SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur - 603 203

DEPARTMENT OF INFORMATION TECHNOLOGY

(Common to Artificial Intelligence and Data Science)

QUESTION BANK

Academic Year 2022 – 2023

III SEMESTER

1908302-DIGITAL PRINCIPLES AND SYSTEM DESIGN

Regulation – 2019

CHOICE BASED CREDIT SYSTEM

Prepared by

Dr. A. R. Revathi, Associate Professor/IT

Ms. M. Ramya Princess, Assistant Professor / EIE

Mr. C. Praveen Kumar, Assistant Professor/EIE

SRM Nagar, Kattankulathur - 603 203.

DEPARTMENT OF INFORMATION TECHNOLOGY

QUESTION BANK

SUBJECT:DIGITAL PRINCIPLES AND SYSTEM DESIGNSEM / YEAR:III SEMESTER/ SECOND YEAR

UNIT I - BOOLEAN ALGEBRA AND LOGIC GATES

Number Systems - Arithmetic Operations - Binary Codes- Boolean Algebra and Logic Gates -Theorems and Properties of Boolean Algebra - Boolean Functions - Canonical and Standard Forms - Simplification of Boolean Functions using Karnaugh Map and Tabulation method - NAND and NOR Implementations.

PART-A					
Q.no	Question	BTL	Competence		
1	Find the octal equivalent of hexadecimal numbers of AB.CD (or) DC.BA	BTL5	Evaluating		
2	Convert (0.6875) ₁₀ to binary (or) Convert (126) ₁₀ to Octal	BTL3	Applying		
3	Convert $(1001010. 1101001)_2$ to base 16 &(231.07) ₈ to base 10	BTL3	Applying		
4	Analyse the octal and hexadecimal equivalent of (377) ₁₀ .	BTL4	Analyzing		
5	If $(123)_5 = (A3)_7$, then what is the value of A?	BTL5	Evaluating		
6	Convert the binary $(1011111011)_2$ into gray code.	BTL3	Applying		
7	Convert 143 ₁₀ into its binary and binary coded decimal equivalent.	BTL2	Understanding		
8	What is Excess-3 Code?	BTL1	Remembering		
9	Show that Excess-3 code is self-complementing.	BTL2	Understanding		
10	Write short notes on weighted binary codes.	BTL2	Understanding		
11	State and prove the Consensus theorem.	BTL2	Understanding		
12	State the principle of Duality.	BTL2	Understanding		
13	Prove the following using DE Morgan's Theorem.	BTL5	Evaluating		
	[(X + Y)'+(X + Y)']'=X + Y.				
14	Simplify $Z = (AB+C) (B'D+C'E')+(AB+C)'$	BTL4	Analyzing		
15	Find the complement of the function $F = X'YZ' + X'Y'Z$.	BTL1	Remembering		
16	Implement AND gate using only NOR gates. (or) Realize XOR gate using only	BTL6	Creating		
	NAND gates.				
17	Realize $G = AB'C + DE + F'$	BTL4	Analyzing		
18	What are Universal Gates? Why are they named so?	BTL1	Remembering		

19	Illustrate NOR Operation with a truth table		BTL2	Understanding
20	How many NOR gates are required if NAND gate is implemented using	g NOR.	BTL2	Understanding
21	What are the limitations of K-map?		BTL1	Remembering
22	Express the following Boolean expression in to minimum number of lit	erals.	BTL5	Evaluating
	XYZ+X'Y+XYZ'.			
23	Analyse the following Boolean functions using three variable maps.		BTL4	Analyzing
	$F(X, Y, Z) = \sum m(0, 2, 3, 6, 7).$			
24	Express the Boolean Function $F = A + B'C$ as sum of minterm (SOP).		BTL1	Remembering
	PART-B			
Q.no	Question	BTL	Competence	
1(a)	Add, subtract and multiply the following numbers (110010) ₂ and	03	BTL1	Remembering
	(11101) ₂ .			
1(b)	State and prove De Morgan's theorems for 2-variables	04	BTL1	Remembering
1(c)	Find complement of the following Boolean expression	06	BTL1	Remembering
	xyz'+x'yz+z(xy+w)			
2	Evaluate: $(ABCD.1234)_{16} = (?)_8 = (?)_8$	03		
	$= (2)_{10}$	03	BTL5	Evaluating
	$=(?)_{5}^{2}$	05		
3(a)	Short notes on 1's and 2's complement	05	BTL1	Remembering
3 (b)	Explain the rules for Binary Addition and Subtraction using 1's & 2's	08	BTL5	Evaluating
	complement. Give examples.	10	DTI 1	D
4	Explain about common postulates used to formulate various algebraic	13	BILI	Remembering
5	Simplify the following switching function using karnaugh map	13	BTL2	Understanding
	method and realize expression using gates $F(A,B,C,D) =$			
	$\sum(0,3,5,7,8,9,10,12,15)$			
6	Examine how to minimize the function:			
	$F(A, B, C, D)=\sum m(0,4,6,8,9,10,12) + \sum d(2,13)$ and implement it	13	BTL 1	Remembering
	using only NOR gates.	0.0		
7(a)	Simplify the Boolean function in Sum of Products(SOP) and Product of Sum(POS) $F(w, w, y, z) = \sum m(0, 1, 2, 5, 8, 0, 10)$	08	BIL4	Analyzing
7(b)	Design the Boolean function in Karnaugh map and simplify it	05	BTL6	Creating
,(0)	$F(w,x,y,z)=\sum m(0,1,2,4,5,6,8,9,12,13,14).$	00	DILO	Creating
8	Simplify the following Boolean expression in (a) Sum of Product (b)	06+07	BTL4	Analyzing
	Product of Sum using Karnaugh map			
	AC' + B'D + A'CD + ABCD.			
9(a)	Express the following function in sum of min-terms and product of	08	BTL2	Understanding
	max-terms: $F(x,y,z)=x+yz$.			
9(b)	Convert the following logic system in to NAND gates only.	05	BTL3	Applying
	A			
	в			
	C]			

10(a)	Implement the following Boolean function with NAND-N $F(A B C) = \sum m(0, 1, 3, 5)$	NAND logic	07	BTL6	Creating
10(b)	$\Gamma(A,B,C) = \sum_{i=1}^{n} (0,1,3,5)$		04	BTL1	Remembering
10(0)	Connect (79.5) into his and		02		
10(c)	Convert (78.5) 10 into binary		02	BIL3	Applying
11(a)	Plot the logical expression: ABCD + AB'C'D' + AB'C + AB on a 4 variable K-map simplified expression from the map	o; obtain the	07	BTL 3	Applying
11(b)	Express the function $Y = A + BC$ in canonical SOP ar POS form.	nd canonical	06	BTL 3	Applying
12(a)	Explain the procedure for obtaining NOR- NOR circuit for AND-OR network with a suitable example.	or any	08	BTL5	Evaluating
12(b)	Simplify the given Boolean function in POS form using k $F(A,B,C,D) = \Pi M(0,1,4,7,8,10,12,15)+d(2,6,11,14)$	-map	05	BTL4	Analyzing
13	Simplify the following switching function using Quine M method and realize expression using gates $F(A,B,C,D) = \sum (0,5,7,8,9,10,11,14,15)$	Ic Cluskey	13	BTL3	Applying
14	Simplify the function $F(w,x,y,z)=\sum m(2,3,12,13,14,15)$ us Tabulation method. Implement the simplified function using	ing ing gates.	13	BTL4	Analyzing
15	Minimize the following function using Karnaugh map $F(A \sum m(0,1,2,3,4,5,6,11,12,13))$ and implement with logic gate	A,B,C,D) = es.	13	BTL4	Analyzing
16	Minimize the expression using K-map and Quine Mcclus $Y = A'BC'D + A'BC'D+ABC'D'+ABC'B'+ABC'ABC'D'+ABC'ABC'D'+ABC'D'+ABC'ABC'D'+ABC'ABC'ABC'ABC'ABC'ABC'ABC'ABC'ABC'ABC'$	key method B'CD'	13	BTL2	Understanding
17(a)	Explain the procedure for obtaining NAND- NAND circu	iit for any	08	BTL5	Evaluating
1	AND-OK network with a suitable example.				
17(b)	Implement $Y = (A'B+AB') (C+D')$ using NOR gates.	EGE	05	BTL3	Applying
17(b)	Implement Y= (A'B+AB') (C+D') using NOR gates. PART-C	E C E	05	BTL3	Applying
17(b) Q.no	Implement Y= (A'B+AB') (C+D') using NOR gates. PART-C Question	E G E	05 Mark	BTL3	Applying Competence
17(b) Q.no 1(a)	AND-OK network with a suitable example. Implement Y= (A'B+AB') (C+D') using NOR gates. PART-C Question Deduce FACE16 in its binary, octal and decimal equivalent	nt.	05 Mark 03	BTL3 BTL	Applying Competence
17(b) Q.no 1(a) 1(b)	AND-OK network with a suitable example. Implement Y= (A'B+AB') (C+D') using NOR gates. PART-C Question Deduce FACE ₁₆ in its binary, octal and decimal equivalent Simplify the function F=xy+x'y'z'+x'yz'.	nt.	05 Mark 03 02	BTL3 BTL BTL 5	Applying Competence Evaluating
17(b) Q.no 1(a) 1(b) 1©	AND-OK network with a suitable example.Implement Y= (A'B+AB') (C+D') using NOR gates.PART-CQuestionDeduce FACE16 in its binary, octal and decimal equivalenSimplify the function $F=xy+x'y'z'+x'yz'$.Interpret the logical expression using K-map in SOP and DE (A B C D) = $\Sigma m (0, 2, 3, 6, 7) + d (8, 10, 11, 15)$	nt. POS form :	05 Mark 03 02 10	BTL3 BTL BTL 5	Applying Competence Evaluating
17(b) Q.no 1(a) 1(b) 1© 2	AND-OK network with a suitable example.Implement Y= (A'B+AB') (C+D') using NOR gates.PART-CQuestionDeduce FACE16 in its binary, octal and decimal equivalentSimplify the function F=xy+x'y'z'+x'yz'.Interpret the logical expression using K-map in SOP and IF (A, B, C, D) = \sum m (0, 2, 3, 6, 7) + d (8, 10, 11, 15).Minimize the expression using K-map F= \sum m(0,1,9,15,24 \sum d (8,11,31) (OR) Reduce the expression using K-mapF(X1,X2,X3,X4,X5) = \sum m(0,2,4,5,6,7,8,10,14,17,18,21,29, \sum d(11 20 22)	nt. POS form : ,29,30) + 31) +	05 Mark 03 02 10 15	BTL3 BTL BTL 5 BTL5	Applying Competence Evaluating Evaluating
17(b) Q.no 1(a) 1(b) 1© 2 3	AND-OK network with a suitable example.Implement Y= (A'B+AB') (C+D') using NOR gates.PART-CQuestionDeduce FACE16 in its binary, octal and decimal equivalenSimplify the function $F=xy+x'y'z'+x'yz'.$ Interpret the logical expression using K-map in SOP and IF (A, B, C, D) $=\sum m (0, 2, 3, 6, 7) + d (8, 10, 11, 15).$ Minimize the expression using K-map $F=\sum m(0,1,9,15,24)$ $\sum d (8,11,31)$ (OR) Reduce the expression using K-map $F(X_1,X_2,X_3,X_4,X_5) = \sum m(0,2,4,5,6,7,8,10,14,17,18,21,29,)\sum d (11,20,22)Express the following function in a simplified manner usiTechnique (i) G=\pi M(0,1,3,7,9,11).(W) X X Z)=\sum m (0,2,3,6,7,8,0,10,12) + \sum d (2,5,12)$	nt. POS form : ,29,30) + 31) + ng K map	05 Mark 03 02 10 15 15	BTL3 BTL 5 BTL5 BTL6	Applying Competence Evaluating Evaluating Creating
17(b) Q.no 1(a) 1(b) 1© 2 3 4	AND-OK network with a suitable example.Implement Y= (A'B+AB') (C+D') using NOR gates.PART-CQuestionDeduce FACE16 in its binary, octal and decimal equivalerSimplify the function $F=xy+x$ 'y'z'+x'yz'.Interpret the logical expression using K-map in SOP and IF (A, B, C, D) $=\sum m (0, 2, 3, 6, 7) + d (8, 10, 11, 15).Minimize the expression using K-map F=\sum m(0,1,9,15,24)\sum d (8,11,31) (OR) Reduce the expression using K-mapF(X_1,X_2,X_3,X_4,X_5) = \sum m(0,2,4,5,6,7,8,10,14,17,18,21,29,)\sum d (11,20,22)Express the following function in a simplified manner usiTechnique (i) G=\pi M(0,1,3,7,9,11).(ii) f(W,X,Y,Z)=\sum m(0,7,8,9,10,12) + \sum d (2,5,13)Simplify the following function using five variable K-mapF(A,B,C,D,E)=A'B'CE'+B'C'D'E'+A'B'D'+B'C'D'+A$	nt. POS form : ,29,30) + 31) + ng K map 3). p 'CD+A'BD	05 Mark 03 02 10 15 15 15	BTL3 BTL 5 BTL5 BTL6 BTL5	Applying Competence Evaluating Evaluating Creating Evaluating
17(b) Q.no 1(a) 1(b) 1© 2 3 4 5	AND-OK network with a suitable example.Implement Y= (A'B+AB') (C+D') using NOR gates.PART-CQuestionDeduce FACE16 in its binary, octal and decimal equivalerSimplify the function F=xy+x'y'z'+x'yz'.Interpret the logical expression using K-map in SOP and I F (A, B, C, D) = $\sum m (0, 2, 3, 6, 7) + d (8, 10, 11, 15).$ Minimize the expression using K-map F= $\sum m(0,1,9,15,24$ $\sum d (8,11,31)$ (OR) Reduce the expression using K-map F(X1,X2,X3,X4,X5) = $\sum m(0,2,4,5,6,7,8,10,14,17,18,21,29, \sum d(11,20,22)$ Express the following function in a simplified manner usi Technique (i) G= $\pi M(0,1,3,7,9,11).$ (ii) f(W,X,Y,Z)= $\sum m(0,7,8,9,10,12) + \sum d(2,5,13)$ Simplify the following function using five variable K- ma F(A,B,C,D,E)=A'B'CE'+B'C'D'E'+A'B'D'+B'C'D'+A Simplify the following expression using Quine Mc Cluske & K map technique	nt. POS form : ,29,30) + 31) + ng K map 3). p 'CD+A'BD ey method	05 Mark 03 02 10 15 15 15 15 15	BTL3 BTL 5 BTL5 BTL6 BTL5 BTL5	Applying Competence Evaluating Evaluating Creating Evaluating Evaluating Evaluating Evaluating
17(b) Q.no 1(a) 1(b) 1© 2 3 4 5	AND-OK network with a suitable example. Implement Y= (A'B+AB') (C+D') using NOR gates. PART-C Question Deduce FACE ₁₆ in its binary, octal and decimal equivalent Simplify the function F=xy+x'y'z'+x'yz'. Interpret the logical expression using K-map in SOP and IF (A, B, C, D) = $\sum m$ (0, 2, 3, 6, 7) + d (8, 10, 11, 15). Minimize the expression using K-map F= $\sum m(0,1,9,15,24)$ $\sum d$ (8,11,31) (OR) Reduce the expression using K-map F(X ₁ ,X ₂ ,X ₃ ,X ₄ ,X ₅) = $\sum m(0,2,4,5,6,7,8,10,14,17,18,21,29)$, $\sum d(11,20,22)$ Express the following function in a simplified manner usi Technique (i) G= $\pi M(0,1,3,7,9,11)$. (ii) f(W,X,Y,Z)= $\sum m(0,7,8,9,10,12) + \sum d(2,5,13)$ Simplify the following function using five variable K-map F(A,B,C,D,E)=A'B'CE'+B'C'D'E'+A'B'D'+B'C'D'+A Simplify the following expression using Quine Mc Cluskov & K map technique Y= m_1+m_3+m_4+m_7+m_8+m_9+m_{10}+m_{11}+m_{12}+m_{14}	nt. POS form : ,29,30) + 31) + ng K map 3). p 'CD+A'BD ey method NAL LOCIO	05 Mark 03 02 10 15 15 15 15	BTL3 BTL 5 BTL 5 BTL5 BTL5 BTL5 BTL5	Applying Competence Evaluating Evaluating Creating Evaluating Evaluating Evaluating
17(b) Q.no 1(a) 1(b) 1© 2 3 4 5 7	AND-OK network with a suitable example. Implement Y= (A'B+AB') (C+D') using NOR gates. PART-C Question Deduce FACE ₁₆ in its binary, octal and decimal equivalent Simplify the function F=xy+x'y'z'+x'yz'. Interpret the logical expression using K-map in SOP and IF (A, B, C, D) = $\sum m (0, 2, 3, 6, 7) + d (8, 10, 11, 15)$. Minimize the expression using K-map F= $\sum m(0,1,9,15,24$ $\sum d (8,11,31)$ (OR) Reduce the expression using K-map F(X ₁ ,X ₂ ,X ₃ ,X ₄ ,X ₅) = $\sum m(0,2,4,5,6,7,8,10,14,17,18,21,29,$ $\sum d(11,20,22)$ Express the following function in a simplified manner usi Technique (i) G= $\pi M(0,1,3,7,9,11)$. (ii) f(W,X,Y,Z)= $\sum m(0,7,8,9,10,12) + \sum d(2,5,13)$ Simplify the following function using five variable K- ma F(A,B,C,D,E)=A'B'CE'+B'C'D'E'+A'B'D'+B'C'D'+A Simplify the following expression using Quine Mc Cluske & K map technique Y= m_1+m_3+m_4+m_7+m_8+m_9+m_{10}+m_{11}+m_{12}+m_{14} UNIT II - COMBINATION	nt. POS form : ,29,30) + 31) + ng K map 3). p 'CD+A'BD ey method NAL LOGIC	05 Mark 03 02 10 15 15 15 15 2 2	BTL3 BTL 5 BTL 5 BTL5 BTL6 BTL5 BTL5	Applying Competence Evaluating Evaluating Creating Evaluating Evaluating Evaluating
17(b) Q.no 1(a) 1(b) 1© 2 3 4 5 Comb	AND-OK network with a suitable example.Implement Y= (A'B+AB') (C+D') using NOR gates.PART-CQuestionDeduce FACE16 in its binary, octal and decimal equivalerSimplify the function F=xy+x'y'z'+x'yz'.Interpret the logical expression using K-map in SOP and IF (A, B, C, D) = $\sum m (0, 2, 3, 6, 7) + d (8, 10, 11, 15).Minimize the expression using K-map F=\sum m(0,1,9,15,24)\sum d (8,11,31) (OR) Reduce the expression using K-map F(X1,X2,X3,X4,X5) = \sum m(0,2,4,5,6,7,8,10,14,17,18,21,29, \sum d(11,20,22))Express the following function in a simplified manner usi Technique (i) G=\pi M(0,1,3,7,9,11).(ii) f(W,X,Y,Z)=\sum m(0,7,8,9,10,12) + \sum d(2,5,13)Simplify the following function using five variable K-map F(A,B,C,D,E)=A'B'CE'+B'C'D'E'+A'B'D'+B'C'D'+ASimplify the following expression using Quine Mc Cluskow& K map techniqueY= m_1+m_3+m_4+m_7+m_8+m_9+m_{10}+m_{11}+m_{12}+m_{14}$ UNIT II - COMBINATIONDinational Circuits – Analysis and Design Procedure Rinary Multipliar	nt. POS form : ,29,30) + 31) + ng K map 3). p 'CD+A'BD ey method NAL LOGIC ures - Binan peroders - Fr	05 Mark 03 02 10 15 15 15 15 15 15	BTL3 BTL 5 BTL 5 BTL5 BTL5 BTL5 BTL5 BTL5	Applying Competence Evaluating Evaluating Creating Evaluating Evaluating Creating Evaluating Evaluating Variation
17(b) Q.no 1(a) 1(b) 1© 2 3 4 5 Comb Adder	AND-OK network with a suitable example. Implement Y= (A'B+AB') (C+D') using NOR gates. PART-C Question Deduce FACE ₁₆ in its binary, octal and decimal equivalent Simplify the function F=xy+x'y'z'+x'yz'. Interpret the logical expression using K-map in SOP and D F (A, B, C, D) = $\sum m (0, 2, 3, 6, 7) + d (8, 10, 11, 15)$. Minimize the expression using K-map F= $\sum m(0,1,9,15,24)$ $\sum d (8,11,31)$ (OR) Reduce the expression using K-map F(X ₁ ,X ₂ ,X ₃ ,X ₄ ,X ₅) = $\sum m(0,2,4,5,6,7,8,10,14,17,18,21,29)$, $\sum d(11,20,22)$ Express the following function in a simplified manner usi Technique (i) G= $\pi M(0,1,3,7,9,11)$. (ii) f(W,X,Y,Z)= $\sum m(0,7,8,9,10,12) + \sum d(2,5,13)$ Simplify the following expression using Quine Mc Clusko & K map technique Y= m ₁ +m ₃ +m ₄ +m ₇ +m ₈ +m ₉ +m ₁₀ +m ₁₁ +m ₁₂ +m ₁₄ UNIT II - COMBINATION Dinational Circuits – Analysis and Design Procedur PART-A	nt. POS form : ,29,30) + 31) + ng K map 3). p 'CD+A'BD ey method NAL LOGIC ures - Binan ecoders - En	05 Mark 03 02 10 15 15 15 15 15 15 2 ry Adde roders -	BTL3 BTL 5 BTL 5 BTL5 BTL5 BTL5 BTL5 BTL5 r-Sub tra - Multiple	Applying Competence Evaluating Evaluating Creating Evaluating Evaluating Creating Evaluating Evaluating Evaluating Evaluating Evaluating Evaluating Evaluating

Q.no	Question		BTL	Competence
1	Define combinational circuits		BTL1	Remembering
2	Mention the dependency of output in combinational circuits.	BTL4	Analysing	
3	Obtain the truth table for BCD to Excess-3 code converter		BTL1	Remembering
4	Draw the full adder circuit as a collection of two half adders.		BTL3	Applying
5	Realize the combinational circuit of half subtractor.		BTL2	Understanding
6	What is half adder?. Draw the truth table of half adder		BTL1	Remembering
7	List the truth table of full subtractor.		BTL1	Remembering
8	Determine the exact number of half adders and full adders required performing the addition of two binary numbers of 5 bits length each.	ired for	BTL 3	Applying
9	Write the Data flow description of a 4 bit comparator.		BTL2	Understanding
10	What is priority encoder?		BTL1	Remembering
11	Write short notes on propagation delay		BTL2	Understanding
12	Implement (solve) the function $G=\sum m(0, 3)$ using a 2x4 decoder.		BTL6	Creating
13	Draw the truth table and circuit diagram of 4 to 2 encoder.		BTL3	Applying
14	Differentiate between encoder and decoder.		BTL4	Analyzing
15	How many 3-to-8 line decoders with an enable input are needed to con	nstruct a	BTL6	Creating
	6-to-64 line decoder without using any other logic gates?			
16	Show the truth table of 2:1 MUX. SRM		BTL 3	Applying
17	Implement (solve) a full adder with 4x1 multiplexer.		BTL2	Understanding
18	Draw (design) the circuit diagram for 2 to 1 line multiplexer.		BTL3	Applying
19	Implement (solve) the following Boolean function using 8:1 mu	ltiplexer	BTL5	Evaluating
	$F(A,B,C)=\sum(1,3,5,6).$			
20	Differentiate between Multiplexer and Demultiplexer.		BTL4	Analyzing
21	List out the application of multiplexer.		BTL1	Remembering
22	How many number of 2X1 multiplexers are required to implement 4x1		BTL5	Evaluating
	multiplexer.			
23	State the difference between decoder and demultiplexer.		BTL4	Analyzing
24	Give one application each for Multiplexer and Decoder.		BTL 1	Remembering
	PART-B		1	L
Q.no	Question	Mark	BTL	Competence
1(a)	Explain the design procedure for combinational circuits with suitable	07	BTL5	Evaluating
	examples			
1(b)	Explain the Analysis procedure. Analyse the following logic	06	BTL5	Evaluating
	diagram.			

2	Design Full subtractor and derive expression for difference and borrow. Realize using two half subtractor.	13	BTL6	Creating
3	Design the full adder with inputs x,y,z and two outputs S and C. The circuits perform $x+y+z$ is the input carry, C is the output carry and S	13	BTL6	Creating
	is the Sum & realize it's using only NOR gates			
4	Design a 4 bit BCD to Excess-3 code converter.	13	BTL6	Creating
5	Describe the process involved in converting 8421 code to Excess 3	13	BTL2	Understanding
	code with neat sketch.			
6	Design a code converter for BCD to gray code conversion.	13	BTL6	Creating
7	Design a logic circuit that accepts a 4-bit gray code and converts it to	13	BTL6	Creating
	4-bit binary code			
8	Describe the procedure of converting 8421 to Gray code converter	13	BTL2	Understanding
	also realize the converter using only NAND gates.			
9(a)	Recall the design procedure for binary multiplier	07	BTL1	Remembering
9(b)	Design a 2 bit binary multiplier to multiply two binary numbers and	06	BTL1	Remembering
	produce a 4-bit result.			
10(a)	Construct a 4-bit odd parity generator circuit using gates	06	BTL3	Applying
10(b)	Construct a 5 to 32 line decoder using 3 to 8 line decoders and 2 to 4	07	BTL3	Applying
	line decoder.			
11	Find the design procedure for a 4 –bit parallel binary adder /	13	BTL1	Remembering
	subtractor.			
12	With neat diagram explain the 4 bit adder with Carry look ahead.	13	BTL5	Evaluating
13(a)	Examine the following Boolean functions with a multiplexer.	06	BTL4	Analyzing
	$F(W,X,Y,Z) = \sum (2,3,5,6,11,14,15)$			
13(b)	Implement the following function using 74LS138 and gates.	07	BTL2	Understanding
	$F1(A,B,C) = \Pi(0,1,3,7)$ and $F2(A,B,C) = \Pi(2,3,7)$			
14(a)	Examine the following Boolean function using 8 to 1 Multiplexer.	06	BTL4	Analyzing
	F(A,B,C,D)=A'BD' + ACD + B'CD + A'C'D.			
14(b)	Discover the above function using 16 to 1 Multiplexer.	07	BTL4	Analyzing
15	Define priority encoder and design 8 to 3 priority encoder	13	BTL1	Remembering
16	Implement the following function using multiplexer $f(a,b,c,d)=$	13	BTL6	Creating

	$\sum m(0,1,3,4,8,9,15)$			
17	Draw the logic diagram of a 2-to-4 decoder using NOR gates only. Include an enable input.	13	BTL 4	Analysing
	PART-C			
Q.no	Question	Mark	BTL	Competence
1	Design a binary to gray code converter circuit &	15	BTL6	Creating
2	Design a BCD to 7- Segment code converter circuit	15	BTL6	Creating
3	Find the design procedure for a combinational circuit to perform BCD addition	15	BTL6	Creating
4	How to design a 4 bit magnitude comparator with 3 outputs	15	BTL2	Understanding
	A>B,A=B,A <b< td=""><td>~ -</td><td></td><td></td></b<>	~ -		
5a	Implement the following function using 8 to 1 multiplexer $f(a,b,c,d) = \sum m(0,1,3,5,9,12,14,15)$	07	BTL5	Evaluating
5b	Construct 16X1 multiplexer with two 8X1 and 2X1 multiplexer. Use	08	BTL3	Applying
	Block diagrams	LOCK	2	
	UNIT III - SYNCHRONOUS SEQUENTIAL	LOGI	2	
Stora	ge Elements- Latches - Flip-Flops- Registers - Analysis and D	Design 1	Procedure	of Sequential
Circu	its - State Reduction and Assignment - Shift register - Sequence	genera	itor/detect	or- Counters.
	ENCARIA		1	I
Q.no	Question		BTL	Competence
1	Generalize the differences between combinational and sequential circuits	s.	BTL6	Creating
2	Summarize the characteristic table and equation of JK flip flop.		BTL2	Understanding
3	Construct the truth table and state diagram of SR Flip Flop.		BTL6	Creating
4	Draw the diagram of T- Flip flop and discuss its working.		BTL3	Applying
5	Give the characteristic equation and characteristic table of a T- flip-flop		BTL2	Understand
6	State the excitation table of JK-flip flop		BTL6	Creating
7	Differentiate between latches and flip flop.		BTL4	Analyzing
8	Give the excitation table for T Flip Flop.		BTL2	Understand
9	Realize a JK flip flop using D flip flop.		BTL3	Applying
10	Analyse how can a D FF can be converted into a T FF.		BTL4	Analysing
11	Select and list any two mechanisms to achieve edge triggering of flip flo	р	BTL2	Understanding
12	Give block diagram of Master -Slave D Flip flop.		BTL1	Remembering
13	Write down the steps involved in the design of synchronous sequential c	ircuits.	BTL2	Understanding
14	What is shift register?		BTL1	Remembering
15	Classify the types of shift registers.		BTL4	Analyzing
16	Explain the difference between the performance of asynchronous synchronous counter	us and	BTL5	Evaluating
17	Design a 2 bit binary synchronous counter with D flip flops.		BTL6	Creating
18	Identify how many JK- flip-flops are required to design a MOD 35 count	ter?	BTL3	Applying
19	Analyse how many flip-flops are required to design a synchronous M counter?	OD 60	BTL4	Analyzing

20	Define Ripple counter		BTL1	Remembering
21	What is ring counter?			Remembering
22	How many states are there in a 3-bit ring counter and list the states?			Evaluating
23	State the rules for state assignment		BTL1	Remembering
24	What are the significances of state assignment?		BTL1	Remembering
	PART-B			1
Q.no	Question	Mark	BTL	Competence
1	Implement T flip-flop using D flip-flop and JK using D flip flop.	13	BTL5	Evaluating
2(a)	Explain about synchronous and asynchronous sequential Circuit.	06	BTL3	Applying
2(b)	Explain the working procedure of 3 bit parallel- in serial-out shift	07	BTL1	Remembering
	register construct the state table.			
3(a)	How a race condition can be avoided in a flip-flop.	06	BTL1	Remembering
3(b)	Realize the sequential circuit for the state diagram shown below.	07	BTL4	Analyzing
	X=1 X=0.X=1			
	X=0 X=0,X=1			
4	Explain the different types of shift registers with neat diagram.	13	BTL2	Understanding
5(a)	What is meant by state diagram? Define how state assignment	07		
	is important in a sequential circuit design. Describe with a suitable example.		BTL5	Evaluating
5(b)	Implement D and T FFs using JK flip flop. Tabulate the	06		g
6	characteristics equation of the three flip flops.	13	PTI 5	Evoluting
7	Consider the design of a 4 hit BCD sources that sources in the	13	DTL3	Applying
/	following way 0000 0010 0011 1001 and back to	15	DILS	Applying
	1010wing way: 0000, 0010, 0011,, 1001, and back to			
	(i) Draw the state diagram (04)			
	(ii) List the next state table (04)			
	(iii) Draw the logic diagram of the circuit (05)			
8	Design a synchronous counter with the following sequence: 0, 1, 2	13	RTI 6	Creating
	7. 6. 4 and repeats. Use JK Flip flop	1.5		Journa
9	Design MOD 6 an asynchronous counter circuit	13	BTI 6	Creating
10	Design a MOD-10 Synchronous counter using IK flin-flop Write	13	BTL6	Creating
10	execution table and state table	1.5	DILU	Journa

11	Write the design procedure for a three-bit synchronous counter with	13	BTL1	Remembering
	T flip flop and draw the diagram. (OR)			
	Write the design procedure for a 3-bit synchronous down counter			
	using JK flip flop and draw the diagram.			
12	Explain in detail about the working procedure of 4bit up/down	13	BTL2	Understanding
	counter.			
13	Illustrate state diagram of T Flip-flop and construct it using JK	13	BTL2	Understanding
	Flip-flop. Explain about the excitation table and its application.			
14	Explain the operation of master slave flip flop and show how the	13	BTL5	Evaluating
	race around condition is eliminated in it.			
15	Design the sequential circuit specified by the following state	13	BTL6	Creating
	diagram using T flip flops			
	1/0 0/1			
	1/0 1/0			
	10			
	0/1			
1.6		10		
16	Design a sequence detector to detect the input sequence	13	BIL6	Creating
	101(overlapping).Use JK Flip flops.			
17(a)	Analyse the difference between a state table, characteristic table and	03	BTL4	Analyzing
	an excitation table.			
17(b)	Show the state transition diagram of a sequence detector circuit that	10	BTL 3	Applying
		10	DILS	
	PART-C		DTI	
Q.no	Question	Mark	BIL	Competence
1	Design a synchronous counter which counts in the sequence	15	BTL6	Creating
2	Design sequence detector that detects a sequence of three or more	15	BTL6	Creating
_	consecutive 1's in a string of bits coming through an input line and		2120	er en meg
	produces an output whenever this sequence is detected.			
3	A sequential circuit with two D flip-flops A and B, one input x , and	15	BTL5	Evaluating
	one output z is specified by the following next state and output			
	equations: $A(t+1) = A'+B$; $B(t+1)=B'X$; $Z = A+B'$			
	(i)Draw the logic diagram of the circuit. (05)			
	(iii)Draw the state diagram of the circuit. (05)			
4	Analyze and design a sequential circuit with two T Flip flop A and B.	15	BTL6	Creating
	one input x and one output z is specified by the following next state			5

	and output equation is		
	A(t+1) = BX' + B'X		
	B(t+1)=AB+BX+AX		
	Z=AX'+A'B'X		
	(i)Draw the logic diagram of the circuit (05)		
	(ii) List the state table for the sequential circuit (05)		
	(iii) Draw the Corresponding state diagram (05)		
5	A sequential circuit with two D flip flops A and B, input X and		
	output Y is specified by the following next state and output		
	equations: $A (t+1) = A X + B X \cdot B (t+1) = A' X \cdot Y = (A+B) X'$ 15	BTI 6	Creating
	(i) Draw the logic diagram (05)	DILO	Creating
	(ii) Construct the state table. (05)		
	(iii) Draw the state diagram. (05)		
	UNIT IV- ASYNCHRONOUS SEQUENTIAL LOG	IC	
Analy	rsis and Design of Asynchronous Sequential Circuits – Reduction of free State Assignment Hezerde	State and	Flow Tables –
Nace-	PART-A		
Q.no	Question	BTL	Competence
1	Point out the steps involved in the designing an asynchronous sequential	BTL1	Remembering
	circuits.		
2	Compare asynchronous and synchronous sequential circuit.	BTL3	Applying
3	Summarize the advantages and disadvantages of asynchronous sequential circuits.	BTL5	Evaluating
4	Distinguish between fundamental mode circuit and pulse mode circuit.	BTL4	Analyzing
5	Define flow table in asynchronous sequential circuits	BTL1	Remembering
6	List the characteristics of fundamental mode circuit.	BTL2	Understanding
7	Define primitive flow table	BTL2	Understanding
8	Differentiate transition table and flow table.	BTL4	Analyzing
9	Differentiate conventional flow table and primitive flow table.	BTL4	Analyzing
10	How the Moore circuit differ from Mealy circuit?	BTL1	Remembering
11	Define race around conditions.	BTL1	Remembering
12	Define state reduction	BTL1	Remembering
13	What are race?	BTL2	Understanding
14	Is it essential to have race free assignment? Justify.	BTL5	Evaluating
15	Compare the critical race and non-critical race	BTL3	Applying
16	What is lockout? How it is avoided?	BTL2	Understanding
17	Show the diagram for debounce circuit.	BTL3	Applying
18	Define Merger graph.	BTL1	Remembering
19	Define hazards. What are the types of hazards?	BTL1	Remembering
20	Estimate the wave forms showing static 1 hazards	BTL6	Creating

21	State the difference between static 0 and static 1 hazard.	BTL4	Analysing
22	How can we change the hazards into hazards free circuit?	BTL5	Evaluating
23	Compare static and dynamic hazards.	BTL4	Analyzing
24	Design a hazard free circuit to implement the following function. F (A, B, C, D) = $\sum m (1,3,4,5,6,7,9,11,15)$	BTL 6	Creating

	PART-B			
Q.no	Question	Mark	BTL	Competence
1	Explain the steps for the design of asynchronous sequential circuits with an example.	13	BTL5	Evaluating
2	Discuss about Pulse mode & Fundamental mode asynchronous	13	BTL6	Creating
	sequential circuits			
3	Discuss in detail the procedure for reducing the flow table with an example.	13	BTL6	Creating
4(a)	Explain the two types of asynchronous sequential circuit with suitable example.	06	BTL2	Understanding
4(b)	What is flow table? Explain with suitable example.	07	BTL1	Remembering
5	Analyze the following clocked sequential circuit and obtain the state	13	BTL4	Analyzing
	equation and state diagram X			
6(a)	Describe the race free state assignment procedure.	05	BTL1	Remembering
6(b)	Reduce the number of state in the following state diagram. Tabulate	08	BTL3	Applying
	Present state Nevt state Output			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	g a f 0 1			
7	Consider the asynchronous sequential circuits which is driven by the pulses, as in the following figure. Analyse the circuit	13	BTL4	Analyzing

8	Analyze the fundamental mode asynchronous sequential circuit given in the following figure.	13	BTL4	Analyzing
9	Explain the minimization of primitive flow table with suitable examples.	13	BTL4	Analyzing
10	Design a circuit with inputs A and B to give an output Z=1 when AB=11 but only if A becomes 1before B, by drawing total state diagram, primitive flow table and output map in which transient state is included.	13	BTL6	Creating
11	Construct the switching function $F=\sum m(1,3,5,7,8,9,14,15)$ by a static hazard free two level AND-OR gate network.	13	BTL3	Applying
12	What are hazards and its types? How can you design a hazard free circuits, explain with example.	13	BTL1	Remembering
13(a)	What are static-0 and static-1 hazards? Show the removal of hazards using hazard covers in K-map.	07	BTL 3	Applying
13(b)	Examine cycles and races in asynchronous sequential circuits.	06		
14	Explain the hazards in combinational circuit and sequential circuit and also demonstrate a hazards and its removal with example.	13	BTL2	Understanding
15(a)	What is the objective of state assignment in asynchronous circuit?	06	BTL1	Remembering
15(b)	Explain now race to be avoided with an example.	07	BTI 2	Understanding
13(0)	asynchronous sequential circuits	07		onderstanding
16	Consider an asynchronous sequential circuit described by			Understand

	$Y = x_1 \dot{x_2} + (x_1 + \dot{x_2}) y; Z = Y$, where Y and Z are excitation and output		BTL 2	
	functions respectively.	(03)		
	(i) Give the logic diagram of the circuit.	(07)		
	(ii) Interpret the transition table and output map.	(03)		
	(iii) Obtain its flow table.	× ,		
17	Analyze a circuit with primary inputs A and B to give an output Z			
	equal to 1 when A becomes 1 if B is already 1 Once Z=1 it will			
	remain so until A goes to 0 Draw the total state diagram primitive	13	BTL4	Analysing
	flow table for designing this circuit.			
	PART-C			
Q.no	Question	Mark	BTL	Competence
1	An asynchronous sequential circuit is described by the following	15	BTL5	Evaluating
	excitation and output function. $Y=X_1X_2+(X_2+X_3)Y$ and $Z=Y$			
	i. Draw the logic diagram of the circuit. (06)			
	ii. Derive the transition table and output map.(06)			
	iii. Describer the behaviour of the circuit.(03)			
2	Design an asynchronous sequential circuit with inputs X1 and X2 and	15	BTL6	5 Creating
	one output Z. Initially and at any time if both the inputs are 0, output is			
	equal to 0.When X_1 or X_2 becomes 1, Z becomes 1. When Second			
	input also becomes 1, Z=0; The output stays at 0 until circuit goes			
	back to initial state.			
3	An asynchronous sequential circuit is described by the following	15	BTL5	5 Evaluating
	excitation and output function. $X = (Y_1Z_1W_2)X + (Y_1Z_1W_2) \& S = X'$			
	(i) Draw the logic diagram of the circuit. (06)			
	(ii) Derive the transition table and output map. (06)			
	(iii) Describe the behavior of the circuit. (03)			
4	Design an asynchronous sequential circuit with two input x and y and	15	BTL6	6 Creating
	with one output z whenever y is 1, input x is transferred to z. When y is			
	0, the output does not change for any change in x. Use SR latch for			
	implementation of the circuit.			
5	Design an asynchronous sequential circuit that has two internal			
	states and one output. The excitation and output function			
	describing the circuit are as follows:			
	$Y_1 = x_1 x_2 + x_1 y_2 + x_2 y_1$			
	$Y_2 = x_2 + x_1 y_1 y_2 + x_1 y_1$	15	BTL 6	6 Creating
	$Z = x_2 + y_1$			
	(i) Predict the logic diagram of the circuit. (04)			
	(ii) Interpret the transition table and the output map. (07)			
	(iii) Obtain its flow table. (04)			
	UNIT V - HDL & MEMORY AND PROGRAMMABI	LE LOG		
Introduction to HDL – HDL Models of Combinational circuits and Sequential Circuits-				
KAM – Memory Decoding - KOM - Programmable Logic Array – Programmable Array Logic – Sequential				
DADT A				
0.50	r'AKI-A		рті	Competerza
Q.NO	Question			Domomb arise
	Nome the modeling techniques available in UDI		DILI	Remembering
2	Write the UDL date flow description of 4 hit address		BILI	Remembering
3	while the HDL data now description of 4 bit adder		DILI	Kemembering

4	Develop the HDL code to realize a D - flip flop		BTL2	Understanding
5	Determine the HDL description for the following circuit		BTL1	Remembering
	$\begin{array}{c c} A \\ B \\ \hline \\ B \\ \hline \\ \\ C \\ \hline \\ \\ g_2 \\ \hline \\ \\ y \\ \end{array}$			
6	Write the VHDL code for a 2X1 multiplexer using behavioural modelli	ng.	BTL5	Evaluating
7	Give the HDL code for half adder.		BTL2	Understanding
8	What is memory decoding?		BTL1	Remembering
9	What is volatile memory? Give example.	What is volatile memory? Give example.		Remembering
10	Differentiate between EEPROM and PROM.	Differentiate between EEPROM and PROM.		Analyzing
11	Compare DRAM and SRAM.		BTL5	Evaluating
12	Give the details about write and read operations in RAM.		BTL2	Understanding
13	Design the logic diagram of a memory cell.		BTL6	Creating
14	Develop the maximum range of a memory that can be accessed us address lines.	sing 10	BTL3	Applying
15	Draw the structure of PAL.		BTL1	Remembering
16	Demonstrate the function $F_1=\sum (0, 1, 2, 5, 7)$ and $F_2=\sum (1, 2, 4, 6)$ using PROM.		BTL3	Applying
17	Define PLA. How it differs from PROM?		BTL1	Remembering
18	Justify whether PAL is same as PLA.		BTL5	Evaluating
19	Write short notes on PLA.		BTL2	Understanding
20	Define combinational PLD.		BTL1	Remembering
21	Identify the comparison between EPROM and PLA		BTL3	Applying
22	Write down the different types of PLDs.		BTL2	Understanding
23	Differentiate between PLA and ROM.		BTL4	Analyzing
24	Differentiate error detection and correction technique.		BTL4	Analyzing
	PART-B			
Q.no	Question	Mark	BTL	Competence
1	Describe the modelling techniques available in HDL. Give the HDL code to realize a full adder using Behavioural modelling.	13	BTL2	Understanding
2	Summarize in detail the concept of structural modelling in HDL with an example of full subtractor	13	BTL2	Understanding
3	Analyze a full adder and half subtractor in data flow modelling using HDL. Explain in detail	13	BTL4	Analyzing
4	Write the HDL description of T flip-flop , JK flip-flop ,SR flip flop and D flip-flops	13	BTL1	Remembering
5(a)	Give the Internal block diagram of 4 x 4 RAM.	07	BTL2	Understanding
5(b)	Compare SRAM and DRAM.	06	BTL4	Analyzing
6	Implement the following using PAL	13	BTL5	Evaluating
	$F1(A,B,C) = \sum (1,2,4,6);$			
	$F2(A,B,C) = \sum (0,1,6,7);$			
	$F3(A,B,C) = \sum(1,2,3,5,7)$			
7	Design a combinational circuit using ROM that accepts a three bit	13	BTL6	Creating

	binary number and outputs a binary number equal to the square of the			
$\Theta(z)$	Input number.	05	DTI 1	D
8(a)	PROM	05	BILI	Remembering
8(b)	Construct the following two Boolean functions using PLA with 3	08	BTL3	Applying
	inputs, 4 Product terms, and 2 outputs.			
	$F1=\sum m(3,5,6,7)$ and			
	$F2=\sum m(1,2,3,4)$			
9	Implement the following function using PLA	13	BTL5	Evaluating
	$A(X,Y,Z) = \sum m(1,2,4,6),$			
	$B(X,Y,Z) = \sum m(0,1,6,7),$			
	$C(X,Y,Z) = \sum m(2,6)$			
10	Explain in detail about the Programmable Logic Array &	13	BTL1	Remembering
	Programmable array logic.			
11	Design a BCD to Excess 3 code converter and implement using	13	BTL6	Creating
	suitable PLA.			
12	Draw a neat sketch showing implementation of	13	BTL3	Applying
	Z1=ab'd'e+a'b'c'e+bc+de;			
	$Z2=a^{\circ}c^{\circ}e;$			
	Z3=bc+de+c'd'e+db and			
	Z4=a'c'e +ce Using 5*8*4 PLA.			
13	Implement the following using PAL	13	BTL5	Evaluating
	$W(A,B,C,D) = \Sigma(0,2,6,7,8,9,12,13);$			
	$X(A,B,C,D) = \sum (0,2,6,7,8,9,12,13,14);$ SRM			
	$Y(A,B,C,D) = \sum (2,3,8,9,10,12,13);$			
	$Z(A,B,C,D) = \sum (1,3,4,6,9,12,14);$			
14	List the features of PROM, PAL and PLA & Discuss the sequential	13	BTL1	Remembering
	programmable devices			
15(a)	Compare PROM, PLA, PAL	07	BTL4	Analyzing
15(b)	Discuss the various types of RAM and ROM with architecture.	06	BTL2	Understanding
16(a)	Write the HDL gate level description of the priority encoder circuit.	06	BTL2	Understanding
16(b)	Briefly discuss the sequential programmable devices.	07	BTL2	Understanding
17(a)	Implement the following Two Boolean function with a PLA	05	BTL5	Evaluating
	F1=AB'+AC'+A'BC'			
	F2=(AC+BC+AB)'			
17(b)	A combinational logic circuit is generalized by the following function			
	$F_1(A,B,C) = \sum m (0,1,6,7), F_2(A,B,C) = \sum m (2,3,5,7).$ Assess the circuit	08	BTL 4	Analyzing
	with a PAL having three inputs, product terms and two outputs.			
	PARI-C	0.6		a i
	Design the following Boolean function using $8X2$ PROM.	06	BIL6	Creating
	$F1=\sum_{i=1}^{n}(3,5,6,7)$			
	$\Gamma 2 - \underline{M}(1,2,3,4)$	00		Creatin
2	Design a 16 bit RAM array (4X4 RAM) and explain the operation.	09	BILO	
5	Analyze a BCD to Excess-3 code converter and implement	15	BIL4	Analyzing
	using suitable PLA			
4	Implement the combinational circuit with a PLA having 3		1	
	inputs, 4 product terms and 2 outputs for the functions.	15	BTL6	Creating
	$F_1(A,B,C) = \sum (0, 1, 2, 4)$			_

	$F_2(A,B,C) = \sum (0, 5, 6, 7)$			
5	Explain about error detection and correction using	15	BTL5	Evaluating
	Hamming codes.			
6	The following message have been coded in the even parity hamming	15	BTL5	Evaluating
	code and transmitted through a noisy channel. Decode the message			
	assuming that at most a single error occurred in each codeword.			
	i) 1001001 (04) ii) 0111001 (04)			
	iii) 1110110 (04) iv) 0011011 (03)			

