SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF MECHANICAL ENGINEERING

QUESTION BANK

III SEMESTER

1909301 – ENGINEERING MECHANICS

Regulation – 2019

Academic Year 2022 –2023

Prepared by

Mr. P.RAMU, Assistant Professor/Mechanical

SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203 QUESTION BANK

SUBJECT/SUBJECT CODE SEM/YEAR

: ENGINEERING MECHANICS /1909301 :III SEM/II YEAR

UNIT I: BASICS AND STATICS

Introduction – Units and Dimensions – Laws of Mechanics – Lami's theorem, Parallelogram and triangular Law of forces – Vectorial representation of forces –Coplanar Forces – rectangular components – Equilibrium of a particle – Forces in space – Equilibrium of a particle in space – Equivalent systems of forces – Principle of transmissibility

PART - A (2Marks)					
S.No	QUESTIONS	LEVEL	COMPETENCE		
1.	Define Engineering Mechanics.	BT1	Remember		
2.	Define Force.	BT1	Remember		
3.	State law of parallelogram of vectors.	BT1	Remember		
4.	State the principle of transmissibility of force.	BT1	Remember		
5.	Define space and time.	BT1	Remember		
6.	State triangular law of forces.	BT1	Remember		
7.	State Lami's theorem.	BT1	Remember		
8.	What is free body diagram?	BT2	Understand		
9.	State the principle of resolution.	BT1	Remember		
10.	What is the difference between the resultant force and equilibrant force?	BT2	Understand		
11.	State the necessary and sufficient condition for static equilibrium of a	BT1	Remember		
	particle in two dimensions.				
12.	What are the characteristics of a force?	BT1	Remember		
13.	Define particle.	BT2	Understand		
14.	Define the term "Vector" quantity.	BT2	Understand		
15.	What is the significance of parallelogram law in statics of particles?	BT2	Understand		

16.	Define equilibrium.	BT2	Understand
17.	State Newton's third law.	BT1	Remember
18.	Define unit vector.	BT2	Understand
19.	State newton's Second law of Gravitation.	BT2	Understand
20.	What is a scalar quantity?	BT1	Remember
21.	What is a vector quantity?	BT2	Understand
22.	State Newton's First law.	BT2	Understand
23.	State Newton's Second law.	BT2	Understand
24.	Define Concurrent forces.	BT2	Understand
25.	What is gravity?	BT2	Understand

	PART - B (13 Marks)				
S.No	QUESTIONS	Marks	Level	Competence	
1	The following forces act a point (i) 200 N inclined at 30° towards the North of East. (ii) 250 N towards North (iii) 300 N towards North West (iv) 350 N inclined at 40° towards South of West. Find the resultant of the force system.	13	BT3	Apply	
2	Two cables which have known tensions are attached to the top of a tower AB. A third cable AC is used as a guide wire as shown in the figure below. Determine the tension in AC if the resultant of the forces exerted at A by the three cables acts vertically downwards. $\frac{20^{\circ}}{40\text{KN}} + \frac{10^{\circ}}{8\text{m}} + \frac{10^{\circ}}{25\text{KN}} + \frac{12\text{m}}{8\text{m}} + \frac{10^{\circ}}{8\text{m}} + \frac{10^{\circ}}{25\text{KN}} + \frac{12\text{m}}{8\text{m}} + 12$	13	BT3	Apply	
3	Forces of 2 N, 3 N , 4 N ,5 N and 6 N are acting at one of the angular points of regular hexagon towards the other angular points taken in order. Find the resultant and its direction.	13	BT3	Apply	

4	A disabled ship P is being pulled by two tugboats as shown in the figure.			
	The resultant of the forces exerted by the two tugboats is 30 kN which is			
	directed along the axis of the ship. Find (i) the required tensions in each			
	of the ropes for $\Theta = 30^{\circ}$ (ii) the value of Θ such that the tension in the			
	rope PQ is minimum.			
		13	BT4	Analyze
5	State and derive the expression for magnitude and direction of the resultant using the Parallelogram law of forces.	13	BT1	Remember
6	(i) Two concurrent forces acts at an angle of 30°. The resultant force is 15 N and one of the forces is 10 N. Find the other force. (ii) find the magnitude of the two forces such that if they act at right angles, their resultant is $\sqrt{10}$ N. But if they act at 60°, their resultant is $\sqrt{13}$ N.	13	BT3	Apply
7	(i) A cylindrical roller has a weight of 10 kN and it is being pulled by a			
	force which is inclined at 30° with the horizontal as shown in the figure.			
	While moving it comes across an obstacle 10 cm high. Calculate the			
	force required to cross the obstacle, if the diameter of the roller is 1 m. 130° $10cm$	13	BT3	Apply

8	The figure below shows cylinders, A of weight 100 N and B of weight			
	50 N, resting on smooth inclined planes. They are connected by a bar of			
	negligible weight hinged to each cylinder at their geometric centres by			
	smooth pins. Find the force P, as shown, that holds the system in the			
	given position.			
	60° WA 15° WB WB WB WB WB WB WB WB WB WB	13	BT3	Apply
9	Three smooth pipes each weighing 20 kN and of diameter 60 cm are to			
	be placed in a rectangular channel with horizontal base as shown in the			
	figure. Calculate the reactions at the point of contact between the pipes			
	and between the channel and the pipes. Take the width of the channel as			
	160 cm.	13	BT5	Evaluate
10	Two identical rollers, each of weight 50 N, are supported by an inclined			
	plane and vertical walls as shown in the figure. Find the reactions at the points of supports A, B and C. Assume all the surfaces to be smooth.	13	BT5	Evaluate

11	A string ABCD, attached to two fixed points A and D has two equal weights of 1000 N attached to it at B and C. The weights rest with the portions AB and CD inclined at the angle of 30° and 60° respectively, to the vertical as shown in the figure. Find the tensions in the portions AB, BC and CD of the string, if the inclination of the portion BC with the vertical is 120°.	13	BT5	Evaluate
12	A ball of weight 120 N rests in a right angled groove as shown in the figure. The sides of the groove are inclined at an angle of 30° and 60° to the horizontal. If all the surfaces are smooth, then determine the reactions R_A and R_C at the point of contact.	13	BT4	Analyze
13	A string of length 310mm has its extremities attached to two fixed points situated 250mm apart in a horizontal line. If the string can bear any tension up to 36N, find the greatest load that can be supported at a point of the string distance 240mm from one extremity.	13	BT3	Apply
14	Two smooth circular cylinders each of weight 1000 N and radius 15 cm are connected at their centers by a string AB of length 40 cm and rest upon a horizontal plane, supporting above them a third cylinder of	13	BT3	Apply

	PART-C (15 Marks)			
1	Five forces are acting on a particle. The magnitude of forces are 300 N, 600 N, 700 N, 900 N and P and their respective angles made with the horizontal are 0° , 60° , 135° , 210° and 270° . If the vertical component of all forces is -1000 N, find the value of P. Also calculate the magnitude and the direction of the resultant, assuming that the first force acts towards the point, while all the remaining forces act away from the point.	15	BT6	Create
2	A electric light fixture weighing 150 N hangs from a point C, by two strings AC and BC as shown in the figure. Determine the forces in the strings AC and BC. $\frac{B}{60^{\circ}} + \frac{45^{\circ}}{C} + \frac{A}{150N}$	15	BT6	Create
3	Two cables are tied together at the point O and loaded as shown in the figure. Determine the tensions in OO ₁ and OO ₂ .	15	BT5	Evaluate

4	Determine the resultant of system of forces acting as shown in Fig.	15	BT3	Apply
5.	ABCDE is a light string whose end A is fixed. The weights W_1 and W_2 are attached to the string at B&C and the string passes round a small smooth wheel at D carrying a weight 40kN at the free end E. In the position of equilibrium, BC is horizontal and AB and CD make angles 150° and 120° with horizontal. Find (i) the tensions in AB BC and DE of the given string (ii) magnitudes of W_1 and W_2 .	15	BT6	Create

	UNIT II EQUILIBRIUM OF RIGID BODIES				
Free bo	ody diagram – Types of supports – Action and reaction forces –stable equili	brium – Mo	oments and Couples –		
Mome	nt of a force about a point and about an axis - Varignon's theorem - Single	equivalent	force -Equilibrium of		
Rigid b	Rigid bodies in two dimensions – Equilibrium of Rigid bodies in three dimensions				
	PART - A (2Marks)				
S.No	QUESTIONS	LEVEL	COMPETENCE		
1.	State the principle of moments.	BT2	Understand		
2.	State the necessary and sufficient conditions for equilibrium of rigid	BT1	Remember		
	bodies in two dimensions.				
3.	The position vector and force are $2i - 3j + 4k$ and $120i - 260j + 320k$.	BT1	Remember		
	Find the moment of the force about the origin. And also find the scalar				
	quantity of the moment.				
4.	Define the term couple.	BT1	Remember		
5.	What are the characteristics of a couple?	BT2	Understand		
6.	Represent a (i) Horizontal roller support and (ii) Inclined roller support	BT3	Apply		
	showing its direction of the reaction.				
7.	Find the magnitude and position of the resultant of two forces 5kN and	BT1	Remember		
	8kN both acting vertically upwards and separated by 4m.				
	5kN R=13kN 8kN				
	2.46m				
	4 4m				
8.	Define moment of a force?	BT2	Understand		
9.	For what condition the moment of a force will be zero.	BT1	Remember		
10.	What is the difference between a moment and a couple?	BT3	Apply		
11.	What is difference between a fixed vector and free vector?	BT1	Remember		
12.	With the help of a simple illustration, define free body diagram.	BT5	Evaluate		
13.	Find the moment of the force of 15N acting along the positive direction of	BT1	Remember		
	X-axis about the point A (2, 3).				
14.	Sketch the idealized, graphical and reaction of a cantilever support at a	BT2	Understand		
	point.				

15.	State the requirements for equilibrium of a body acted upon by a parallel	BT1	Remember
	force system?		
16.	What are the necessary and sufficient conditions for the equilibrium of a	BT1	Remember
	rigid body in three dimensions?		
17.	What are the common types of supports used in two dimensions?	BT1	Remember
18.	Find the moment of 20 N force about the point 'O' as shown in Fig.	BT1	Remember
	5m		
19.	What are the common types of supports used in three dimensions?	BT1	Remember
20.	Mention some applications of cantilever beam.	BT1	Remember
21.	What are the common types of loads?	BT1	Remember
22.	What is statically determinate structure?	BT1	Remember
23.	What are the reaction at a fixed support of plane beam that are possible?	BT1	Remember
24.	State necessary and sufficient conditions for equilibrium of rigid bodies in	BT1	Remember
	two dimensions?		
25.	When is moment of force maximum about a point?	BT1	Remember
1			

	PART - B (13 Marks)			
S.No	QUESTIONS	Marks	Level	Competence
1	Four forces of magnitude and direction acting on a square ABCD of side 2 m			
	are shown in the figure. Calculate the resultant in magnitude and direction	13	BT5	Evaluate
	and also locate its point of application with respect to the sides AB and AD.			

Blocks A and B of the weight 200 N and 100 N respectively, rest on a 30°			
inclined plane and are attached to the post which is held perpendicular to the			
plane by a force P, parallel to the plane as shown in the figure. Assume that			
all surfaces are smooth and that the cords are parallel to the plane. Determine			
the value of P. Also find the normal reaction of the blocks A and B.			
P P P P P P P P P P P P P P	13	BT4	Analyze
A uniform meter rod AB, assumed rigid of the mass 0.5 kg is suspended from			
its ends in an inclined position and a mass of 1 kg is suspended from a point			
D, as shown in the figure. Determine the tension in each strings. Where the			
suspended mass should be placed in order to get equal tension in the strings.			
String String 1 String 2 1 String 2 1 String 2 1 String 2 1 String 2 1 String 2 1 String 2 String Stri	13	BT3	Apply
Find the support reactions of the beam as shown in the figure.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	BT5	Evaluate
	Blocks A and B of the weight 200 N and 100 N respectively, rest on a 30° inclined plane and are attached to the post which is held perpendicular to the plane by a force P, parallel to the plane as shown in the figure. Assume that all surfaces are smooth and that the cords are parallel to the plane. Determine the value of P. Also find the normal reaction of the blocks A and B.	Blocks A and B of the weight 200 N and 100 N respectively, rest on a 30° inclined plane and are attached to the post which is held perpendicular to the plane by a force P, parallel to the plane as shown in the figure. Assume that all surfaces are smooth and that the cords are parallel to the plane. Determine the value of P. Also find the normal reaction of the blocks A and B. 13 A uniform meter rod AB, assumed rigid of the mass 0.5 kg is suspended from a point D, as shown in the figure. Determine the tension in each strings. 13 Image: String for the support reactions of the beam as shown in the figure. 13 Image: String for the support reactions of the beam as shown in the figure. 13 Image: String for the support reactions of the beam as shown in the figure. 13	Blocks A and B of the weight 200 N and 100 N respectively, rest on a 30° inclined plane and are attached to the post which is held perpendicular to the plane by a force P, parallel to the plane as shown in the figure. Assume that all surfaces are smooth and that the cords are parallel to the plane. Determine the value of P. Also find the normal reaction of the blocks A and B. 13 BT4 A uniform meter rod AB, assumed rigid of the mass 0.5 kg is suspended from its ends in an inclined position and a mass of 1 kg is suspended from a point D, as shown in the figure. Determine the tension in each strings. 13 BT3 Find the support reactions of the beam as shown in the figure. 13 BT3 Ind the support reactions of the beam as shown in the figure. 13 BT3

(i) Fine the equivalent force couple system at the origin O. (ii) Find the single resultant force and its location on X - axis	Analyze
shown in figure below the weight of the boom can be neglected. $\frac{1}{T} = \frac{309}{5}$	
A 200 755 13 BT4	Analyze
(i) Sketch the free body diagram of the boom	
(ii) Determine the tension in cable BC	
(iii)Find the magnitude and direction of the reaction at A.	
17.A cable BD and the corner of wall and floor surface as shown in fig support a rod AB of weight 200N. Find the reaction at A and tension in the cord.13BT4	Analyze

UNIT III – PROPERTIES OF SURFACES AND SOLIDS

Centroids of areas, composite areas, determination of moment of inertia of plane figures by integration, polar moment of inertia-radius of gyration - Parallel axis theorem and perpendicular axis theorem – Centre of mass – mass moment of inertia of simple solids.

	PART - A (2Marks)					
S.No	QUESTIONS	LEVEL	COMPETENCE			
1.	What is meant by centre of gravity?	BT1	Remember			
2.	What is meant by centroid?	BT1	Remember			
3.	What is centre of mass?	BT1	Remember			
4.	What do reference axes mean?	BT2	Understand			
5.	What is meant by centroidal axis?	BT2	Understand			
6.	What is parallel axes theorem for moment of inertia?	BT2	Understand			
7.	What is perpendicular axes theorem for moment of inertia?	BT1	Remember			
8.	What is product of inertia?	BT1	Remember			
9.	What is principal moment of inertia?	BT2	Understand			
10.	What is mass moment of inertia?	BT2	Understand			
11.	Define Radius of Gyration.	BT1	Remember			
12.	State Pappus theorem.	BT5	Evaluate			
13.	State Guldinus theorem	BT3	Apply			
14.	Write the formula for centre of gravity of composite solid figures.	BT2	Understand			
15.	When will the product of inertia of an become zero?	BT1	Remember			
16.	Define first moment of an area about an axis.	BT2	Understand			
17.	What do you mean by polar moment of inertia?	BT2	Understand			
18.	When will the centroid and centre of mass coincides?	BT2	Understand			
19.	Express the centroidal coordinates of a quadrant of the circle.	BT2	Understand			
20.	How will you locate the principal axes of inertia?	BT3	Apply			

21.	What are the various methods to find centre of gravity?	BT2	Understand
22.	What is section modulus?	BT2	Understand
23.	State the relationship between the second moment of area and mass moment of inertia for a thin uniform plate.	BT2	Understand
24.	What are the theorems that deal with moment of inertia?	BT2	Understand
25.	What are major and minor principal axes?	BT2	Understand

	PART - B (13 Marks)				
S.No	QUESTIONS	Marks	Level	Competence	
1	Find the moment of inertia of shaded area as shown in figure about Ixx axis and Iyy axis. $\frac{10 \text{ cm}}{10 \text{ cm}} \frac{10 \text{ cm}}{10 \text{ cm}} \frac{10 \text{ cm}}{10 \text{ cm}}$	13	BT5	Evaluate	
2	Determine the moment of inertia of the shaded area as shown in figure with respect to the x axis $\frac{y}{120 \text{ mm}} = \frac{240 \text{ mm}}{r}$	13	BT5	Evaluate	
3	A solid hemisphere of density 2ρ is attached centrally to a solid cylinder of density ρ . Find the height of the cylindrical portion to have the CG of the solid combination on the axis of symmetry at the junction between the hemisphere and the cylinder. Take the cylinder diameter as 100mm.	13	BT5	Evaluate	

4	Locate the centroid of the area shown in figure below. The dimensions are			
	in mm.	13	BT4	Analyze
5	Determine the co-ordinates of centroid of the shaded area shown in figure. $1 \\ 1 \\ 30 \\ m \\ x \\ x$	13	BT5	Evaluate
6	A Cylinder of height of 10 cm and radius of base 4 cm is placed under sphere of radius 4 cm such that they have a common vertical axis. If both of them are made of the same material, find the centre of gravity of the combined unit.	13	BT5	Evaluate
7	Find the moment of inertia of the section shown in the figure about the centroidal axes. $\begin{array}{c} y \\ 50 \\ \hline \\ 9 \\ \hline \\ 9 \\ \hline \\ 9 \\ \hline \\ 200 \\ \hline \\$	13	BT3	Apply

8	Find the mass moment of inertia of the plate shown in fig with respect to			
	the axis AB. Thickness of the plate is 5mm and density of the material is			
	6500kg/m ³ .	13	BT4	Analyze
9	Derive the expression for mass moment of inertia of prism along three axes.	13	BT3	Apply
10	Calculate Moment of Inertia about the co-ordinate axes of plane area shown in fig. Also find Polar Moment of Inertia. All the dimensions are in 'mm'. y 300 1000 1000 100 1000 1000 1000 1000 1000 1000	13	BT5	Evaluate
11	Determine the principal moments of inertia and find location of principal axes of surface shown in figure	13	BT5	Evaluate
12	Determine the Moment of Inertia and radius of gyration of surface about x	13	BT4	Analyze

	axis shown in fig. Also find MOI about centroidal x axis.			
	Scn 10cn			
	Scn 15cm			
13	Illustrate the Mass moment of inertia of plane area about centroidal axes			
	shown in fig.	13	BT5	Evaluate
14	Explain second moment of area about the centroidal XX axis and a-a axis of the surface shown in fig.	13	BT5	Evaluate
15.	For the section shown in figure below, locate the horizontal and vertical centroidal axis.	13	BT5	Evaluate

UNIT IV - FRICTION

Frictional Force - Laws of Coulomb friction - Cone of friction - Angle of repose - relation between cone of friction and angle of repose - limiting friction - Rolling resistance - Simple contact friction - Screw – Wedge – Ladder - Belt friction.

	PART -				
S.No	QUESTION	LEVEL	COMPETENCE		
1.	Define friction.	BT1	Remember		
2.	Classify the type of friction.	BT1	Remember		
3.	Define limiting friction.	BT2	Understand		
4.	Define co-efficient of static friction.	BT1	Remember		
5.	State Coulomb's laws of dry friction.	BT1	Remember		
6.	What is impending motion?	BT2	Understand		
7.	Define angle of repose.	BT1	Remember		
8.	Define cone of friction.	BT1	Remember		
9.	What is co-efficient of Rolling resistance?	BT1	Remember		
10.	Define rolling resistance.	BT2	Understand		
11.	Analyze the coefficient of friction and express its relationship with	BT2	Understand		
	angle of friction.				
12.	Define ladder friction.	BT2	Understand		
13.	Compare and contrast Ladder friction and Wedge friction.	BT2	Understand		
14.	Compare Co-efficient of friction and angle of friction	BT2	Understand		
15.	Define frictional force and its direction.	BT1	Remember		
16.	State any two important law of dry friction.	BT1	Remember		
17.	Why is static coefficient of friction μ , always greater than kinetic	BT2	Understand		
	coefficient of friction $\mu_{k.}$				
18.	State the equilibrium conditions to be satisfied by a ladder at just start	BT1	Remember		
	of sliding?				
19.	Define the belt friction and write the relation between ratio of tensions	BT1	Remember		
	and coefficient of belt friction.				
20.	Define wedge and wedge friction.	BT1	Remember		
21.	Give the expression to calculate coefficient of friction in V-belt.	BT2	Understand		
L					

22.	Define friction and classify its types.	BT2	Understand
23.	Define screw friction.	BT2	Understand
24.	What is meant by fluid friction?	BT2	Understand
25.	What are two types of dynamics friction?	BT2	Understand

	PART - B (13 Marks)			
S.No	QUESTIONS	Marks	Level	Competence
1	Two rough planes are joined together. One of them is horizontal and the other is inclined at 45° to the horizontal. A 100 kg block is on the inclined plane and is connected to a 60 kg block on the horizontal plane through a cable passing over a smooth pulley at the junction of the planes. A dragging force of A is applied on 60 kg block at an angle of Θ to the horizontal. Find the magnitude of the force and the value of Θ for the motion is about to start. Assume $\mu = 0.25$	13	BT5	Evaluate
2	Two blocks A and B are placed on inclined planes as shown. The block A weighs 1000N. Determine minimum weight of the block B for maintaining the equilibrium of the system. Assume that the blocks are connected by an inextensible string passing over a frictionless pulley. Coefficient of friction μ_A between the block A and the plane is 0.25. Assume the same value for μ_B .	13	BT5	Evaluate
3	A ladder $3m$ long and weighing 200N is resting on the horizontal floor and leaning against a vertical wall making 30° with the floor. The friction coefficients at the ground and wall contact surfaces are 0.35 and 0.25	13	BT5	Evaluate

	respectively. It has to support a weight of 100N at the top. To prevent			
	slipping a string is tied to the foot of the ladder and attached to the wall in			
	the horizontal position. Determine the minimum tension required in the			
	string for this condition. Find also the minimum angle with the floor at			
	which the above ladder with the weight at the top could be placed without			
	slipping in the absence of string.			
4	A body, resting on a rough horizontal plane, required a pull of 180 N			
	inclined at 30° to the plane just to move it. It was found that a push of 220 N	13	BT3	Apply
	inclined at 30° to the plane just moved the body. Determine the weight of	15	DIJ	
	the body and the coefficient of friction.			
5	Block (2) rests on block (1) and is attached by a horizontal rope AB to the			
	wall as shown in fig. What force P is necessary to cause motion of block (1)			
	to impend? The co-efficient of friction between the blocks is ¹ / ₄ and between			
	the floor and block (1) is 1/3. Mass of blocks (1) and (2) are 14kg and 9 kg			
	respectively.			
		13	BT5	Evaluate
6	Block A weighing 1000 N rests on a rough inclined plane whose inclination			
	to the horizontal is 45°. It is connected to another block B, weighing 3000 N			
	rests on a rough horizontal plane by a weightless rigid bar inclined at an			
	angle of 30° to the horizontal as shown in fig. Find the horizontal force	13	BT5	Evaluate
	required to be applied to the block B just to move the block A in upward			
	direction. Assume angle of friction as 15° at all surfaces where there is			
	sliding.			

	AND TSO			
7	A 7m long ladder rests against a vertical wall, with which it makes an angle of 45° and on a floor. If a man whose weight is one half that of the ladder climbs it, at what distance along the ladder will he be, when the ladder is about to slip? Take coefficient of friction between the ladder and the wall is 1/3 and that between the ladder and the floor is ½.	13	BT5	Evaluate
8	An effort of 200 N is required just to move a certain body up an inclined plane of angle 15°, the force is acting parallel to the plane. If the angle of inclination of the plane is made 20°, the effort required being again parallel to the plane, is found to be 230 N. Predict the weight of the body and coefficient of friction.	13	BT3	Apply
9	A ladder of length 4 m, weighing 200 N is placed against a vertical wall as shown in Fig.10. The coefficient of friction between the wall and the ladder is 0.2 and that between floor and the ladder is 0.3. The ladder, in addition to its own weight, has to support a man weighing 600 N at a distance of 3m from A. Calculate the minimum horizontal force to be applied at A to	13	BT3	Apply

	prevent slipping.			
	$\begin{array}{c} 4 \text{ m} \\ 4 \text{ m} \\ 3 \text{ m} \\ 2 \text{ m} \\ 2 \text{ m} \\ 200 \text{ N} \\ \hline \\ P \\ A \end{array}$			
10	A ladder of weight 1000 N and length 4 m rests as shown in figure. If a 750 N weight is applied at a distance of 3 m from the top of ladder, it is at the point of sliding. Determine the coefficient of friction between ladder and the floor.	13	BT5	Evalu ate
11	A rope is wrapped 3 times around the rod as shown in the fig. Design the force required at the free end of the rope to stope the load w=20KN.Take μ =0.3	13	BT3	Apply
12	A cylinder of radius 80 mm rolls down on an inclined plane at an angle of	13	BT3	Apply

	2° with the horizontal. Determine the co-efficient of rolling resistance of the			
	cylinder.			
13	A screw jack has a pitch of 12 mm with a mean radius of thread equal to			
	22.5 mm. a lever 600 mm long is used to raise a load of 1800 kg. if the co-	13	DT2	Apply
	efficient of friction is 0.10, what force is necessary when applied normal to	15	DIJ	
	the lever at its free end?			
14	A body of weight 16 N rests on a rough inclined plane at an angle of 30° to			Apply
	the horizontal. If a force of 2N acting up the plane is just sufficient to	12	рт2	
	prevent the body from slipping downwards, find the force in the same	15	DIS	
	direction which will make the body on the point of moving upwards.			
15	A ladder 5 meters long rests on a horizontal ground and leans against a			
	smooth vertical wall at an angle 70° with the horizontal. The weight of the			Evaluate
	ladder is 900 N and acts at its middle. The ladder is at the point of sliding,	12	DT5	
	when a man weighing 750N stands on a rung 1.5 meter from the bottom of	15	DIJ	
	the ladder. Calculate the coefficient of friction between the ladder and the			
	floor. SRM			
16	Block A of mass 30 kg rests on block B of mass 40 kg as shown in Fig.			
	Block A is restrained from moving by a horizontal rope tied at point C, what			
	force P applied to the plane inclined at 300 with horizontal is necessary to			
	start block B down the plane. Take coefficient of friction for all surfaces as			
	0.35.			
		13	BT3	Apply
17	Find the value of ' Θ ' if the block 'A' and 'B' shown in Fig. have impending motion. Given block A = 20 kg, block B = 20 kg, $\mu_A = \mu_B = 0.25$	13	BT3	Apply

18	Find the least force required to drag a body of weight 'W' placed on a rough inclined plane having inclination 'α' to the horizontal. The force is applied	13	BT3	Apply
	to the body in such a way that it makes an angle ' Θ ' to the inclined plane and the body is on the point of motion up the plane.			
	PART-C (15 Marks)	<u> </u>	<u> </u>	
1	Two blocks A and B of mass 50 kg and 100 kg respectively are connected by a string C which passes through a frictionless pulley connected with the fixed wall by another string D as shown in figure. Find the force P required to pull the lock B. Also find the tension in the string D. Take coefficient of friction at all contact surfaces as 0.3.	15	BT5	Evalu ate
2	A uniform ladder of weight 1000 N and of length 4m rests on horizontal ground and leans against a smooth vertical wall. The ladder makes an angle of 60° with horizontal. When a mean of weight 750 N stands on the ladder at a distance 3m from the top of the ladder, the ladder is at the point of sliding. Determine the co-efficient of friction between the ladder and the floor.	15	BT5	Evalu ate
3	In a screw jack, the pitch of the square threaded screw is 5.5 mm and the mean diameter is 70 mm. the force exerted in turning the screw is applied at the end of a lever 210 mm long measured from the axis of the screw. If the co-efficient of friction of the screw jack is 0.07. calculate the force required	15	BT6	Creat e

	at the end of the lever to (i) raise a weight of 30kN (ii) lower the same wight.			
4	An effort of 200N is required just to move a certain body up an inclined plane of angle 15°, the force is acting parallel to the plane. If the angle of inclination of the plane is made 20°, the effort required being again parallel to the plane, if found to be 230 N. Find the wight of the body and the coefficient of friction.	15	BT3	Apply
5	Two blocks W ₁ and W ₂ resting on two inclined planes are connected by a horizontal bar AB as shown in Fig. If W ₁ is equals 1000 N, determine the maximum value of W ₂ for which the equilibrium can exists. The angle of limiting friction is 20° at all rubbing faces. $W_1 = 1000 \text{ N}$ W_2 $W_1 = 1000 \text{ N}$ W_2	15	BT3	Apply

UNIT V - KINEMATICS AND KINETICS OF RIGID BODIES

Displacements, Velocity and acceleration, their relationship – Relative motion – Curvilinear motion - Newton's laws of motion – Work Energy Equation– Impulse and Momentum – Impact of elastic bodies.

PART - A (2Marks)						
S.No	QUESTIONS	LEV	COMPETENCE			
1.	Define D'Alembert's principle	BT1	Remember			
2.	Discuss about the equations of motion of a particle under gravitation.	BT2	Understand			
3.	Differentiate linear and angular momentum.	BT3	Apply			
4.	Give the dynamic equilibrium conditions.	BT1	Remember			
5.	A car accelerates uniformly from a speed of 30 kmph in 5 seconds. Determine the acceleration of the car and the distance travelled by the car during 5 seconds.	BT2	Understand			
6.	State the law of conservation of momentum	BT1	Remember			
7.	A car starts from rest with a constant acceleration of 4m/sec ² . Determine the distance travelled in the 7 th second.	BT2	Understand			
8.	Solve the following: A stone is projected in space at an angle of 45° to horizontal at an initial velocity of 10 m/sec. Find the range of the projectile.	BT2	Understand			
9.	What is work energy principle.	BT1	Remember			
10.	Illustrate the impulse momentum equation?	BT1	Remember			
11.	Distinguish between kinetics and kinematics.	BT2	Understand			
12.	Distinguish between impulse and impulsive force.	BT2	Understand			
13.	Analyze the impulse momentum equation.	BT2	Understand			
14.	Compare and contrast the rectilinear and curvilinear motion.	BT2	Understand			
15.	Define inertia force.	BT1	Remember			
16.	What differences exist between impulse and momentum?	BT1	Remember			
17.	Compare and contrast the impact and elastic impact.	BT3	Apply			
18.	Define Co-efficient of restitution.	BT1	Remember			
19.	State Newton's law of collision of elastic bodies.	BT2	Understand			
20.	Define range of projectile.	BT1	Remember			
21.	A point P moves along a straight line according to the equation $x = 4t^3+2t+5$, where x is in meters and t is in secs. Determine the velocity and acceleration at t=3 secs.	BT2	Understand			

22.	The particle moving with $S = 9t^3 + 2t + 2$. Find velocity and acceleration v time t=6sec.	vhen	BT2	2	Understand		
23.	How do you define the moment of the particle?		BT2	2 1	Understand		
24.	Define Law of conservation of momentum.		BT2		Understand		
25.	Define law of conservation of angular momentum.		BT2		BT2		Understand
	PART - B (13 Marks)						
S.No	QUESTIONS	Mai	rks	Level	Competence		
1	A body moving with uniform acceleration observed to travel 33m in 8th				Apply		
	second and 53m in 13 second of its travel. calculate the velocity at start	13	3	BT3	Appry		
	and uniform acceleration						
2	Two stones A and B are projected from the same point at inclinations of						
	45° and 30° respectively to the horizontal. Find the ratio of the velocities	1/	.3	BT3	Apply		
	of projection of A and B if the maximum height reached by them is the	1.					
	same						
3	Water drips from a tap fitted to a barrel at the rate of four drops per				Apply		
	second. Find the vertical separation between two consecutive drops after	13	3	BT3			
	the lower drop has attained a velocity of 3m/s						
4	A train is traveling from A to D along the track. Its initial velocity at A is						
	zero. The train takes 5 min to cover the distance AB, 2250 m length and						
	2.5 minutes to cover, the distance BC, 3000 m in length, on reaching the	13	2	DT2	Apply		
	station C, the brakes are applied and the train stops 2250 m beyond, at D	1.)	D 13			
	(i) Find the retardation on CD, (ii) the time it takes the train to get from A						
	to D, and (iii) its average speed for the whole distance.						
5	The position of the particle is given by the relation $S=1.5t^3-9t^2-22.5t+60$,						
	where S is expressed in meters and t in seconds. Determine (i) the time at				Apply		
	which the velocity will be zero (ii) the position and distance travelled by	13	3	BT3	Арргу		
	the particle at that time (iii) the acceleration of the particle at that time						
	and (iv) the distance travelled by the particle from $t = 5s$ to $t = 7s$.						

6	A body A is projected vertically upwards from the top of a tower with a			
	velocity of 40 m/s, the tower being 180m high. After t sec, another body			
	B is allowed to fall from the same point. Both the bodies reach the ground	13	BT3	Apply
	simultaneously. Calculate t and the velocities of A and B on reaching the			
	ground			
7	Two smooth spheres 1 and 2 having a mass of 2 kg and 4 kg respectively			
	collide with initial velocities as shown in figure. If the coefficient of			
	restitution for the spheres is $e=0.8$, determine the velocities of each			
	sphere after collision.			
	$m_1 = 2 \text{ kg}$ $m_1 = 2 \text{ kg}$ $m_2 = 4 \text{ kg}$ $m_2 = 4 \text{ kg}$ $m_1 = 2 \text{ kg}$ $m_2 = 4 \text{ kg}$ $m_2 = 4 \text{ kg}$	13	BT3	Apply
8	Two bodies of 9 kg and 13.5 kg are suspended on two ends of a string			
	passing over a pulley of radius 275 mm and mass moment of inertia =			
	16.5kg m2 as shown. Determine the tensions in the strings and the			
	angular acceleration of the pulley.			
	275 mm	13	BT3	Apply
9	A particle is projected with a initial velocity of 12m/s at an angle M with	13		
	the horizontal. After sometime, the position of the particle is observed by		RT5	Evaluate
	its x and y distances of 6m and 4m respectively from the point of			
	projection. Find the angle of projection.			
10	A cricket ball hit at a height of 1.5m from the ground by a batsman with a	13	BT3	Apply

	velocity of 20 m/s, at an angle of 30° to the horizontal was caught by field			
	man at a height of 50 cm from the ground. Find out the distance between			
	the two players.			
11	Two blocks of weight 150 N and 50 N are connected by a string and			
	passing over a frictionless pulley as shown in figure. Predict the			
	acceleration of blocks A and B and the tension in the string.			
		13	BT5	Evaluate
12	Two weights 80 N and 20 N are connected by a thread and move along a	1	BT3	Apply
	rough horizontal plane under the action of a force 40 N, applied to the			
	first weight of 80 N as shown in figure. The coefficient of friction			
	between the sliding surfaces of the wrights and the plane is 0.3. Design			
	the acceleration of the weights and the tension in the thread using work-	13		
	energy equation.			
	20N 80N 40N			
13	A ball of mass 2 kg, moving with a velocity of 3 m/s, impinges on a ball			
	of mass 4 kg moving with a velocity of 1 m/s. The velocities of the two		13 BT5	
	balls are parallel and inclined at 30° to the line of joining their centers at	13		
	the instant of impact. If the coefficient of restitution is 0.5, Explain			Evaluate
	I. Direction, in which the 4 kg ball will move after impact; (5)			
	II. Velocity of the 4 kg ball after impact; (2)			
	III. Direction, in which the 2 kg ball will move after impact; (4)			
	IV. Velocity of the 2 kg ball after impact. (2)			

14	A ball of mass 500 grams, moving with a velocity of 1m/s impinges on a ball of mass 1kg, moving with a velocity of 0.75 m/s. at the time of impact, the velocities of the balls are parallel and inclined at 60° to the line joining their centers. Determine the velocities and directions of the balls after impact. Take, e=0.6.	13	BT5	Evaluate
15.	A weight of 10N resting on an inclined plane that makes an angle of 30° with horizontal is connected by a string passing over a frictionless pulley at the upper end of the plane. On the free end of the string a weight of 20N is connected. If the coefficient of friction between the plane and 10N weight is 0.2 calculate the time taken by the hanging weight to descend by 1m. Adopt work-energy method.	13	BT3	Apply
16.	A bullet of mass 20g is fired into a body of mass 10Kg, which is suspended by a string 0.8m long. Due to this impact, the body swings through an angle of 30°. Find the velocity of the bullet.	13	BT3	Apply
17.	A ball is thrown vertically upward from a point located 20m above the ground. The maximum height reached by the ball is 30m from the ground. Determine the initial velocity of the ball at 20m above the ground and the velocity with which the ball strikes the ground.	13	BT3	Apply
18.	Two vehicles approach each other in opposite lanes of a straight horizontal roadway as shown in fig. Find the time and positions at which the vehicles meet if both continue to move with constant speed. 50 40 40 40 40 40 40 40	13	BT3	Apply

	PART-C (15 Marks)			
1	A ball is dropped from a height of 10m on a fixed steel platform. Determine the height to which the ball rebounds on the first, second and third bounces. The co-efficient of restitution between the ball and the plate is 0.9.	15	BT3	Apply
2	Two Blocks A and B of weight 100 N and 200 N respectively are initially at rest on a 30° inclined plane as shown in figure. The distance between the blocks is 6 m. The co-efficient of friction between the block A and the plane is 0.25 and that between the block B and the plane is 0.15. If they are released at the same time, in what time the upper block (B) reaches the Block (A).	15	BT6	Create
3	Two bodies one of mass 30kg, moves with a velocity of 9m/s strikes on another body of mass 15kg, moving in the opposite direction with the velocity of 9m/s centrally. Find the velocity of each body after impact, if the coefficient of restitution is 0.8.	15	BT5	Evaluate
4	A ball strikes centrally on another ball of mass twice the mass of first ball but moving with a velocity 1/7 of the velocity of first ball and in the same direction. Show that, the first ball comes to rest after impact. The co- efficient of restitution between them is ³ / ₄ .	15	BT5	Evaluate
5	A shot is fired with a velocity of 30m/sec from a point 15m in front of a vertical wall 6m high. Find the angle of projection with the horizontal to enable the shot to just clear the wall. Explain the double answer.	15	BT5	Evaluate