different mechanical misalignments in fiber coupling also derive (15) pare the different mechanical misalignments. (15) optical fiber for those misalignments. (15) ve the expression for power coupling from LED to step index and graded (15) An optical fiber has a core refractive index of 1.5. Two lengths of the (15) An optical fiber has a core refractive index of 1.5. Two lengths of the fiber with smooth and perpendicular (to the core axes) end faces are butted together. Assuming the fiber axes are perfectly aligned, calculate the optical loss in decibels at the joint (due to Fresnel reflection) when there is a small air gap between the fiber end faces. (4)	BTL 2 BTL 4 BTL 3 BTL 4 BTL 4	Understanding Analyzing Applying Analyzing Analyzing

 lateral misalignment at a fiber joint when there is index matching and assuming: (a) there is uniform illumination of all guided modes only. (b) there is uniform illumination of all guided and leaky modes. (3) (b) there is uniform illumination of all guided and leaky modes. (3) Two single-mode fibers with mode-field diameters of 9.2 µm and 8.4 µm are to be connected together. Assuming no extrinsic losses, determine the loss at the connection due to the mode-field diameter mismatch. (5) 		a core diameter of 50 $\mu m.$ Estimate the insertion loss due to a 3 μm	
assuming: (a) there is uniform illumination of all guided modes only.(3)(b) there is uniform illumination of all guided and leaky modes.(3)Two single-mode fibers with mode-field diameters of 9.2 μm and 8.4μm are to be connected together. Assuming no extrinsic losses, determine the loss at the connection due to the mode-field diameter mismatch.(5)		lateral misalignment at a fiber joint when there is index matching and	
 (a) there is uniform illumination of all guided modes only. (3) (b) there is uniform illumination of all guided and leaky modes. (3) Two single-mode fibers with mode-field diameters of 9.2 μm and 8.4 μm are to be connected together. Assuming no extrinsic losses, determine the loss at the connection due to the mode-field diameter mismatch. (5) 		assuming:	
 (b) there is uniform illumination of all guided and leaky modes. (3) Two single-mode fibers with mode-field diameters of 9.2 μm and 8.4 μm are to be connected together. Assuming no extrinsic losses, determine the loss at the connection due to the mode-field diameter mismatch. (5) 		(a) there is uniform illumination of all guided modes only. (3)	
 (iii) Two single-mode fibers with mode-field diameters of 9.2 μm and 8.4 μm are to be connected together. Assuming no extrinsic losses, determine the loss at the connection due to the mode-field diameter mismatch. (5) 		(b) there is uniform illumination of all guided and leaky modes. (3)	
(iii) µm are to be connected together. Assuming no extrinsic losses, determine the loss at the connection due to the mode-field diameter mismatch. (5)		Two single-mode fibers with mode-field diameters of 9.2 μ m and 8.4	
determine the loss at the connection due to the mode-field diameter mismatch. (5)	(:::)	µm are to be connected together. Assuming no extrinsic losses,	
mismatch. (5)	(111)	determine the loss at the connection due to the mode-field diameter	
		mismatch. (5)	

UNIT V - OPTICAL NETWORKS AND SYSTEM TRANSMISSION

System design consideration Point – to –Point link design –Link power budget –rise time budget, WDM –Passive DWDM Components-Elements of optical networks-SONET/SDH-Optical Interfaces-SONET/SDH Rings and Networks-High speed light wave Links-OADM configuration-Optical ETHERNET-Soliton.

	PART A		77
Q.No	Questions	BT Level	Competence
1.	State the concept of WDM.	BTL 1	Remembering
2.	Mention any two nonlinear effects present in optical fiber.	BTL 1	Remembering
3.	Identify the challenges involved in establishment of optical networks.	BTL 1	Remembering
4.	Summarize the transmission bit rate of the basic SONET frame in Mbps.	BTL 1	Remembering
5.	Outline about link budget in optical communication system design.	BTL 1	Remembering
6.	Brief the components involved to form optical network	BTL 1	Remembering
7.	List the benefits OADM.	BTL 2	Understanding
8.	Give the significance of solitons.	BTL 2	Understanding
9.	Define rise time.	BTL 2	Understanding
10.	Draw the basic structure of STS-1 SONET frame.	BTL 2	Understanding
11.	Predict the function of optical ETHERNET.	BTL 3	Applying
12.	Illustrate the key parameters required for analyzing the optical link.	BTL 3	Applying
13.	Manipulate the difference between fundamental and higher order soliton.	BTL 3	Applying

14.	State the various SONET/SDH layers.	BTL 4	Analyzing		
15.	How the speckle pattern can form?	BTL 4	Analyzing		
16.	Classify the important features of high speed light wave links.	BTL 4	Analyzing		
17.	Justify the features in DWDM.	BTL 4	Analyzing		
18.	Enumerate the advantages of using soliton signals through fiber.	BTL 5	Evaluating		
19.	List the basic performance parameters of the WDM system.	BTL 2	Understanding		
20.	Distinguish between fundamental and higher order soliton?	BTL 4	Analyzing		
21.	Write the advantages of WDM approach?	BTL 2	Understanding		
22.	Draw the frame format of SONET.	BTL 2	Understanding		
23.	List out the benefits of SONET over SDH networks.	BTL 2	Understanding		
24.	Name any two splicing techniques.	BTL 1	Remembering		
PART-B					
1.	Write about rise time, optical power required to establish secure link with	BTL 1	Remembering		
	necessary equation. (13)				
2.	Draw the architecture of optical network and explain in detail with	BTL 1	Remembering		
	necessary diagram.(13)		<u> </u>		
3.	(i) Define the principle of WDM networks. (7)		100		
	(ii) State the principles used in SONET. (6)	BTL 1	Remembering		
4.	Explain in brief the blocks and their functions of an optical receiver with				
	schematic diagrams. (13)	BTL 1	Remembering		
5.	Discuss about WDM and DWDM in detail. (13)	BTL 2	Understanding		
6.	(i) Illustrate the effects of noise in optical networks. (6)	BTL 2	Understanding		
	(ii) Extend the perceptions of high speed light wave links. (7)				
7.	(i) Summarize the basic concepts of Optical Networks. (7)	BTL 2	Understanding		
	(ii) Express the factors considered in point to point link system. (6)				
8.	(i) Model the Layered architecture of SONET/SDH with neat diagram. (7)	BTL 3	Applying		
	(ii) Exploreabout optical Ethernet and its applications. (6)				
9.	(i) Draw and explain the SONET frame structure, build the SONET	BTL 3	Applying		
	Network topology. (13)		_		
10.	With suitable example, analyze the conditions and constraints in the				
	formulation and solution of routing and wavelength assignment problem in	BTL 4	Analyzing		

	an optimal way. (13)		
11.	Explore the concept of OADM in detail. (13)	BTL 4	Analyzing
12.	Specify the salient feature of Solitons using relevant expressions and diagrams. (13)	BTL 1	Remembering
13.	Summarize the function of optical add / drop multiplexer (OADM). (13)	BTL 1	Remembering
14.	Analyze the performance and features of optical ETHERNET. (13)	BTL 1	Remembering
15.	Explain Basic optical Ethernet implementation of EPON/GE-PON	0	
	Architecture? (13)	BTL 1	Remembering
16.	Write a detailed notes on Wide band long-haul and narrowband metro	BTL 1	Remembering
	network with example? (13)	DILI	
17.	Describe the Optical layer and explain it along with the physical layer in	BTL 2	Understanding
	terms of wavelength. (13)		e national source ang
	PART-C		111
	Explain following requirements for the design of an optically amplified		0
1.	WDM link:	BTL 2	Understanding
	(a) Link Bandwidth. (8)		111
	(b) Optical power requirements for a specific BER. (7)		
	An engineer has the following components available: (15)		
	a) GaAlAs laser diode, operating at 850 nm, fiber coupled power 0dbm		
	b) Ten sections of cable each of which is 500 m long, has 4dB/km		
	attenuation has connectors at both ends		
2.			
2.	 c) 2dB/connector connector loss d) A DIN photo dia da maginar 45 dBm consitivity 	DTI 4	Analyzing
2.	 c) 2dB/connector connector loss d) A PIN photodiode receiver, -45 dBm sensitivity a) An avalanche photodiode receiver, 56dPm sensitivity 	BTL 4	Analyzing
2.	 c) 2dB/connector connector loss d) A PIN photodiode receiver, -45 dBm sensitivity e) An avalanche photodiode receiver, -56dBm sensitivity The engineer wishes to construct a 5 km link operating at 20 Mb/s 	BTL 4	Analyzing
2.	 c) 2dB/connector connector loss d) A PIN photodiode receiver, -45 dBm sensitivity e) An avalanche photodiode receiver, -56dBm sensitivity The engineer wishes to construct a 5 km link operating at 20 Mb/s. Estimate which receiver should be used if a 6 dB operating margin 	BTL 4	Analyzing
2.	 c) 2dB/connector connector loss d) A PIN photodiode receiver, -45 dBm sensitivity e) An avalanche photodiode receiver, -56dBm sensitivity The engineer wishes to construct a 5 km link operating at 20 Mb/s. Estimate which receiver should be used if a 6 dB operating margin is required. 	BTL 4	Analyzing
2.	 c) 2dB/connector connector loss d) A PIN photodiode receiver, -45 dBm sensitivity e) An avalanche photodiode receiver, -56dBm sensitivity The engineer wishes to construct a 5 km link operating at 20 Mb/s. Estimate which receiver should be used if a 6 dB operating margin is required. (i) explain an optical network system elaborate each component of the 	BTL 4	Analyzing
2.	 c) 2dB/connector connector loss d) A PIN photodiode receiver, -45 dBm sensitivity e) An avalanche photodiode receiver, -56dBm sensitivity The engineer wishes to construct a 5 km link operating at 20 Mb/s. Estimate which receiver should be used if a 6 dB operating margin is required. (i) explain an optical network system, elaborate each component of the same 	BTL 4 BTL 2	Analyzing Understanding

	(ii) Enumerate the special features of high speed light wave links.		
	(5)		
	A 90 Mb/s NRZ data transmission system that sends two DS3 channels		
	uses a GaAlAs laser diode that has a spectral width of 1 nm. The rise time		
	of the laser transmitter output is 2 ns. The transmission distance is 7 km		
4.	over a graded index fiber that has 800 MHz km bandwidth –distance	BTL 4	Analyzing
	product. If the receiver bandwidth is 90 MHz and mode mixing factor		
	q=0.7, Justify the system rise time. What is the rise time if there is no mode mixing 2 (use 0.07 ms/mm km) (15)		
	$\lim x \lim y : (use 0.07 \operatorname{Hs/Hm-km}). $ (15)	6	
	(i) Full Width Holf Maximum (FWHM)	~ <i>r</i>	
=	(i) Puin-Width Han-Maximum (FWHM) (8)		A
5.	(II) Dispersion Length (L _{disp}) (7)	BTL 4	Analyzing
			5
	SRM		- T_
			101
	<		6
	S S		