SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF

ELECTRONICS AND INSTRUMENTATION ENGINEERING

QUESTION BANK

OPEN ELECTIVE: V SEMESTER

1907503 –Sensors and Transducers

Regulation – 2019

Academic Year 2022-2023

Prepared by

Mr. C. PRAVEEN KUMAR, M.E., (Ph.D) ASSISTANT PROFESSOR / EIE

SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OFELECTRONICS AND INSTRUMENTATION ENGINEERING

OUESTION BANK

SUBJECT CODE / NAME: 1907503 SENSORS ANDTRANSDUCERS

YEAR / SEM: III /V (Open Elective)

UNIT 1 – INTRODUCTION

Basics of Measurement – Classification of errors – Error analysis – Static and dynamic characteristics of transducers – Performance measures of sensors – Classification of sensors – Sensor calibration techniques – Sensor Output Signal Types.

PARI – A						
Q.No	Questions	BT Level	Competence			
1.	What do you understand by the term 'Steady State Error'?	BTL 1	Remember			
2.	Conclude the purpose of measurement.	BTL 5	Evaluate			
3.	The unknown resistance in a Wheatstone bridge is measured utilizing three known					
	resistances such that $R_4 = R_2 R_3 / R_1$. If the values of $R_1 = 100 \pm 0.5\% \Omega$, $R_2 = 500 \pm 0.5\% \Omega$	BTL 3	Apply			
	0.5% Ω , and R ₃ =292 ± 0.5% Ω , solve for the error in unknown resistance.					
4.	List out the types of instrumental errors.	BTL 1	Remember			
5.	Differentiate primary and derived standards	BTL 2	Understand			
6.	Identify the types of errors in measurement.	BTL 3	Apply			
7.	List out the sources of errors.	BTL 1	Remember			
8.	What are the two different means adopted to avoid gross error?	BTL 1	Remember			
9.	Contrast the needs between static calibration and dynamic calibration?	BTL 4	Analyze			
10.	The following 10 observations were recorded when measuring a voltage:					
	41.7,42.0,41.8,42.9,42.1,41.9,42.0,41.9,42.5,41.8. Estimate (a) The mean (b) The	BTL 6	Create			
	standard deviation.					
11.	Differentiate between passive and active transducers. Give an example of each.	BTL 2	Understand			
12.	Compare limiting errors & component errors	BTL 2	Understand			
13.	List the differences between error and uncertainty. Contrast systematic and	BTL 4	Analyze			
14	random errors?					
14.	What is the inference on term inverse transducer? Give an example.	BTL 4	Analyze			
15.	Identify the factors to be considered for selection of transducer for a particular	BTL 3	Apply			
16	_application.	BTI 1	Pamambar			
10.	What are the output signals of sensors?	BTL 1	Remember			
17.	Explain the importance of two wire and three wire sensors? Give typical example	DILI	Kellieliidei			
10.	for each type.	BTL 5	Evaluate			
19.	Classify sensors based on order and give example.	BTL 2	Understand			
20.	Define Minimum Detectable Signal (MDS).	BTL 1	Remember			
21.	What is measurement?	BTL 2	Understand			
22.	Identify the basic difference between analog and digital signals.	BTL 3	Apply			
23.	Analyze why the importance of digital instruments is increasing?	BTL 4	Analyze			
24.	Evaluate the purpose of Instrumentation.	BTL 5	Evaluate			
	PART – B					
1.	Analyze various types of errors in measurement system and explain how they are		Create			
	corrected? (13)	DILO	Create			
2.	(i) Explain the Normal or Gaussian curve of errors. (6)	BTL 2	Understand			
	(ii) Explain about different types of systematic error. (7)					

3.	What is exampl	meant be.	y error	analysis	s? Expla	in statis	tical me	thods of	error an	alysis with (13)	BTL 1	Remember
4.	In a test procedu	st, tempe ares. Aft	erature er apply	is meas ying the	sured 10 correcti	00 times ions, the	s with v results	ariation are:	s in app	paratus and		
	Temp °C	397	398	399	400	401	402	403	404	405	BTL 3	Apply
	Freq	1	3	12	23	37	16	4	2	2	DILJ	rippiy
	Solve a and the	nd obtai probabl	n arith e error.	metic m	ean, the	average	e deviati	on, the	standard	d deviation (13)		
5.	The fol 12.71A calculat	lowing , 12.48/ te:	values A, 10.2	were ob 24A, 12	tained f 2.63A a	rom the nd 12.5	measur 58A. Ap	ement oply pro	of current oper me	nt: 12.35A, ethods and		
		a. Tł	ne arith	metic m	ean						BTL 3	Apply
		b. Tl	he aver	age devi	ation							11 5
		c. Tł	ne stanc	lard dev	iation							
		d. V	ariance	•	1	NO		SRI	1	(13)		
6.	What a remedie	re the cl es for ea	assifica	ations of r in deta	f instrur il.	nent err	ors? Exp	olain ab	out the	causes and (13)	BTL 1	Remember
7.	(i) E sy (ii) C	numerat ystem. lassify tl	e the v	various	sources d give e	of erro	rs encou for each	intered	in a me	easurement (7) rd. (6)	BTL 4	Analyze
8.	Compa measur	re and ement sy	explair /stem.	n static	and dy	namic	characte	eristics	of tran	sducers or (13)	BTL 4	Analyze
9.	Analyz	e the var	ious pe	erforman	ice <mark>me</mark> as	sures of	se <mark>nsors.</mark>			(13)	BTL 4	Analyze
10.	(i) L	ist and ansduce	discuss	s the de	esirable	and un	desirabl	e static	charac	teristics of (7)	BTL 1	Remember
	(ii) W W	Vhat is tl ould a v	ne true oltmete	value o er of 20k	f the vo Ω/V ser	Itage ac asitivity	ross the read on	termina the 50 V A	ıls A an √ and 10	d B? What V ranges? (6)	BTL 5	Evaluate
11.	Explain	n the cla	ssificat	ion of tr	ansduce	rs in det	tail.			(13)	BTL 2	Understand
12.	(i) N pr 50 ct	leasure ressure in Opascals urve.	the sen f the ga if disp	sitivity uge has layed ov	of a pre radius o er an ar	essure g of scale f c of 270	auge a s line as 1) ⁰ . The g	a ratio 00mm a auge ha	of scale and press as linear	e length to sure of 0 to calibration (4)	BTL 5	Evaluate
	(ii) E	xplain st	atics cl	naracteri	stics of	measuri	ng instr	uments.	• •	(9)	BTL 2	Understand
13.	List the	calibrat	10n me	thods. E	xplain a	bout the	e static c	alibratio	on in det	ail. (13)	BTL 1	Remember
14.	(I) L (ii) E	ast out th	ie sense	output of	t signal	types.	neore			(5)	BIL 1	Understand
15	Explain	xpiaili V	arrous (a measu	urement	specific	stion w	ith even	nle		(10)	BIL 2 BTI 2	Understand
16.	The fol 41.7, 42	lowing 1 2.0, 41.8	10 obse , 42.0,	vrvations 42.1, 41	were re .9, 42.0,	ecorded 41.9, 42	when m 2.5, 41.8	easuring 6. Find th	g a volta he Mean	ge: , Standard	BTL 2 BTL 3	Apply

	deviation, the probable error of one reading, the probable error of mean and the		
	range. (13)		
17.	A set of independent 10 measurements were made to determine the weight of a		
	lead shot. The weights in gramme were: 1.570, 1.597, 1.591, 1.562, 1.577, 1.580,		
	1.564, 1.586, 1.550, 1.575.	BTL 5	Evaluate
	Determine the arithmetic mean, average and standard deviation, variance and		
	probable error of one reading. (13)		
	$\mathbf{PART} - \mathbf{C}$		
1.	Two resistors have the following rating: $R_1 = 36\Omega \pm 5\%$ and $R_2 = 75\Omega \pm 5\%$. Deduce		F 1 /
	the limiting error when the resistors are connected in	BIL 2	Evaluate
	1) Series and 11) Parallel. (15)		
2.	The following 10 observations were recorded when measuring a voltage in volts.		F 1 (
	41.7, 42.0, 41.8, 42.0, 42.1, 41.9, 42.5, 42.0, 41.9, 41.8. Evaluate (1) Mean (2)	BIL 2	Evaluate
2	Standard Deviation (3) Probable error (4) Mode. (15)		
5.	hy measuring current, voltage and power. The voltage is 150V on a voltmeter of		
	by measuring current, voltage and power. The voltage is 150 v on a voltimeter of 200V scale. The current is 7A on an empeter of 10A scale. The power is 550W		
	200V scale. The current is /A on an animeter of TOA scale. The power is 550W on a 1KW wattmeter. Ammeter and voltmeter are guaranteed to be accurate within		
	$\pm 0.2\%$ of full scale and wattmeter $\pm 0.5\%$ of full scale	BTI 6	Create
	(1) To what % accuracy, the power factor obtained from the readings can be	DILO	Create
	guaranteed?		
	(ii) Estimate the amount of contribution of error by each instrument for the		
	error obtained above in power factor reading. (15)		
4.	Discuss about the primary and secondary signals in sensor or transducer		
	classification. Give examples of magnetic - electric sensors and chemical –	BTL 6	Create
	electric sensors. (15)		
5.	Explain the "Art of Measurement" and the role of Instrumentation Systems in		F 1 4
	shaping the Measurement processes. (15)	BIL 5	Evaluate

UNIT 2 - MOTION, PROXIMITY AND RANGING SENSORS

Motion Sensors – Potentiometers, Resolver, Encoders – Optical, Magnetic, Inductive, Capacitive, LVDT – RVDT – Synchro – Microsyn, Accelerometer., – GPS, Bluetooth, Range Sensors – RF beacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR).

	PART – A						
Q.No	Questions	BT Level	Competence				
1.	What is meant by Gray encoding? State the advantages of its.	BTL 1	Remember				
2.	Compare features of different motion sensors.	BTL 2	Understand				
3.	Explain the principle of POT.	BTL 2	Understand				
4.	List out applications of the RF beacons.	BTL 1	Remember				
5.	List the different arrangements of POT.	BTL 1	Remember				
6.	Analyze the effects of loading in resistive Potentiometer.	BTL 4	Analyse				
7.	Explain about microsyn.	BTL 2	Understand				
8.	Define the functions of resolver.	BTL 1	Remember				
9.	Identify any three applications of proximity sensors.	BTL 3	Apply				
10.	Define synchros and list the types of synchro systems.	BTL 1	Remember				
11.	Identify the applications of resolver.	BTL 3	Apply				
12.	Compare capacitive and inductive transducers.	BTL 4	Analyse				
13.	A Quartz piezo-electric Crystal having a thickness of 2 mm and voltage						
	sensitivity of 0.055V-m/N is subjected to a pressure of 1.5 M N/m2. Evaluate	BTL 5	Evaluate				
	the voltage output.						
14.	Discuss the modes of operation of piezo-electric crystals.	BTL 6	Create				
15.	Elaborate the applications of inductive transducers.	BTL 6	Create				
16.	Explain the term LIDAR?	BTL 2	Understand				
17.	Explain the importance of the need for accelerometer?	BTL 5	Evaluate				
18.	Define GPS and list the applications.	BTL 1	Remember				
19.	List the types of range sensing.	BTL 4	Analyse				
20.	How to apply the principle of ultrasonic for ranging?	BTL 3	Apply				
21.	What is meant by Magnetostriction?	BTL 2	Understand				
22.	Develop and explain the sensor that is based on skin effect.	BTL 3	Apply				
23.	State how Wiedemann effect is used in torque sensor.	BTL 4	Analyze				
24.	Explain Villari effect and the sensor based on it.	BTL 5	Evaluate				
	PART – B						
1.	Explain the construction and working principle of potentiometer. Evaluate its	BTL 2	Understand				
	application as motion sensor. (13)						
2.	Develop a sensor and explain the principles behind it. (13)	BTL 2	Understand				
3.	(i) Explain the loading effect and the error caused in a POT. (7)	BTL 2	Understand				
_	(ii) Contrast Linearity and sensitivity of resistive Potentiometers. (6)	BTL 4	Analyse				
4.	What is an LVD1? What are the parameters that can be measured by this?	DTI 1	Demonstra				
	Describe with heat diagram and output characteristics the principle of its	BILI	Remember				
5	What is the principle of operation of conscitive accelerometer? With relevant						
э.	diagram list its various applications (13)	BTL 1	Remember				
6	(i) Explain the working of capacitive transducer with neat schematic (7)	BTI 2	Understand				
0.	(i) Explain the working of capacitive transducer with heat schematic. (7) (ii) Consider a non-conducting liquid in a tank and develop level measurement	DIL 2	Understand				
	system of it using a capacitive transducer	BTL 3	Apply				
7	Analyze the construction and working principle of Synchros with the help of a						
/•	neat diagram. (13)	BTL 3	Apply				
8.	Discuss in detail the construction working and applications of RVDT (13)	BTL 6	Create				
9.	Explain the construction working and applications of resolver (13)	BTL 2	Understand				
10.	Discuss the principle of capacitive transducer and explain how it is utilized for	BTL 3	Apply				
			-rr-J				

	motion sensing. (13)		
11.	Interpret the principle of accelerometer with neat sketches. (13)	BTL 5	Evaluate
12.	Define Piezoelectric principle and explain the working of piezoelectric transducer. (13)	BTL 1	Remember
13.	Compare translational and rotary encoders with necessary sketches. (13)	BTL 4	Analyse
14.	(i) What is meant by LIDAR? Explain its various components, functionalities and applications. (7)	BTL 1	Remember
	(ii) What is meant by ultrasonic ranging? (6)	BTL 1	Remember
15.	(i) Analyze the working of GPS as range sensors. (7)	BTL 4	Analyse
	(ii) Analyze the working of Bluetooth range sensors. (6)	BTL 4	Analyse
16.	Explain the working of variable inductance sensors. (13)	BTL 5	Evaluate
17.	State and explain the construction and working principle of Ultrasonic ranging sensor. (13)	BTL 3	Apply
	PART – C		
1.	A linear resistance potentiometer is 50mm long and is uniformly wound with a wire having a resistance of 10000 Ω . Under normal conditions, the slider is at the centre of the potentiometer. Predict the linear displacement when the resistance of the potentiometer as measured by a Wheatstone bridge for the two cases are: (i) 3850 Ω (ii)7560 Ω Test whether the two displacements in the same direction? If it is possible to measure a minimum value of 10 Ω resistance with the above arrangement, choose the resolution of the potentiometer in mm. (15)	BTL 6	Create
2.	A Capacitive transducer uses two quartz diaphragms of area 75mm ² separated by a distance of 3.5mm. A pressure of 900kN/m ² when applied to the top diaphragm produces a deflection of 0.6mm. The capacitance is 370pF when no pressure is applied to the diaphragms. Evaluate the value of capacitance after application of pressure900kN/m ² . (15)	BTL 5	Evaluate
3.	A LVDT output is recorded by a self-balancing potentiometric recorder having its natural frequency of 10 Hz and damping ratio of 0.707. The LVDT is excited by 10V at 50 Hz power supply. Estimate the maximum frequency of the displacement signal that can be recorded with an error of $\pm 2\%$. (15)	BTL 5	Evaluate
4.	Propose a case study on comparison of various ranging methods. (15)	BTL 6	Create
5.	Develop a reflective beacon tracking system and explain the constructional features. (15)	BTL 6	Create

UNIT 3 - FORCE, MAGNETIC AND HEADINGSENSORS

Strain Gauge, Load Cell, Magnetic Sensors –types, principle, requirement and advantages: Magneto resistive – Hall Effect – Current sensor Heading Sensors – Compass, Gyroscope, Inclinometers. PART – A

O No	Questions	BT	Competence
Q.110	Questions	Level	Competence
1.	Define gauge factor of strain gauge.	BTL 1	Remember
2.	Explain the various characteristic features of strain gauge load cell.	BTL 2	Understand
3.	Compare semiconductor strain gauges and metal wire strain gauges.	BTL 2	Understand
4.	Define piezo resistive effect.	BTL 1	Remember
5.	Identify the types of strain gauges.	BTL 3	Apply
6.	A resistive wire strain gauge uses a soft iron wire of small diameter. The gauge		~ .
	factor is +4.2. Neglecting the piezo resistive effects, solve and obtain Poisson'sratio.	BTL 6	Creating
7.	Sketch – how to make use of magnetic field sensor using ΔY - effect.	BTL 3	Apply
8.	Define ΔY - effect in magnetic sensors.	BTL 1	Remember
9.	What is meant by Villari effect?	BTL 1	Remember
10.	Define Magneto resistive effect.	BTL 1	Remember
11.	Infer the terms Matteucci effect, Villari effect and Wiedemann effect.	BTL 4	Analyze
12.	Illustrate the working of compass and state the principle behind it.	BTL 2	Understand
13.	Discuss the principle of current sensor.	BTL 6	Creating
14.	Define Hall effect and justify the applications of it.	BTL 1	Remember
15.	Interpret inclinometer and list the applications of it.	BTL 2	Understand
16.	What is the utilization of Compass? Assess the significance and applications of it.	BTL 3	Apply
17.	Compare different types of magnetic sensors.	BTL 4	Analyze
18.	What is meant by Heading Sensors? List out the types.	BTL 4	Analyze
19.	Asses the advantages of magnetic sensors.	BTL 5	Evaluate
20.	Assess the significance of Gyroscope?	BTL 5	Evaluate
21.	State the basic concept of an electrical resistance strain gauge.	BTL 2	Understand
22.	Assess the Young's Modulus of elasticity of a material.	BTL 3	Apply
23.	Express the longitudinal piezo resis <mark>tance c</mark> oefficient.	BTL 4	Analyze
24.	Infer the phenomenon of magnetostrictive effect.	BTL 5	Evaluate
	PART – B	[]	
1.	(i) How to estimate the equation for gauge factor? (3)	BTL6	Create
	(ii) Discuss the operation of strain gauge and how to make use of it as force sensor. (10)	BTL6	Create
2.	Illustrate about different types of strain gauges with neat sketch. (13)	BTL 2	Understand
3.	(i) Examine the principle of operation of load cell and how it is applied in	BTL 4	Analyze
	(ii) What are the advantages of semiconductor strain gauges? (4)	BTI 1	Remember
4	Define the principle of operation of a magneto resistive transducer with appropriate	DILI	Remember
-10	diagram. What are the various parameters that can be measured by this transducer?	BTL 1	Remember
	(13)		
5.	(i) What is gyroscope? Explain the principle of operation and properties of it with		Understand
	relevant diagrams. (7)	DIL 2	Understand
	(ii) List the factors and parameters of the sensor does the Hall voltage output	BTL 4	Analyze
6	(0) (i) What are the different types of magnetic sensors? On what principles do they		
U.	work? Outline briefly. (6)	BTL 1	Remember
	(ii) What is ΔY - effect? Propose a method in which it is used in practice for		
	magnetic field sensing? What materials are specifically suitable for the	BTL 1	Remember
	purpose? (7)		

7.	Describe with diagrams, the principle of operation of a coaxial type torque sensor. What is an inactive zone in such sensor? Why is it provided? (13)	BTL 1	Remember
8.	What is the basic principle of a Hall device? Show how can it be used as magnetic field sensor? (13)	BTL 1	Remember
9.	(i) Identify and explain the operation of hall effect current sensor. (7)	BTL 3	Apply
	(ii) List out and analyze the various effects governing magnetic sensing. (6)	BTL 4	Analyze
10.	Evaluate the need for magnetic sensors also explain the types, principle,		
	requirement and advantages of magnetic sensors. (13)	BIL 5	Evaluate
11.	(i) Elaborate the features and applications of compass. (5)	BTL 3	Apply
	(ii) Identify and explain the principle of working of Active semi-conductor		A 1
	magnetic sensors. (8)	BIL 3	Арріу
12.	(i) Explain the principle behind Electrolytic spirit level transducer. (6)	BTL 2	Understand
	(ii) Brief the features and applications of inclinometers. (7)	BTL 3	Apply
13.	(i) Define the principle and operation of any one form of gyroscope. (7)	BTL 1	Remember
	(ii) Distinguish Free gyroscope and Single-axis restrained gyro. (6)	BTL 4	Analyze
14.	Explain the working of inclinometers or tilt sensors. (13)	BTL 2	Understand
15.	List the various types of Heading Sensors and explain any one of its types. (13)	BTL 2	Understand
16.	With a neat schematic block diagram explain the construction and working	BTI 3	Apply
	principle of heading sensors. (13)	DILJ	мрргу
17.	Illustrate the various types of current sensors and explain any one of its type. (13)	BTL 5	Evaluate
	PART – C		
1.	(i) Conclude that the gauge factor of a semiconductor strain gauge vary with		
	doping level? Discuss with help of diagrams. (8)	BTL5	Evaluate
	(ii) Describe a piezo resistive type strain gauge sensor appending appropriate		
2	Develop the principle of principal provide principal (7)		
2.	Develop the principle of anisotropic magneto resistive sensors. How is it used in sensing magnetic field? A metallic magnete resistor is placed in magnetic field		
	with its length normandicular to the field. How does the resiston as very with this	BTL6	Create
	field? (15)		
3	(i) How is performance of Hall sensor evaluated? What are the primary and		
5.	secondary sensitivities? (7)		
	(ii) A Hall Effect element used for measuring a magnetic field strength gives an		
	output voltage of 10.5mV. The element is made of silicon and is 2.5mm thick	BTL5	Evaluate
	and carries a current of 4A. The Hall coefficient is $4.1 \times 10^6 \text{Vm/A-wb/m}^2$.		
	Evaluate the magnetic field strength. (8)		
4.	Create a comparison of the performance measures of different heading sensors		
	giving the merits, demerits and applications. (15)	BIL6	Create
5.	In a strain gauge shown in figure the resistances R ₂ and R ₄ are of 150 ohm each.		
	The resistances of strain gauges under unstrained condition are 150 ohm each		
	The resistances of strain gauges under unstrained condition are 150 onin each.		
	The gauge factor is 2.2. Determine the bridge output voltage and bridge sensitivity	BTL6	Create
	The gauge factor is 2.2. Determine the bridge output voltage and bridge sensitivity if the current drawn from the battery under strained condition is of 100 Ma. The	BTL6	Create

UNIT 4 - OPTICAL, PRESSURE AND TEMPERATURE SENSORS Photo conductive cell, photo voltaic, Photo resistive, LDR – Fiber optic sensors – Pressure –Diaphragm, Bellows,

Piezoel	ectric – Tactile sensors, Temperature – IC, Thermistor, RTD, Thermocouple. Aco	ustic Sense	ors – flow and
ievei m	eusurement, Kautation Sensors - Smart Sensors - Fum sensor, MEMS & Nano Se PART _A	nsors, LAS	DER SENSORS.
		BT	
Q.No.	Questions	Level	Competence
1.	Define Dark resistance and list out some materials used for the construction of LDR.	BTL 1	Remember
2.	Estimate the advantages and disadvantages of Thermistor.	BTL 5	Evaluate
3.	Compare on how a thermistor differs from a thermocouple as a temperature sensor?	BTL 2	Understand
4.	What is meant by tactile sensor?	BTL 1	Remember
5.	Define the pin outs and the merits of IC used for temperature measurement.	BTL 1	Remember
6.	Determine the pressure sensitivity of a quartz piezoelectric transducer of thickness 2.5 mm. the voltage sensitivity of quartz is 50x 10 ³ Vm/N.	BTL 5	Evaluate
7.	State advantages of fiber optic sensors and how to make use of it for industrial/non-industrial applications.	BTL 3	Apply
8.	Discuss why the reference junction is needed in thermocouples.	BTL 6	Create
9.	Show how force summing devices help in pressure measurement.	BTL 2	Understand
10.	Define Seebeck effect and Thompson effect and state the significance of them.	BTL 1	Remember
11.	Identify the types of thermocouples and materials used for constructing thermocouples.	BTL 3	Apply
12.	Contrast the characteristics of RTD and Thermistor.	BTL 4	Analyze
13.	List out any two applications that need MEMS sensors.	BTL 1	Remember
14.	List the properties of piezoelectric crystals.	BTL 4	Analyze
15.	What is the principle of Piezoelectric transducer?	BTL 1	Remember
16.	Identify the important features of smart transducer.	BTL 3	Apply
17.	Compare MEMS sensors and Nano Sensors.	BTL 2	Understand
18.	List the advantages of MEMS.	BTL 4	Analyze
<u>19.</u>	Show the block diagram of architecture of smart sensor.	BTL 2	Understand
20.	Discuss the standards available for Smart transducer and its interface.	BTL 6	Create
21.	What is meant by thermocouple and explain its principle.	BIL 2	Understand
22.	State the law of Homogeneous metals.	BIL 3	Apply
<u>23.</u> 24	Compare the law of Homogeneous metals with intermediate metals.	DIL 4	Anaryze
24.	principle of variation of self inductance.	BTL 5	Evaluate
	PART –B		
1.	(i) Discuss the photovoltaic mode of operation of a photo diode with its diagram and volt-ampere characteristics. (7)	BTL 6	Create
	(ii) Show the constructional and functional details of thermocouple with the relevant physical laws and diagrams. (6)	BTL 1	Remember
2.	(i) Explain the working of different types of pressure diaphragms with diagrams. (7)	BTL 2	Understand
	(ii) Discuss the principle of operation of fiber optic sensor with neat diagram. (6)	BTL 6	Create
3.	Brief some primary and secondary transducers involved in the measurement of pressure and explain how pressure is measured. (13)	BTL 2	Understand
4.	 (i) Discuss the typical advantages and applications that need MEMS sensors.(6) (ii) What is meant by thick film and thin film technology? Explain. (7) 	BTL 1	Remember
5.	Define piezoelectric effect. Draw the equivalent circuit of a piezoelectric crystal and derive the transfer function of piezo electric transducer (13)	BTL 1	Remember
6	(i) Discuss any one fibre ontic sensor for displacement measurement (7)		
0.	(ii) What is MEMS technology? Explain different manufacturing. (6)	BTL 1	Remember

7.	Interpret the statement optical fibre is used for stress sensing. Explain about micro bend sensor and discuss its operation. (13)	BTL 5	Evaluate
8.	Identify the principle behind the use of LASER in flow measurement and explain how it is utilized in LASER Doppler Velocimeter. (13)	BTL 3	Apply
9.	Define RTD and explain how it is used to measure temperature. (13)	BTL 1	Remember
10.	Analyze the construction, principle, working of thermistor and its resistance temperature characteristics. (13)	BTL 4	Analyze
11.	Explain the principle, construction, working and applications of ultrasonic Flow meters with neat sketches. (13)	BTL 2	Understand
12.	With a neat block diagram develop the construction and operation of a smart transducer and outline its interface standard. (13)	BTL 3	Apply
13.	Analyze the construction, principle, working and features of Nano –sensors. (13)	BTL 4	Analyze
14.	Explain the construction and working principle of Ultrasonic Liquid Level	BTL 2	Understand
	Measurement System. (13)	BTL 1	Remember
15.	(i) Explain the working of different types of bellows with diagrams. (6)	BTL 2	Understand
	(ii) Show the constructional and functional details of photo conductive cell with the relevant laws and diagrams. (7)	BTL 2	Understand
16.	Explain the construction and working principle of Electromagnetic Flow Meters with a neat sketch. (13)	BTL 3	Apply
17.	Briefly illustrate the properties possessed by Intelligent field devices and Justify the say why they are called smart sensors. (13)	BTL 5	Evaluate
	PART – C		
1.	Consider a fibre optic probe and design a displacement sensor for transducing displacement in to equivalent electric signal by making necessary assumptions and plot the characteristics curve of the designed sensor. (15)	BTL 6	Create
2.	A thermistor has a resistance of 3980Ω at the ice point (0°C) and 794Ω at 50°C. The resistance temperature relationship is given by $RT = a R_0 exp$ (b/T). Evaluate the range of resistance to be measured in case the temperature varies from 40°C to 100°C. (15)	BTL 5	Evaluate
3.	Design a temperature monitoring system for pasteurization processing for milk and discuss the features of the system. (15)	BTL 6	Create
4.	Assess the different standards involved in Smart Transducer interface, and deduce the need for standardization. (15)	BTL 5	Evaluate
5.	Determine the thermoelectric sensitivity and emf developed in a thermocouple made of copper and constantan for a temperature difference of 25° C between its junctions. Given that thermo-electric emfs of copper and constantan against platinum are 7.4 and -34.4 microV per $^{\circ}$ C temperature difference. (15)	BTL 5	Evaluate

UNIT 5 - SIGNAL CONDITIONING AND DAQ SYSTEMS Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances, Manufacturing, Environmental monitoring.

PART – A					
Q. No	Questions	BT Level	Competence		
1.	Contrast the types of amplifiers that can be used with sensors.	BTL 4	Analyze		
2.	Assess the need of amplifiers in sensing applications.	BTL 5	Evaluate		
3.	What is meant by aliasing?	BTL 1	Remember		
4.	Organize the types and explain the need for filters.	BTL 3	Apply		
5.	Distinguish the significance of Instrumentation amplifier with conventional amplifiers.	BTL 4	Analyze		
6.	Estimate the aperture time required to digitize a 500 Hz signal to 10 bits resolution.	BTL 5	Evaluate		
7.	Compare analog filters and digital filters.	BTL 2	Understand		
8.	Discuss the function of sample and hold circuits.	BTL 6	Create		
9.	Define PZT sensor. What for is it used?	BTL 1	Remember		
10.	Demonstrate the application of static pressure sensors in aerospace applications.	BTL 2	Understand		
11.	What are the sensors used and application areas in Home appliance systems?	BTL 1	Remember		
12.	Illustrate the components of data acquisition system.	BTL 2	Understand		
13.	Examine the need for sensors in automobiles.	BTL 4	Analyze		
14.	Show the major areas where sensing is required in automobile systems.	BTL 1	Remember		
15.	Identify the sensors involved in on-board automobile.	BTL 3	Apply		
16.	Discuss the importance of position sensing in automobiles.	BTL 6	Create		
17.	Compare sensors used for environmental monitoring.	BTL 2	Understand		
18.	Define the term data logging evaluate the benefits of data logging.	BTL 1	Remember		
19.	Define 'Ecological studies of Air'. List various parameters involved.	BTL 1	Remember		
20.	Identify the sensors used in production processes.	BTL 3	Apply		
21.	What is meant by data acquisition system?	BTL 2	Understand		
22.	Draw and label the components of Sample and Hold circuit.	BTL 3	Apply		
23.	List the sensors used for Home appliances.	BTL 4	Analyze		
24.	Draw the block diagram of digital data acquisition system	BTL 5	Evaluate		
	PART – B	1			
1.	What is meant by signal conditioning and why it is required? Develop the block diagram of a DC signal conditioning system and explain the functions of each block. (13)	BTL 3	Apply		
2.	Elaborate an Instrumentation amplifier with neat diagram and estimate its gain. (13)	BTL 6	Create		
3.	(i) Draw and explain sample and hold circuit.(8)(ii) What is signal conditioning? And why is it required?(5)	BTL 1	Remember		
4.	Define Q factor and discuss the working of different filter categories. (13)	BTL 1	Remember		
5.	(i) Why ADC and DAC are needed?(3)(ii) Explain any one type of ADC with neat diagram(10)	BTL 1	Remember		
6.	Identify the reason for using 4-20mA current loop in the 2-wire transmitter and explain the working of 4-20mA current loop converter. (13)	BTL 3	Apply		
7.	Summarize the function of Single Channel Data Acquisition System with block diagram. (13)	BTL 2	Understand		
8.	Analyze the importance of Data logging and explain the components of a Data logger with neat diagram. (13)	BTL 4	Analyze		
9.	 (i) Analyze the role of static pressure sensors in aerospace applications. (6) (ii) Analyze the sensing of direction of Air flow in aircrafts. (7) 	BTL 4	Analyze		

10.	 (i) Draw the sketch of a pyro electric IR sensor as used in microwave oven. What is the material used for developing this sensor? (7) (ii) How water level is measured in washing machines? Sketch a sensor and explain its operation. (6) 	BTL 1	Remember
11.	Assess three types of Oxygen sensors used in automobiles by comparing their advantages and operations with help of V-I characteristics. (13)	BTL 5	Evaluate
12.	Illustrate the importance of Environmental monitoring and explain the sensors involved in that. (13)	BTL 2	Understand
13.	 (i) Define Eco Hazard and explain how it affects living being with help of a chart. (7) (ii) Brief about sensing of environmental pollution. (6) 	BTL 2	Understand
14.	Analyze the functions of various sensors in an automated manufacturing process. (13)	BTL 4	Analyze
15.	With a neat block diagram explain the construction and working principle of General Data Acquisition System.(13)	BTL 2	Understand
16.	Briefly explain the objectives of Data Acquisition System. (13)	BTL 3	Apply
17.	Summarize the function of Multi-Channel Data Acquisition System with block diagram. (13)	BTL 5	Evaluate
	PART – C		
1.	Evaluate the importance, performance and applications of various sensors in Automobile industries. (15)	BTL 5	Evaluate
2.	Compose the case study on Medical diagnostic sensors giving the features and advantages. (15)	BTL 6	Create
3.	 (i) A simple RC low-Pass filter is to be designed that the output voltage be attenuated by 3db at 50Hz. Estimate the time constant and suitable values of R and C. (ii) A band pass filter consists of two RC networks connected in cascade. The Low pass Filter consists of a resistor R₁=10 kΩ and C₁=100pF and the high pass Filter consists of a resistor R₂=1MΩ and C₂=0.01µF.Solve the values of the lower and upper cutoff frequencies and the pass band gain(7) 	BTL 6	Create
4.	Evaluate the applications of various sensors in aerospace applications and discuss the technique of computation of air speed on aircraft by measuring the static pressure, total pressure and temperature. (15)	BTL 5	Evaluate
5.	Evaluate the importance, performance and applications of various sensors in Aerospace and Manufacturing industries. (15)	BTL 5	Evaluate