SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

QUESTION BANK

VII SEMESTER

1907701-COMPUTER CONTROL OF PROCESSES

Regulation - 2019

Academic Year 2022 – 23 (ODD SEMESTER)

Prepared by

Dr. K. Ayyar, Associate Professor/EIE

SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)

Department of Electronics and Instrumentation Engineering

SUBJECT: 1907701-COMPUTER CONTROL OF PROCESSES

SEM / YEAR: VII / IV

UNIT I - DISCRETE STATE-VARIABLE TECHNIQUE SYLLABUS

State equation of discrete data system with sample and hold – State transition equation – Methods of computing the state transition matrix – Decomposition of discrete data transfer functions – State diagrams of discrete data systems – System with zero-order hold – Controllability and observability of linear time invariant discrete data system–Stability tests of discrete-data system.

discrete	-data system. PART –A		
Q.No.	Questions	BT Level	Compotonoo
	_		Competence
1.	Define state.	BTL-1	Remember
2.	Define state variable.	BTL-1	Remember
3.	What is state space Analysis?	BTL-1	Remember
4.	Write the advantages of state space Analysis?	BTL-1	Remember
5.	Distinguish between discrete time systems and continuous time systems.	BTL-4	Analyze
6.	Explain the term sampler and hold circuit?	BTL-2	Understand
7.	Write the drawbacks of practical Sample/Hold circuit?	BTL-1	Remember
8.	State (Shannon's) sampling theorem	BTL-2	Understand
9.	How is the state model of the multivariable system represented?	BTL-4	Analyze
10.	Define state transition matrix.	BTL-1	Remember
11.	What is state transition matrix of discrete time system?	BTL-1	Remember
12.	Write the properties of the state transition matrix of discrete time system?	BTL-1	Remember
13.	What are the different methods available for computing A^k ?	BTL-4	Analyze
14.	Define state diagram.	BTL-1	Remember
15.	How the state diagram of the system is represented?	BTL-2	Understand
16.	Write the fundamental elements are used to construct the state diagram.	BTL-1	Remember
17.	What is zero-order hold?	BTL-1	Remember
18.	Define complete state controllability.	BTL-1	Remember
19.	Write the features of controllability?	BTL-1	Remember
20.	Definition of observability.	BTL-1	Remember
21.	Write the features of observability?	BTL-1	Remember
22.	What are the two methods are used to find controllability and observability?	BTL-4	Analyze
23.	Write the types of stability analysis of discrete-data system.	BTL-1	Remember
24.	What are the necessary and sufficient conditions to be satisfied for the stability of sampled data control systems using Jury's stability test.	BTL-4	Analyze

	PART – B		
1	A discrete time system has the transfer function	BTL-5	Evaluate
	$\frac{Y(z)}{U(z)} = \frac{6z^3 - 15z^2 + 7z + 5}{(z-2)^2(z+1)}$. Determine the state model of the		
	$U(z)$ $(z-2)^2(z+1)$		
	system in		
	(i) Phase variable form. (6)		
	(ii) Jordon canonical form. (7)		
2	A discrete time system has the transfer function.	BTL-5	Evaluate
	$\frac{Y(z)}{U(z)} = \frac{3z^2 + 2z + 1}{z^2 - 3z + 2}$		
	$U(z) = z^2 - 3z + 2$		
	Determine the state model of the system in		
	(i) Phase variable form. (6)		
	(ii) Jordon canonical form. (7)		
3	Write the state equations and output equations of the following		
	difference equation, and draw the state model of the system.	BTL-1	Remember
	y(k+3)+5 y(k+2)+3y(k+1)+2y(k) = u(k). (13)		
4	Consider that a digital system is described by the difference equation.	BTL-5	Evaluate
	y(k+2) + 2y(k+1) + 3y(k) = 2u(k). Determine the state model, and		
	write the state & output equations. (13)		
5	A discrete time system is described by the difference equation	BTL-5	Evaluate
3	7	DIL-3	Evaluate
	y(k+2)+5y(k+1)+4y(k) = 5u(k). $y(0) = y(1)=0$; T=1 sec		
	(i) Determine a state model in canonical form. (7)		
	(ii) Find the state transition matrix. (6)		
6	Find the state transition matrix for the system matrix	BTL-3	Apply
	$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}. $ (13)		
7	The system matrix A of a discrete time system is given by	BTL-3	Apply
_	$A = \begin{bmatrix} 0 & 1 \\ -4 & -5 \end{bmatrix}$. Compute the state transition matrix e^{At} using	2120	PP-J
	- 1 3-		
	Cayley- Hamilton theorem. (13)	DEL C	
8	Derive the state equation for the system shown below in which	BTL-6	Create
	x_{1}, x_{2} and x_{3} constitute the state vectors. Examine whether the		
	system is completely controllable and observable. (13)		
	$U(s)$ $+$ $X_2(s)$ $+$ 3 $2(s+2)$		
	x_1 (s)		
	<u> </u>		
9	(i) Sketch the block diagram of a typical sampled data	BTL-3	Apply
	control system and explain the function performed by		
	each block.(8)		

10	(i)	Test the controllability of the following system. (5) $ \begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} -2 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k), $ $ y(k) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}. $ Determine the state controllability and observability for the following system. (6) $ \begin{bmatrix} x_1(k+1) \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(k) \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} $	BTL-4 BTL-5	Analyze Evaluate
		$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & - \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(k),$ $y(k) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}.$ Determine the stability of the second data control systems.	DTI 5	Fredricks
	(ii)	Determine the stability of the sampled data control systems represented by the following characteristic equation $\Delta(Z) = Z^3 - 1.3Z^2 - 0.08Z + 0.24 = 0 . \textbf{(7)}$	BTL-5	Evaluate
11	follo	rmine the state controllability and observability of the wing system. (13) $ \begin{aligned} k+1) \\ k+1) \\ k+1) \end{aligned} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & -3 & -2 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(k) \\ y(k) = \begin{bmatrix} 3 & 4 & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{bmatrix}. $	BTL-5	Evaluate
12	(i)	Determine the state model of the discrete time system represented by the block diagram. (6) $U(k) \xrightarrow{x_1(k+1)} \xrightarrow{Z-1} \xrightarrow{x_2(k)} \xrightarrow{x_3(k+1)} \xrightarrow{x_3(k+1)} \xrightarrow{x_3(k)} x$	BTL-5	Evaluate
	(ii)	Determine the stability of the sampled data control system whose open loop pulse transfer function is given by $G(Z) = \frac{z(z-1)}{(5z+1)(5z-1)}.$ (7)	BTL-5	Evaluate

13	(i)	Derive the transfer function of zero-order Hold and comment	BTL-6	Create
		on selection of sampling period. (8)		
	(ii)	Give the state space representation of Discrete Data System.(5)		
14	Expl	ain in detail about Decomposition of discrete data transfer	BTL-2	Understand
	func	tions. (13)	DIL-2	Understand
15	Chec	k the stability of the sampled data control system	BTL-4	Analyze
	repre	esented by the following characteristic equation.		
	(i)	$6Z^2 - 2z + 1 = 0. (6)$		
	(ii)	$Z^3 - 1.3Z^2 - 0.08z + 0.24 = 0.$ (7)		
16	Chec	k the stability of the sampled data control system	BTL-4	Analyze
	repre	esented by the following characteristic equations using		
	bilin	ear transformation. (13)		
	(i)	$Z^3 - 0.2Z^2 - 0.25z + 0.05$ (6)		
	(ii)	$2Z^4 + 7Z^3 + 10Z^2 + 4z + 1 = 0 (7)$		
17	(i)	Draw the block diagram of the discrete time system described	BTL-2	Understand
		by the state model. (7)		
		$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \\ x_3(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 6 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u(k)$		
		$y(k) = \begin{bmatrix} 1 & 3 & 6 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{bmatrix} + 5u(k).$		
	(ii)	Give the Block diagram representation and Signal flow graph representation of discrete time system using state diagram. (6)		
		PART – C		
1.		rmine the STM for the system having system matrix of $3x3$ on block with eigenvalues λ_1 . (15)	BTL-5	Evaluate
2.	<i>y</i> (<i>k</i> +	crete time system is described by the difference equation. 4) + 2y(k+2) - y(k+1) + y(k) = 5u(k). Write the state equation at equation and draw the state model of the system. (15)	BTL-3	Apply
3.	The 1	matrix $A = \begin{bmatrix} 0 & 1 \\ -4 & -5 \end{bmatrix}$, Determine A^2, A^3, A^4 and A^{-1} using the	BTL-5	Evaluate
4.	(i)	cy- Hamilton technique. (15) Check whether the discrete data system represented by the	BTL-4	Analyze
7.		characteristic polynomial $p(z) = 2z^4 + 7z^3 + 10z^2 + 4z + 1$ is stable or not. (7)	D1L-4	Anaiyze

	(ii)	Consider the following characteristic equation of a discrete data system. $\Delta(z) = z^4 - 1.2z^3 + 0.22z^2 + 0.066z - 0.008 = 0$. Check whether the system is stable or not. (8)	BTL-2	Understand
5.	belov	whine the controllability and observability of the systems given $ \begin{aligned} (15) \\ (k+1) \\ ($	BTL-2	Understand
		$\lfloor x_3(k) \rfloor$		

UNIT II - SYSTEM IDENTIFICATION

SYLLABUS

Identification of Non Parametric Input-Output Models:-Transient analysis—Frequency analysis—Correlation analysis—Spectral analysis—Identification of Parametric Input-Output Models:-Least Squares Method—Recursive Least Square Method.

	PART - A			
Q.No.	Questions	BT Level	Competence	
1.	What is model?	BTL-1	Remember	
2.	What are the advantages of model?	BTL-4	Analyze	
3.	What is mathematical modeling?	BTL-1	Remember	
4.	What are the different approaches to modeling?	BTL-4	Analyze	
5.	What is empirical model?	BTL-2	Understand	
6.	Discuss briefly system identification.	BTL-1	Remember	
7.	List the non parametric methods of system identification.	BTL-1	Remember	
8.	Differentiate parametric and non parametric method of	BTL-3	Apply	
	system identification.			
9.	Write the advantages of transient analysis method.	BTL-3	Apply	
10.	Examine the drawbacks of transient response analysis.	BTL-4	Analyze	
11.	What is meant by frequency analysis?	BTL-1	Remember	
12.	Briefly explain the first order system parameter estimation using impulse response method.	BTL-4	Analyze	
13.	When correlation analysis is required?	BTL-6	Create	
14.	What is spectral analysis?	BTL-1	Remember	
15.	Define parametric method of system identification.	BTL-1	Remember	
16.	Write the requirements of a parameter estimation problem.	BTL-1	Remember	
17.	Define least squares estimation method.	BTL-1	Remember	
18.	What is the principle of least squares in an estimator? Give	BTL-1	Remember	
	the expression for penalty function J.			
19.	What are the advantages of LS method?	BTL-4	Analyze	
20.	What are the limitations of LS method?	BTL-4	Analyze	

21.	D	efine recursive identification method.	BTL-1	Remember
22.		That are the advantages of recursive identification method?	BTL-4	Analyze
23.	W	Trite the recursive least square algorithm which uses alman filter as parameter estimator.	BTL-1	Remember
24.	W	rite the features of recursive identification method.	BTL-1	Remember
		PART – B		
1.	Wha	at are the properties of a Mathematical model? (13)	BTL-4	Analyze
2.	Def	ine System identification? Explain its procedure. (13)	BTL-3	Apply
3.	mod	y we use Simulation models? Explain any two prediction lels. (13)	BTL-5	Evaluate
4.	Exp	at are various model representation for an LTI system? lain. (13)	BTL-4	Analyze
5.	algo	cribe any two identification methods with the help of the prithm used. (13)	BTL-3	Apply
6.	(i)	Explain the identifying First-Order-Dead-Time (FODT) model. (6)	BTL-2	Understand
	(ii)	Explain the identifying second order model. (7)	BTL-2	Understand
7.	(i)	Describe the frequency analysis method of system parameter estimation. (8)	BTL-2	Understand
	(ii)	Briefly describe the improved frequency analysis. (5)	BTL-2	Understand
8.	(i)	How impulse response identification using step response is is done? (8)	BTL-4	Analyze
	(ii)	Explain the procedure involved. (5)	BTL-2	Understand
9.		cuss a detailed account on correlation analysis method of em identification. (13)	BTL-2	Understand
10.		cuss a detailed account on Spectral analysis method of em identification. (13)	BTL-2	Understand
11.		h an example for each, explain any one parametric and parametric methods of system identification. (13)	BTL-2	Understand
12.	(i)	Convert the following first order linear discrete model in to linear regression model. $Y(t) + ay(t-1) = b u(t-1)$. (5) Find the least square error for a given truncated weighting function model,	BTL-3	Apply
		$Y(t) = H_0 u(t) + h_1 u(t-1) + + h_{m-1} u(t-M+1). $ (8)		
13.	1	ive and explain the steps of the least square algorithm. (13)	BTL-6	Create
14.	devi	lain in detail in what way spectral densities influence the ation of estimate from true value. (13)	BTL-2	Understand
15.		ive and explain the steps of the Recursive least square mation method. (13)	BTL-6	Create
16.	(i)	List and explain the least square algorithm for real time identification which uses a forgetting factor λ . (8)	BTL-2	Understand
	(ii)	Give and discuss the properties of LSE. (5)	BTL-2	Understand

17.	(i)	Write the general features of recursive identification	BTL-6	Create
		methods. (6)		
	(ii)	Derive the recursive least square algorithm which uses		
		Kalman filter as parameter estimator. (7)		
		PART – C		
1.	(i)	What is meant by Linear regression? How such model	BTL-2	Understand
		predicts a moving object. (15)		
2.	(i)	Design the second order system impulse response. (12)	BTL-6	Create
	(ii)	Discuss the limitations of transient analysis. (3)	BTL-2	Understand
3.	Exp	lain Non linear Least-square Estimation and its iterative	BTL-2	Understand
	solu	tion. (13)	DIL-2	Unuerstand
4.	Desi	gn Transfer Function and Equation error model in Dynamic	BTL-2	Understand
	syste	ems. 15)		
5.	Deri	ve the expression for Finite Impulse Response Model (FIR	BTL-6	Create
	mod	el). (15)	DIL-0	Citate

UNIT III - DIGITAL CONTROLLER DESIGN

SYLLABUS

Review of z-transform – Modified of z-transform – Pulse transfer function – Digital PID controller – Dead-beat controller and Dahlin's controller – IMC - Smith Predictor.

PART – A

П

Q. No.	Questions	BT Level	Competence
1.	Define Z-transform.	BTL-1	Remember
2.	State the final value and initial value theorem with regard to z-transform.	BTL-2	Understand
3.	What is region of convergence (ROC)?	BTL-2	Understand
4.	Define one sided and two sided Z transform?	BTL-1	Remember
5.	Define z-transform of unit step signal.	BTL-1	Remember
6.	What are the different methods available for inverse z-transform?	BTL-4	Analyze
7.	Define modified Z-transform.	BTL-1	Remember
8.	Write the application of modified z-transform?	BTL-1	Remember
9.	Find the modified Z transform of a unit step function u(t).	BTL-5	Evaluate
10.	Find the modified Z-transform of e ^{-at} .	BTL-3	Apply
11.	Find the modified Z-transform of $\frac{a}{s(s+a)}$.	BTL-3	Apply
12.	What is pulse transfer function?	BTL-3	Apply
13.	What is the equivalent representation of pulse sampler with ZOH?	BTL-1	Remember
14.	When the z-transfer function of the system can be directly obtained from s-domain transfer function?	BTL-3	Apply
15.	Give the steps involved in determining the pulse transfer function of $G(z)$ from $G(s)$.	BTL-1	Remember

16		How the s-plane is mapped into z-plane? Or What is the	BTL-4	Analyze
17.		relation between s and z domain? Draw the basic structure of a digital control system.	BTL-6	Create
18.		What are the features of digital PID controller?		
19.		What are the limitations of dead beat algorithm?	BTL-4	Analyze
20.		List the advantages and disadvantages of Dahlin's	BTL-4 BTL-5	Analyze Evaluate
20	•	controller.	DIL-3	Evaluate
21.	•	State closed loop specification for Dahlin's control algorithm.	BTL-4	Analyze
22.	•	What is IMC in control system?	BTL-1	Remember
23.	•	What is Smith Predictor Algorithm?	BTL-1	Remember
24	•	How does a Smith Predictor work?	BTL-4	Analyze
		PART – B		
1.	(i)	Write the properties of one sided Z – transform. (8)		
	(ii)	Determine the z-tansform and their ROC of the following discrete sequence $f(k) = \{3,2,5,7\}$. (5)	g BTL-5	Evaluate
2.	Det	termine the z-transform of the following discrete sequences.	BTL-5	Evaluate
		(i) $f(k) = u(k)$		
		(ii) $f(k) = (1/2)^k u(k)$		
		(iii) $f(k) = \alpha^k u(-k-1)$		
3.	Fin	d the one sided z-transform of the discrete sequence	s BTL-3	Apply
		erated by mathematically sampling the following continuou		11 3
	tim	e function,		
		(i) $e^{-at}\cos\omega t$ (7)		
		(ii) $e^{-at} \sin \omega t$ (6)		
4.	Det	termine the inverse z-transform of the following function.	BTL-5	Evaluate
	(i)	$F(z) = \frac{z^2}{z^2 - z + 0.5}.$ (6) $F(z) = \frac{1 + z^{-1}}{1 + z^{-1} + 0.5z^{-2}}.$ (7)		
		$F(z) = \frac{1}{z^2 - z + 0.5}.$ (6)		
	(ii)	$1+z^{-1}$		
		$F(z) = \frac{1}{1 + z^{-1} + 0.5z^{-2}}$. (7)		
5.		1	BTL-5	Evaluate
	Det	termine the inverse z-transform of $F(z) = \frac{1}{1 + \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}}$.		
		$1 + \frac{1}{2}z^{-1} + \frac{1}{2}z^{-2}$		
	Wh	en (i) ROC : $IZI > 1.0$ (7)		
		(ii) ROC : $IZI < 0.5$ (6)		
6	TL	input output relation of a complet data eventure in describ-	d BTL-5	Evaluate
6.		e input-output relation of a sampled data system is describe	u DIL-3	Lvaiuate
	by the equation $c(k+2)+3c(k+1)+4c(k)=r(k+1)-r(k)$.			
		Determine the z-transform function. (5) Also obtain the weighting sequence of the system. (8)		
	` ′		P	
7.		ve the difference equation $c(k+2)+3c(k+1)+2c(k)=u(k)$	BTL-3	Apply
	Giv	ren that $c(0)=1$; $c(1)=-3$; $c(k)=0$ for $k < 0$. (13)		

8.	Find $C(z)/R(z)$ for the following closed loop sampled data control systems. Assume all the samplers to be of impulse type. (13) $r(t)$ $e(t)$ $e($	BTL-3	Apply
9.	 (i) Consider a system described by the difference equation C(K+1)+2C(K)=r(K); C(0)=0. Obtain the system's impulse response. (6) (ii) For the sampled data control system, discover the output C(K) for r(t) = unit step (7) 	BTL-3	Apply
10.	A digital control system is shown in Figure. R(s) T = 0.5 When the controller gain K is unity and the sampling time is 0.5 seconds, determine (i) The open-loop pulse transfer function (ii) The closed loop pulse transfer function (iii) The difference equation for the discrete time response(5)	BTL-5	Evaluate
11.	(i) Design the dead beat controller algorithm for a first order process $G_p(s) = \frac{10}{0.5s+1}$. (6) (ii) Design a digital deadbeat control algorithm for	BTL-6	Create
	$G(s) = \frac{10e^{-2s}}{0.2s+1}; T = 1 \text{ sec. Then the process dead time}$ $T_{d}=2T. \qquad (7)$	BTL-6	Create
12.	Design a deadbeat controller for the following second order process. $G_p(s) = \frac{1}{(s+1)(5s+1)}$. Use a unit step change in the set point and assume a ZOH. (13)	BTL-6	Create
13.	Consider a process with the following transfer functions, $G_p(s) = \frac{e^{-1.6s}}{s+3}$, T = 1 sec. Design a deadbeat controller. (13)	BTL-6	Create
14.	Design a Dahlin's controller algorithm for $G_p(s) = \frac{e^{-1.4s}}{3.34s + 1}$, $T = 1$ sec. (13)	BTL-6	Create

15.	Design a Dahlin's algorithm for the process of		
	$G_p(s) = \frac{1}{(s+1)(5s+1)}$, T = 1 sec. (13)	BTL-6	Create
16.	Sketch the block diagram for IMC and Explain the IMC design	BTL-3	Apply
	methods to design of controllers.(13)		
17.	Describe the simplified Smith Predictor scheme with the steps.(13)	BTL-6	Create
	PART – C	<u> </u>	
1.	Design the transfer function model in Z domain by solving the		
	difference equation		
	c(k+3) + 4.5c(k+2) + 5c(k+1) + 1.5c(k) = u(k).	BTL-6	Create
	Given that $c(0) = 0$; $c(1) = 0$; $c(2) = 2$; $c(k) = 0$; $k < 0$. (15)		
2.	For the control system shown in Fig., determine the response	BTL-4	Analyze
	between sampling for the case $m = 0.4$, by use of the modified		
	z- transform. Assume $T = 1 \sec_{1} K = 2$. (15)		
	$R=u(t)$ $K=2$ $\frac{1}{\tau s+1}$ C $\frac{1-e^{-ST}}{Ts+1}$		
3.	Find $C(z)/R(z)$ for the following closed loop sampled data control systems. Assume all the samplers to be of impulse type. (15) $ \begin{array}{c cccc} & c(t) \\ \hline & b(t) \\ \hline & b(t)$	BTL-3	Apply
4.	Design a smith predictor algorithm for computer control of a first order process having dead time whose transfer function is given by $G_p(s) = \frac{K_p e^{-\theta_d s}}{\varpi + 1}$. (15)	BTL-6	Create
5.	Design a Dahlin's controller algorithm for $G_p(s) = \frac{e^{-0.8s}}{0.6s+1}$, $T = 0.4$ sec. (15)	BTL-6	Create

UNIT IV - MULTI-LOOP REGULATORY CONTROL

SYLLABUS

Multi-loop Control - Introduction - Process Interaction - Pairing of Inputs and Outputs - The Relative Gain Array (RGA) - Properties and Application of RGA - Multi-loop PID Controller - Biggest Log Modulus Tuning Method - De-coupler.

	PART-A			
Q. No		BT Level	Competence	
1.	Define Multi-loop Control.	BTL-1	Remember	
2.	Compare multiloop with multivariable PID controller.	BTL-2	Understand	
3.	What is process interaction?	BTL-1	Remember	
4.	What are the problems arising from interactions?	BTL-4	Analyze	
5.	What are the methods used in selecting manipulate variables & controlled variables?	B1L-4	Analyze	
6.	How many relative gains do you compute in order t specify complete relative gain array of a process?		Analyze	
7.	What are the degrees of freedom with respect to multiloo control?		Analyze	
8.	What is the result of dynamic interaction?	BTL-1	Remember	
9.	What is a Pairing of inputs and outputs? How it is represented?	s BTL-3	Apply	
10.	What are the criteria to select the best loop configuration?	BTL-4	Analyze	
11.	What is a MIMO system? Explain with an example.	BTL-1	Remember	
12.	What is RGA?	BTL-1	Remember	
13.	Examine the applications of RGA.	BTL-1	Remember	
14.	Write any two important properties of RGA.	BTL-1	Remember	
15.	What are the implications when the RGA element $\lambda_{ij} =$ and $\lambda_{ij} = 1$?	DIL-4	Analyze	
16.	Classify the different types of Tuning of Multi-loop PII control systems.	BTL-6	Create	
17.	Define Biggest Log-modulus tuning (BLT) method.	BTL-2	Understand	
18.	Compose the mathematical representation of closed –Loo stability.	p BTL-6	Create	
19.	What is failure sensitivity?	BTL-1	Remember	
20.	Illustrate De-tuning method.	BTL-4	Analyze	
21.	What is decoupling?	BTL-1	Remember	
22.	What is static decoupling?	BTL-1	Remember	
23.	What is partial decoupling?	BTL-1	Remember	
24.	What is the function of a decoupler?	BTL-1	Remember	
	PART – B	1		
1.	Derive and explain the nature of interaction between tw control loops when a loop is open and another is closed an vice versa. (13)		Create	
2.	Derive and explain how to obtain process interaction. (13)	BTL-6	Create	
3.	(i) Give remarks on nature of interaction between tw control loops. (6)		Remember	
Ī	(ii) Give the properties and applications of RGA. (7)	BTL-1	Remember	

4.	(i)	Summarize the possible pairing rules for selection of input-output variables. (6)	BTL-1	Remember
	(ii)	Find the loops using the Relative Gain Array. Consider a process with the following input output relationships. $y_1 = \frac{1}{s+1} m_1(s) + \frac{1}{(0.1s+1)} m_2(s)$	BTL-3	Apply
		$y_2 = \frac{-0.2}{0.5s+1} m_1(s) + \frac{0.8}{(s+1)} m_2(s)$. (7)		
5.	Cons matri	ider the following RGA for a process with following ces.	BTL-3	Apply
	(a)	$[\lambda] = \begin{bmatrix} 1 & 1 & -1 \\ 3 & 4 & 2 \\ -3 & 4 & 0 \end{bmatrix}$	BTL-3	Apply
	(b)	$\mathbf{\Lambda} = \begin{bmatrix} u_1 & u_2 & u_3 & u_4 \\ y_1 & 0.931 & 0.150 & 0.080 & -0.164 \\ -0.011 & -0.429 & 0.286 & 1.154 \\ -0.135 & 3.314 & -0.270 & -1.910 \\ 0.215 & -2.030 & 0.900 & 1.919 \end{bmatrix}$		
		would you choose input-output pairing for the above ess? (6+7)		
6.	Decide with scale	de a suitable multi-loop control strategy for a process the following steady-state gain matrix which has been d by dividing the process variables by their maximum es. (13) $ \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 0.48 & 0.90 & -0.006 \\ 0.52 & 0.95 & 0.008 \\ 0.90 & -0.95 & 0.020 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} $	BTL-5	Evaluate
7.		ribe the control operation of a flash drum. (13)	BTL-1	Remember
8.		e in detail about RGA and selection of loops. (13)	BTL-1	Remember
9.	(i) (ii)	Explain the strategies for reducing control loop interactions. (6) Illustrate the methods in Tuning of Multi-loop PID Controllers with examples. (7)	BTL-2	Understand
10.	How	is RGA useful for determination of variable pairing? (13)	BTL-4	Analyze
11.	(i)	Consider the following process with three inputs and three outputs. $y_1 = \frac{1}{s+1} m_1(s) + \frac{2}{(s+2)(s+3)} m_2(s) - \frac{0.1}{3s+1} m_3(s)$ $y_2 = \frac{5}{s^2 + 2s + 1} m_2(s) + \frac{1}{(s+1)} m_3(s)$ $y_3 = \frac{10}{5s+1} m_1(s) + \frac{7}{(4s+1)(0.1s+1)} m_2(s) + \frac{15}{(s+1)(s+5)} m_3(s)$	BTL-2	Understand
		Using Bristol's relative gain array, select the control loops with minimum steady state interaction. (6)		

	(ii)	Select the control loops with minimum steady state interaction for the following system with two outputs and three inputs, (7)	BTL-4	Analyze
		$y_1 = \frac{3}{2s+1} m_1(s) + \frac{0.5}{(s+1)(s+3)} m_2(s) + \frac{1}{s^2+3s+2} m_3(s)$		
		$y_2 = -10 \text{ m}_1(s) + \frac{2}{(s+1)} \text{m}_2(s) + \frac{4}{(s+1)(3s+1)} \text{m}_3(s)$		
12.	Expla	in the Biggest Log Modulus tuning method for	BTL-2	Understand
	(i)	Multiloop. (10)		
	(ii)	Single loop. (3)		
13.	-	in how to design decoupler for two input two output	BTL-2	Understand
	-	sses. (13)		
14.	(i)	What is decoupling? Explain the types of decoupling.	BTL-2	Understand
	(::)	(10)		
	(ii)	Comment on the Dynamic Considerations while calculating RGA. (3)		
15.	What	is RGA? Explain with examples. (13)	DTI 2	Undougtand
16.		nerate on the design of non-interacting control loops. (13)	BTL-2 BTL-6	Understand Create
17.		re RGA for three input- three output systems. (13)	BTL-6	Create
		SRM m		
1.	(;)	PART-C	Γ	1
1.	(i)	Explain the significant differences between partial decoupling and static decoupling. (10)		
	(ii)	Explain the Stability Theorem. (5)	BTL-2	Understand
2.	` ′	ider a following 2 x 2 process	BTL-4	Analyze
2.	Consi	•	DIL-4	Anaryze
		$\begin{bmatrix} X_{\rm D} \\ X_{\rm B} \end{bmatrix} = \begin{bmatrix} \frac{-18.9e^{-3s}}{21s+1} & \frac{-12.8e^{-s}}{16.7s+1} \\ \frac{-19.4e^{-s}}{14.4s+1} & \frac{6.6e^{-7s}}{10.0s+1} \end{bmatrix} \begin{bmatrix} S(s) \\ R(s) \end{bmatrix}$		
		$[X_B]^{=}$ $\frac{-19.4e^{-s}}{6.6e^{-7s}}$ $[R(s)]$		
	Б.	14.48+1 10.98+13		
2		en a decoupler for the process. (15)	DEL 3	A 7
3.		note on Singular Value Analysis. (15)	BTL-3	Apply
4.	A 2 x	2 process has the following steady-state gain matrix:	BTL-4	Analyze
	<i>K</i> =	$\begin{bmatrix} 1 & K_{12} \\ 10 & 1 \end{bmatrix}$		
	Calculate the determinant, RGA, eigenvalues, and singular			
	values of K . Use $K_{12} = 0$ as the base case; then recalculate the			
	matri	x properties for a small change, $K_{12} = 0.1$. (15)		
5.	Deriv	re RGA for n input- n output system. (15)	BTL-6	Create

UNIT V - MULTIVARIABLE REGULATORY CONTROL SYLLABUS

Introduction to Multivariable control –Multivariable PID Controller – Multivariable Dynamic Matrix Controller – Fuzzy Logic Controller – Case Studies: - Distillation Column, CSTR and Four-tank system.

PART – A			
Q.No	Questions	BT Level	Competence
1.	Identify any two challenges in the control of MIMO process.	BTL-1	Remember
2.	What is Centralised control and Decentralised control?	BTL-1	Remember
3.	Write the advantages and disadvantages of Decentralised (multi-loop) control.	BTL-1	Remember
4.	Write the advantages and disadvantages of Centralised (multivariable) control.	BTL-1	Remember
5.	What are the difficulties in multivariable control?	BTL-4	Analyze
6.	What are the features of full multivariable controller?	BTL-4	Analyze
7.	How should the model be initialized to predict the future output?	BTL-4	Analyze
8.	Formulate the poles and zeros of multivariable control with the mathematical expressions.	BTL-3	Apply
9.	Construct the block diagram of multivariable PID.	BTL-2	Understand
10.	How multivariable PID controller is differing from multi-loop PID?	BTL-4	Analyze
11.	List few methods of tuning of multivariable PID controller?	BTL-5	Evaluate
12.	Write the expression for Maciejowski method of tuning for PI controller.	BTL-1	Remember
13.	What are the two methods to control non square systems?	BTL-4	Analyze
14.	Briefly explain about Dynamic Matrix control.	BTL-1	Remember
15.	Write the objective function for multivariable DMC.	BTL-1	Remember
16.	What are the steps involved in implementing DMC on a process?	BTL-4	Analyze
17.	What is cross coupling in the multivariable processes?	BTL-1	Remember
18.	What are the two problems of controlling a multivariable process if the cross couplings are not counteracted by the multivariable controller:	BTL-4	Analyze
19.	What are the basic elements of a fuzzy logic control system?	BTL-4	Analyze
20.	What are the assumptions to be made in a fuzzy control system design?	BTL-4	Analyze
21.	Explain the steps in designing a fuzzy control system.	BTL-4	Analyze
22.	List the features of fuzzy control system.	BTL-2	Understand
23.	List some of the applications of fuzzy logic control system.	BTL-6	Create
24.	Draw a schematic diagram of a typical closed-loop fuzzy control situation.	BTL-4	Analyze

		PART B		
1.	Explain with suitable example the importance and challenges in multivariable control. (13)		BTL-2	Understand
2.	(i)	Explain multivariable PID controller with a neat block diagram. (10)	BTL-2	Understand
	(ii)	What is Bumpless Transfer. (3)		
3.	(i)	Derive the multivariable PID Controller transfer function. (10)	BTL-6	Create
	(ii)	Write about Pole zero cancellation and ringing. (3)	BTL-3	Apply
4.		ss the various conventional centralized controller dures for multivariable process. (13)	BTL-3	Apply
5.		narize various steps involved in DMC controller design. e the expression for an objective function for controller a. (13)	BTL-6	Create
6.		be the multivariable Dynamic Matrix Control scheme etailed algorithmic steps. (13)	BTL-4	Analyze
7.	-	in single loop control of a 2×2 multivariable process.(13)	BTL-2	Understand
8.	Derive	e the Impulse and Step Response of discrete time model. (13)	BTL-6	Create
9.	(i)	Consider a first-order-plus-time-delay model: $\frac{Y(s)}{U(s)} = \frac{Ke^{-\theta s}}{\tau s + 1}$, Derive the equivalent step-response model by considering the analytical solution to a unit step change in the input. (6)	BTL-6	Create
	(ii)	Derive the equivalent step-response model by considering the analytical solution to a unit step change in the input with time delay. (7)	BTL-6	Create
10.		the procedure for tuning the PID controllers in single nultivariable control (13)	BTL-6	Create
11.		a neat sketch discuss the major components of fuzzy logic ller. (13)	BTL-1	Remember
12.	Discu contro	ss the Distillation Column system with fuzzy logic l. (13)	BTL-2	Understand
13.	A Cas	fication and Control of an Industrial Distillation Column: e Study approach. (13)	BTL-1	Remember
14.	linear Appro	se Study to Optimize Design in Linearization of Non- CSTR using Multiple Model Predictive Control ach. (13)	BTL-6	Create
15.		nuously Stirred Tank Reactor (CSTR) modelling and l case study. (13)	BTL-5	Evaluate
16.	Derive	e the transfer function of four tank systems. (13)	BTL-6	Create
17.	Analy. (13)	ze the Performance of Four Tank System using controller.	BTL-4	Analyze

	PART-C		
1.	Sketch the design for two heat exchangers that can be used as	BTL-5	Evaluate
	condensers. For each design, explain how the heat transfer can		
	be changed and indicate a valve or other element of the design		
	that could be manipulated to change the heat transferred. What		
	fluid medium is normally used for heat exchange in the		
	condenser and why? (15)		
2.	Describe the multivariable Dynamic Matrix Control scheme	BTL-4	Analyze
	with detailed algorithmic step s. (15)		
3.	Given $(K_pG_p)_{11} = 1/[(6s+1)(3s+1)]; (K_pG_p)_{12} = 1/(4s+1);$	BTL-6	Create
	$(K_pG_p)_{21} = 2/(3s+1); (K_pG_p)_{22} = 1/[(4s+1)(2s+1)];$ Design a		
	multivariable controller using Davison method. Evaluate the		
	time response of the closed loop system for step input changes		
	in the set point. (15)		
4.	Design DMC for the Van de-vusse reactor problem. The state	BTL-6	Create
	space model of reactor is given as		
	$A = [-2.4048 \ 0; \ 0.8333 \ -2.2381], B = [7; -1.117],$		
	$C = [0 \ 1], D = [0]. (15)$		
5.	(i) With a neat block diagram, explain the design of fuzzy	BTL-6	Create
	logic controller. (8)		
	(ii) Compare and contrast fuzzy logic control and classical control system. (7)	BTL-5	Evaluate

VAL

EGE