SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – $603\ 203$

DEPARTMENT OF MEDICAL ELECTRONICS

QUESTION BANK

III SEMESTER

1907303 - ELECTRICAL AND ELECTRONIC MEASUREMENTS

Regulation – 2019

Academic Year 2022-2023 (Odd Semester)

Prepared by

Dr. R. Umamaheswari, AP (O.G)/EIE

SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF MEDICAL ELECTRONICS <u>QUESTION BANK</u>

SUBJECT : 1907303 ELECTRICAL AND ELECTRONIC MEASUREMENTS

SEM / YEAR: III / II

UNIT I – INTRODUCTION

Functional elements of an instrument – Static and dynamic characteristics – Errors in measurement Statistical evaluation of measurement data – Standards and calibration.

PART – A					
Q. No	Questions			BTL	Competence
1.	Define measurement. What are of any measurement?	the two basic req	uirements	BTL 1	Remembering
2.	Analyze the functional element block diagram.	nts of an instru	nent with	BTL 4	Analyzing
3.	Compare and contrast betwee instrument.	n Range and Sj	pan of an	BTL 3	Applying
4.	Outline the advantages of an ele	ectronic measurer	nent.	BTL 1	Remembering
5.	Express the Data presentation e	lement. RM	L.	BTL 2	Understanding
6.	Illustrate the Accuracy as reading'.	'Percentage of	full-scale	BTL 3	Applying
7.	Identify the number of significa	i <mark>nt f</mark> igures in p <mark>rec</mark>	ision.	BTL 1	Remembering
8.	Give the mathematical expression	on for error.		BTL 3	Applying
9.	Distinguish between the absolut	e error and relativ	ve error.	BTL 4	Analyzing
10.	A particular ammeter requires a to produce a change in deflection Calculate its sensitivity and def	a change of 2A i on of the pointer lection factor.	n its coil by 5mm.	BTL 3	Applying
11.	State the term Threshold in stati	ic characteristics.		BTL 1	Remembering
12.	Interpret the dynamic response	of the system.		BTL 2	Understanding
13.	Quote the Laplace transform for	the Ramp input.		BTL 1	Remembering
14.	Mention the dynamic characteri	stics of the dynar	nic error.	BTL 2	Understanding
15.	Define Random error.			BTL 1	Remembering
16.	Compose the two characteristic	s of Precision.		BTL 4	Analyzing
17.	Classify the types of systematic	errors.		BTL 3	Applying
18.	What is the significance of Stan	idard deviation?		BTL 2	Understanding
19.	Differentiate between the Dire Indirect calibration method.	ect calibration me	ethod and	BTL 4	Analyzing

20.	Infer the term standard related to measurement.	BTL 4	Analyzing
21.	Express the methods which are used to reduce the environmental errors.	BTL 2	Understanding
22.	What is static calibration?	BTL 2	Understanding
23.	Why calibration of instrument is important?	BTL 3	Applying
24.	Point out the difference between gross errors and systematic	BTL 4	Analyzing
	errors.		

PART – B				
1.	Explain the functional elements of an instrument.	(13)	BTL 4	Analyzing
2.	Summarize the following in detail: (i) Variable conversion element, (ii) Variable manipulation element, (iii) Data Presentation element.	(4) (4) (5)	BTL 2	Understanding
3.	Illustrate the following Static characteristics: (i) Error, (ii) Sensitivity.	(6) (7)	BTL 3	Applying
4.	Analyze the following static characteristics (i) Accuracy, (ii) Precision.	(7) (6)	BTL 4	Analyzing
5.	(i) Describe in detail about the dynamic behavior of measuring system.(ii) Define the term measuring lag.	the (10) (3)	BTL 1	Remembering
6.	Explain in detail about the dynamic characteristics of Instrument.	f the (13)	BTL 2	Understanding
7.	Write short notes on: (i) Instrumental Errors (ii) Environmental Errors	(7) (6)	BTL 1	Remembering
8.	Examine the Statistical analysis of the measurement data.	(13)	BTL 3	Applying
9.	Describe the following in detail: (i) Gross error, (ii) Observational error, (iii) Random error.	(5) (4) (4)	BTL 2	Understanding
10.	The expected value of the voltage to be measured is 150V. However, the measurement gives a value of 149V. Calculat (i) absolute error, (ii) percentage error, (iii) relative accuracy, (iv) percentage accuracy, (v) Error expressed as percentage of full-scale reading is scale range is 0-200V.	te (2) (3) (3) (2) f the (3)	BTL 3	Applying

11.	State the calibration methodology and explain the two fundamental methodologies for obtaining the comparison between test instrument and standard instrument. (13)	BTL 1	Remembering
12.	(i) Define standard.(3)(ii) List the different types of standards of measurement and discuss in brief.(10)	BTL 1	Remembering
13.	Explain the two characteristics of the Precision in static characteristics. (13)	BTL 4	Analyzing
14.	Illustrate on the following statistical analysis of measurement data:(i)(i) Arithmetic mean,(5)(ii) Average deviation,(4)(iii) Standard deviation.(4)	BTL 3	Applying
15.	What are the classifications of instrument errors? Explain about the causes and remedies for each error in detail. (13)	BTL 4	Analyzing
16.	The following values were obtained from the measurement of current: 12.35A, 12.71 A, 12.48 A, 10.24 A, 12.63 A and 12.58 A. Calculate: a. The arithmetic mean b. The average deviation c. The standard deviation d. Variance.	BTL 3	Applying
17.	What is Error analysis? Also explain their Statistical methods. (13)	BTL 2	Understanding
	PART – C	•	
1.	Explain the following functional elements of an instrument in detail:(i) Primary Sensing element,(5)(ii) Variable conversion element,(5)(iii) Data presentation element.(5)	BTL 2	Understanding
2.	Analyze about the dynamic characteristics of the instrument. (15)	BTL 4	Analyzing
3.	Categorize about the types of errors and explain in detail. (15)	BTL 3	Applying
4.	Describe the statistical analysis of the measurements. (15)	BTL 1	Remembering
5.	 (i) The observations of frequency measurement by different persons are 325, 330, 338, 320 and 336. Estimate the standard deviation and the probable error. (8) (ii) Differentiate static and dynamic performance characteristics of an instrument and derive the mathematical model for a measurement system. 	BTL 3	Applying

UNIT II – ELECTRICAL AND ELECTRONIC INSTRUMENTS

Principle and types of analog and digital voltmeters, ammeters, multimeter – Single and three phase wattmeter and energy meters – Magnetic measurements – Determination of B-H curve and measurements of iron loss – Instrument transformers – Instruments for measurement of frequency and phase.

$\mathbf{PART} - \mathbf{A}$			
Q. No	Questions	BTL	Competence
1.	Label the Analog instruments.	BTL 1	Remembering
2.	Justify why Analog instruments are extensive in use?	BTL 4	Analyzing
3.	Classify the types of Analog instruments.	BTL 3	Applying
4.	Elucidate the Hall effect with neat diagram.	BTL 3	Applying
5.	Indicate the Magnetic effect used in the operation of analog instruments.	BTL 2	Understanding
6.	Construct the gravity control system with neat diagram.	BTL 2	Understanding
7.	Illustrate the types of instruments used as ammeters and voltmeters.	BTL 4	Analyzing
8.	State the principle of PMMC instruments.	BTL 1	Remembering
9.	Sketch the block diagram of attraction type moving iron instrument.	BTL 3	Applying
10.	Distinguish between radial vane type and coaxial vane type.	BTL 4	Analyzing
11.	Name the various errors in the moving instruments.	BTL 1	Remembering
12.	Construct the successive approximation type DVM.	BTL 2	Understanding
13.	Define digital voltmeter.	BTL 1	Remembering
14.	Mention the features of linear ramp type DVM.	BTL 2	Understanding
15.	Illustrate the basic block diagram of a digital multimeter.	BTL 3	Applying
16.	Estimate the errors in electrodynamometer type wattmeter.	BTL 2	Understanding
17.	Outline the features of three phase wattmeter.	BTL 1	Remembering
18.	Point out the advantages of instrument transformers.	BTL 4	Analyzing
19.	Classify the different types of tests conducted on magnetic materials.	BTL 2	Understanding
20.	Assess the two common forms of the magnetic forms of the magnetic squares.	BTL 3	Applying
21.	Tabulate the different types of frequency meters.	BTL 1	Remembering
22.	What modifications are done to use the power factor meter in single phase circuits?	BTL 3	Applying
23.	How are basic instruments converted into higher range ammeter?	BTL 4	Analyzing
24.	Categorize the types of tests that are used for magnetic materials	BTL 4	Analyzing
	testing.		

	PART –B				
1.	Explain the principle of operation of analog Instruments. (13)	BTL 4	Analyzing		
2.	Summarize the Permanent Magnet Moving Coil Instruments (PMMC) with torque equations.(13)	BTL 2	Understanding		
3.	(i) Examine the Moving iron attraction type instrument.(7)(ii) Illustrate the Moving iron repulsion type instrument.(6)	BTL 3	Applying		
4.	Write short notes on(6)(i) Multi range ammeters.(7)(ii) Universal or Aryton shunt.(7)	BTL 1	Remembering		
5.	Describe the following in detail(7)(i) Servo potentiometric type DVM.(7)(ii) Successive approximation type DVM.(6)	BTL 1	Remembering		
6.	Summarize the following(6)(i) Linear ramp type DVM.(7)(ii) Staircase ramp type DVM.(7)	BTL 2	Understanding		
7.	Enumerate the Electrodynamometer wattmeter with necessary diagrams. (13)	BTL 3	Applying		
8.	Examine the three-phase power measurement by using 3- single phase wattmeter. (13)	BTL 1	Remembering		
9.	Illustrate the following(6)(i) Current transformer.(7)(ii) Potential transformer.(7)	BTL 3	Applying		
10.	Explain the measurement of flux density B in magnetic measurement with a neat diagram. (13)	BTL 4	Analyzing		
11.	Analyse the principle of operation for the measurement of iron losses using wattmeter method. (13)	BTL 4	Analyzing		
12.	 (i) Manipulate the measurement of magnetizing force (H). (6) (ii) Interpret the types of tests conducted on magnetic materials. (7) 	BTL 3	Applying		
13.	Describe the two methods available for the determination of B-H Curve. (13)	BTL 2	Understanding		
14.	Construct the digital frequency meter with a neat block diagram. (13)	BTL 3	Applying		
15.	List the different types of ratios present in Instrument transformers & write how it is calculated. (13)	BTL 1	Remembering		
16.	Categorize and explain the method for determination of B-H curve of a magnetic material using Method of reversals and Step by step method. (13)	BTL 4	Analyzing		
17.	Explain about the construction and working of rotating and static type phase sequence indicators. (13)	BTL 2	Understanding		
	PART – C				
1.	Assess the PMMC instrument with torque equation and neat diagram. (15)	BTL 4	Analyzing		
2.	Discuss on the following errors:(3)(i) Hysteresis error(3)(ii) Temperature error(3)(iii) Stray magnetic fields(3)	BTL 2	Understanding		

	(iv) Frequency error(3)Eddy current error(3)		
3.	Manipulate the process of designing the Volt-Ohm-milli- ammeter (V.O.M) with required diagrams. (15)	BTL 3	Applying
4.	Illustrate on the following:(7)(i) Mechanical resonance type frequency meter.(7)(ii) Electrical resonance type frequency meter.(8)	BTL 3	Applying
5.	With a neat sketch and phasor diagram, discuss the construction and operation of Single-phase energy meter.(15)	BTL 1	Remembering

UNIT III - COMPARISON METHODS OF MEASUREMENTS

D.C & A.C potentiometers, DC Bridges –Wheatstone, Kelvin , AC bridges- Maxwell, Hay, Schering and Wien bridge.– Multiple earth and earth loops - Electrostatic and electromagnetic interference –Grounding techniques.

PART – A				
Q. No	Questions	BTL	Competence	
1.	Define potentiometer.	BTL 1	Remembering	
2.	Categorize different types of potentiometers.	BTL 4	Analyzing	
3.	Show the need of a protective resistance in the laboratory type D.C potentiometer.	BTL 3	Applying	
4.	Summarize the two ranges of vernier potentiometer.	BTL 2	Understanding	
5.	What is the need of thermocouple in deflection potentiometer?	BTL 1	Remembering	
6.	Draw the Drysdale polar A.C potentiometer.	BTL 1	Remembering	
7.	Classify the types of bridges.	BTL 2	Understanding	
8.	Estimate the Thevenin's equivalent circuit of Wheatstone bridge.	BTL 3	Applying	
9.	Distinguish between Wheatstone bridge and Kelvin's bridge.	BTL 2	Understanding	
10.	Point out the advantages of Maxwell bridge.	BTL 4	Analyzing	
11.	Express the power factor and dissipation factor for Schering bridge.	BTL 2	Understanding	
12.	Analyze the Hay bridge circuit.	BTL 4	Analyzing	
13.	Illustrate the operation of Wein bridge.	BTL 4	Analyzing	
14.	List out the types of A.C bridges.	BTL 1	Remembering	
15.	Identify the sources of electromagnetic interferences.	BTL 2	Understanding	
16.	Show the formation of earth loop.	BTL 3	Applying	
17.	Illustrate the different methods to obtain the ground connection.	BTL 3	Applying	
18.	Show the effects of electromagnetic interference with neat sketches.	BTL 3	Applying	
19.	What is electromagnetic interference?	BTL 1	Remembering	
20.	Classify the external interference signal.	BTL 3	Applying	

21.	How to calibrate DC voltmeter using Potentiometer?	BTL 4	Analyzing
22.	State the type of bridges involved in low resistance measurement.	BTL 1	Remembering
23.	What are the sources of errors in bridge circuit?	BTL 2	Understanding
24.	Infer the expression for unknown resistance connected in Wheat Stone bridge.	BTL 4	Analyzing
	PART-B	1	
1.	State and explain the Laboratory type D.C potentiometer. (13	BTL 1	Remembering
2.	Describe the following in detail:(7)(i) Vernier potentiometer,(7)(ii) Deflection potentiometer.(6)) BTL 2	Understanding
3.	Write short notes on:(6)(i) Co-ordinate potentiometers,(6)(ii) Drysdale polar potentiometer.(7)	BTL 4	Analyzing
4.	Describe about Wheatstone bridge with Thevenin equivalent circuit. (13)	BTL 1	Remembering
5.	Categorize the functional operations of the following:(7)(i) Maxwell bridge,(7)(ii) Hay bridge.(6)	BTL 3	Applying
6.	Illustrate the Kelvin's bridge with its circuit diagram and derive its balance equation. (13)	BTL 2	Understanding
7.	Examine the following bridges with neat diagram:(i) Schering bridge,(7)(ii) Wien Bridge.(6)	BTL 3	Applying
8.	Explain the measurement of resistance using Wheat Ston bridge method and obtain expression for unknown resistance. (13)	BTL 4	Analyzing
9.	Draw a circuit diagram of Maxwell's Bridge and Explain th measurement procedure for measuring unknown inductanc using this bridge. (13	BTL 1	Remembering
10.	Derive the measurement of capacitance with neat diagram using Schering bridge. (13	BTL 3	Applying
11.	Illustrate the circuit of Kelvin double bridge used for the measurement of low resistance. Derive the conditions for balance. (13)	e ^r BTL 2	Understanding
12.	Summarize the following:(7)(i) Earth loop formation,(7)(ii) Methods to obtain ground connection.(6)) BTL 2	Understanding
13.	 (i) Define Electromagnetic interference. (4) (ii) Describe the sources of Electromagnetic interference and limiting interference problems. (9) 	BTL 1	Remembering
14.	Construct any two types of D.C potentiometers with neat sketch (13	BTL 3	Applying

15.	Illustrate on Gall Co-ordinate potentiometer and write the	BTL 3	Applying
	advantages, disadvantages, and applications of AC		
	potentiometer. (13)		
16.	Analyze the following bridges:	BTL 4	Analyzing
	(i) Series resistance-capacitance comparison bridge (7)		
	(ii)Parallel resistance-capacitance Comparison Bridge (6)		
	Outline the concept of the following in detail:		
17.	(i) Electromagnetic Interference (6)	BTL 4	Analyzing
	(ii) Electrostatic Interference. (7)		
	PART-C		
1	Explain the principles of operation and construction of		
1.	potentiometers. (15)	BTL 4	Analyzing
	Summarize the following:		
2	(i) Vernier potentiometer	BTL 2	Understanding
2.	(5)		
	(ii) Potentiometer with true zero,		
	(5)		
	(iii) Deflectional potentiometer.		
	(5)		
3.	Describe about Kelvin's bridge and construct the Kelvin's		
	double bridge from the principle of kelvin's bridge. (15)	BTL 1	Remembering
4.	Illustrate about various AC and DC bridges for the measurement	BTL 3	Applying
	of high resistances. (15)		
5.	Explain how the earth resistance can be measured using 3 point	BTL 3	Applying
	fall of potential method. \Im SRM (15)		
	TYN CE		

	UNIT IV - STOR <mark>AGE AND DISP</mark> LAY DEVICES			
Magnetic & dot ma	disk and tape – Recorders, digital plotters and printers, CRT display trix display – Data Loggers.	y, digital	CRO, LED, LCD	
	PART – A	_		
Q. No	Questions	BTL	Competence	
1.	Obtain the basic components of magnetic tape recorder.	BTL 1	Remembering	
2.	Write about the display devices.	BTL 1	Remembering	
3.	Identify the advantages and disadvantages of FM recording.	BTL 2	Understanding	
4.	Differentiate between FM recording and Pulse duration modulations.	BTL 2	Understanding	
5.	Interpret the digital recording with neat sketch.	BTL 2	Understanding	
6.	Quote about the basic operating principle of digital tape recorder.	BTL 4	Analyzing	
7.	Draw the block diagram for NRZ method recording.	BTL 3	Applying	
8.	Specify the applications of X-Y recorder.	BTL 4	Analyzing	
9.	Compare the Impact printers with Dot matrix printers.	BTL 4	Analyzing	
10.	Define the deflection sensitivity of CRT.	BTL 1	Remembering	
11.	Construct the block diagram of digital CRO.	BTL 2	Understanding	
12.	Examine the purpose of horizontal amplifier.	BTL 4	Analyzing	
13.	Infer the vertical deflection system in CRT.	BTL 2	Understanding	

14.	Explain the working of digital CRO.	BTL 2	Understanding
15.	How the light is visible in LED?	BTL 3	Applying
16.	List the applications of LED.	BTL 1	Remembering
17.	Classify the types of LCD's	BTL 3	Applying
18.	State the data loggers.	BTL 1	Remembering
19.	Relate the input signals fed to the input scanner of the data logger.	BTL 3	Applying
20.	Point out the benefits of dot matrix displays.	BTL 3	Applying
21.	What is an X-Y recorder?	BTL 1	Remembering
22.	Distinguish between RZ and NRZ techniques of digital tape recording.	BTL 4	Analyzing
23.	A tape receives 12000 nos. per second. The tape speed is 1.5m/sec. Determine the no. density of the tape.	BTL 3	Applying
24.	Distinguish between Single point and Multi point recorders.	BTL 4	Analyzing

PART-B			
1.	Illustrate the working of Cathode ray oscilloscope with bloc	k DTL 2	
	diagram. (1.) BIL3	Applying
2.	Describe the basic components of a magnetic tape recorder.		
	(13) BTL 1	Remembering
3.	Analyze the working of magnetic tape recorder using FI	A BTL 4	Analyzing
	recording. (1.	5)	
4	Outline the operation of a Pulse duration modulation method.	BTL 1	Remembering
4.	(1.	3)	
F	Demonstrate the following in detail:		
5.	(i) Return to zero method (6) BTL2	Understanding
	(ii) Non-Return to zero method (7)	
6	Write short notes on:	BTL 1	Remembering
0.	(i) Digital plotters (6)	
	(ii) Dot matrix printer (7)	
7	Enumerate about the segmental LED display with necess	ary BTL 1	Remembering
7.	diagrams. (1	3)	
	Interpret on the following with relevant details:	BTL 4	Analyzing
8.	(i) Ink-jet printers, (6)	
	(11) Laser printers.)	
9.	Categorize the screens for the CRTs and its effects. (13)	B) BTL3	Applying
	Explain the following applications of the oscilloscope:		
10	(i) Voltage measurement. (5) BTL 2	Understanding
10.	(ii) Current measurement. (4		enderstanding
	(iii) Time and Frequency measurement. (4)	
	Outline the operation of:		Analyzing
11.	(i) Light emitting diode. (6) $DIL 4$	Anaryzing
	(ii) Liquid crystal display.)	
12.	(i) Compare the LED and LCD. (6		Applying
	(ii) Infer the operation of Dot matrix displays. (7		Арргушу
13.	Explain the detailed operation of data loggers with its bloc		Understanding
	diagram. (1.	β	

14.	Define recorder. Write short notes on Strip chart recorder with its advantages and disadvantages. (13)	BTL 4	Analyzing
15.	Express the principle and working of Nixie Tubes. (13)	BTL 2	Understanding
16.	Examine the FM method of magnetic tape recording and explain its benefits & disadvantages. (13)	BTL 4	Analyzing
17.	Discuss about the different methods used for Digital Tape recording. (13)	BTL3	Applying
PART-C			
1.	Construct the following magnetic tape recorder with its advantages and disadvantages:(i)(i) Direct recording.(7)(ii) PDM recording.(8)	BTL 4	Analyzing
2.	Show the design of an X-Y recorder with neat block diagram and mention its applications. (15)	BTL3	Applying
3.	Illustrate the block diagram of a digital storage oscilloscope along with the observation of waveform. (15)	BTL3	Applying
4.	Describe in detail about the Data loggers with neat sketch. (15)	BTL 1	Remembering
5.	Explain the randomized NRZ technique of digital tape recording. (15)	BTL 2	Understanding

UNIT V - TRANSDUCERS AND DATA ACQUISITION SYSTEMS

Classification of transducers – Passive and Active – variable Resistive, capacitive & inductive transducers and its applications – Strain gauges, Thermistor, RTD, LVDT, capacitor microphone-Thermocouple- Piezoelectric, Photo electric, transducers – Elements of data acquisition system – Smart sensors.

PART-A			
Q. No	Questions	BT Level	Competence
1.	Define Transducer	BTL 1	Remembering
2.	Point out some advantages of electrical transducers.	BTL 4	Analyzing
3.	Give some basic requirements of a transducer.	BTL 1	Remembering
4.	Classify the different types of transducers.	BTL 2	Understanding
5.	Illustrate the Active transducers with examples.	BTL 3	Applying
6.	Summarize the resistive transducer.	BTL 2	Understanding
7.	Define strain gauge.	BTL 1	Remembering
8.	Analyze the response of the transducer based on changes in	BTL 4	Analyzing
	self-inductance with number of turns.		
9.	Write about the Linear Variable Differential Transformer.	BTL 4	Analyzing
10.	State the advantages and disadvantages of thermistor.	BTL 1	Remembering
11.	Interpret the principle of operation of capacitive transducers.	BTL 2	Understanding
12.	List the materials for piezoelectric transducers.	BTL 1	Remembering
13.	Determine the modes of operation of piezoelectric crystals.	BTL 3	Applying
14.	Examine the principle used in thermocouples.	BTL 4	Analyzing

15.	Mention the objectives of DAS.	BTL 1	Remembering
16.	Express the configuration of data acquisition system.	BTL 2	Understanding
	A piezoelectric crystal has a thickness of 2.5mm and a voltage	BTL 4	Analyzing
17.	sensitivity of 0.5 V m/N. Determine the output voltage when it		
	is subjected to a pressure of $1.6 \times 10^6 \text{ N/m}^2$.		
18.	Draw the general architecture of smart sensor.	BTL 3	Applying
19.	Enumerate the importance and adoption of smart sensor.	BTL 2	Understanding
20.	Give the applications of smart sensor.	BTL 3	Applying
21.	Classify the factors to be considered for bounded Strain Gauge	BTL 4	Analyzing
22.	Calculate Young's modulus	BTL 3	Applying
23.	Distinguish between RTD and thermistor	BTL 2	Understanding
24.	Show differential output with reference to LVDT.	BTL 3	Applying
	PART-B	1	
	Describe the following in detail:		
1.	(i) Primary and Secondary transducers. (4)	BTL1	Remembering
	(ii) Analog and Digital transducers. (4)	2121	
	(iii) Active and Passive transducers. (5)		
2.	Explain the theory and operating principle of resistance strain (13)	BTL 2	Understanding
	gauge. (15) Write short notes on the types of electrical resistance strain		
3.	gauges. (13)	BTL 4	Analyzing
	Illustrate the following inductive transducers:		
4	(i) Change self-inductance with number of turns. (4)	DTI 2	Applying
4.	(ii) Change in self-inductance with change in permeability. (4)	DIL 3	Apprying
	(iii) Variable reluctance inductive transducer. (5)		
5.	Analyse the working of Linear Variable Differential Transformer with its advantages (12)	BTL 4	Analyzing
	Examine the differential arrangement of a capacitive		
6.	transducer to achieve the linear characteristics. (13)	BTL 4	Analyzing
7	State piezoelectric transducers and modes of operation of	DTI 1	Domomhoring
7.	piezoelectric crystals. (13)	DILI	Kennennbernig
8	Explain the basic principle and operation of Thermocouples.	BTI 2	Understanding
0.	(13)	DIL 2	Onderstanding
9	Demonstrate on the general architecture of smart sensor and	BTL 2	Understanding
	explain its importance and adoption. (13)	DILZ	Chaorbanding
	Infer the following DAS:	BTL 3	Applying
10.	(i) Analog data acquisition system. (6)	2120	
	(ii) Digital data acquisition system. (7)		
11.	Summarize the following:		
	(i) Single channel data acquisition system. (6)	BTL 2	Understanding
	(ii) Multichannel analog multiplexed system. (7)		
12.	Manipulate the low-level multiplexing system with neat sketch.	BTL 3	Applying
	(13)		
13.	Explain about the internal architecture of smart sensor with block	BTL 1	Remembering
	level considerations. (13)		

14.	Write short notes on:	BTL 1	Remembering
	(i) Configuration of data acquisition system. (5)		
	(ii) Single channel possibilities. (4)		
	(iii) Multi-channel possibilities. (4)		
15.	Explain the construction, principle, working of thermistor and its	BTL 4	Analyzing
	resistance temperature characteristics. (13)		
16.	Demonstrate the construction of RTD and explain how it can be	BTL 3	Applying
	used to measure temperature. (13)		
17.	Express the transfer function of LVDT with equivalent circuit and	BTL 3	Applying
	explain any two adjacent circuits for LVDT. (13)		
	PART-C		
1.	With neat sketch demonstrate the theory and operating principle of resistance strain gauge. (15)	BTL 3	Applying
2.	Explain about the construction of Linear Variable Differential Transformer and the principle of working.(15)	BTL 2	Understanding
3.	Evaluate the following capacitive transducers:(i) By variation of overlapping area of plates.(8)(ii) By Differential arrangement of capacitors.(7)	BTL 3	Applying
4.	Illustrate the general architecture of smart sensor with blocklevel design consideration.(15)	BTL 4	Analyzing
5.	Describe the methods by which variable inductance transducers are used for the measurement of change in self-inductance (15)	BTL 1	Remembering
<u> </u>		L	L

