SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF MECHANICAL ENGINEERING

QUESTION BANK

III - SEMESTER

1909302 ENGINEERING THERMODYNAMICS

Regulation – 2019 Academic Year 2022 – 2023

Prepared by

Mr. S. Sivasankar M.E., (Ph.D.) Assistant Professor (O.G)

UNIT 1 - BASIC CONCEPTS AND FIRST LAW

Basic concepts - concept of continuum, comparison of microscopic and macroscopic approach. Path and point functions. Intensive and extensive. System and their types. Thermodynamic Equilibrium State, path and process. Quasi-static, reversible and irreversible processes. Heat and work transfer-V diagram. Zeroth law of Thermodynamics – concept of temperature and thermal equilibrium– relationship between temperature scales –First law of thermodynamics – application to closed and open systems – steady and unsteady flow processes.

PART - A (2 MARKS)				
S1.No	QUESTIONS	BT LEVEL	COMPETENCE	
1	Express flow Energy.	BT-2	Understanding	
2	Interpret the conditions of steady flow process.	BT-2	Understanding	
3	Summarize thermodynamic equilibrium.	BT-2	Understanding	
4	Differentiate between point function and path function.	BT-2	Understanding	
5	Using Knudsen number define continuum.	BT-1	Remembering	
6	What is meant by control volume and control surface?	BT-1	Remembering	
7	Should the automobile radiator be analysed as a closed system or as an open system?	BT-1	Remembering	
8	Enlist the similarities between heat and work.	BT-1	Remembering	
9	What is microscopic approach in thermodynamics?	BT-1	Remembering	
10	Infer the extensive property.	BT-2	Understanding	
11	What is perpetual motion machine of first kind [PMM1]?	BT-1	Remembering	
12	Give the limitations of first law of thermodynamics.	BT-2	Understanding	
13	Show the difference in specific heat capacities equal to Cp - Cv =R.	BT-1	Remembering	
14	Compare homogeneous and heterogeneous system.	BT-2	Understanding	
15	Compare intensive and extensive properties.	BT-2	Understanding	
16	Differentiate quasi static and non quasi static process.	BT-2	Understanding	
17	Define the term State and Process.	BT-1	Remembering	
18	How there is no change in internal energy in an isolated system	BT-1	Remembering	
19	Show the practical application of steady flow energy equation.	BT-1	Remembering	
20	Illustrate the reversible and irreversible process.	BT-2	Understanding	
21	Define an isolated system, there is no change in internal energy.	BT-1	Remembering	
22	Show that work is a path function and not a property.	BT-1	Remembering	
23	Relate the energy of an isolated system is always constant.	BT-2	Understanding	
24	State that First law of thermodynamics for a non-flow process and for a cycle.	BT-1	Remembering	
25	Show any four reasons for irreversibility in a process.	BT-2	Understanding	

	PART - B (13 MARKS)			
Sl.No	QUESTIONS	MARKS	BT LEVEL	COMPETENCE
1.i	Convert the following readings of pressure to kPa assuming	7	BT-4	Analysing
	that barometer reads 760 mm of Hg.			
	Discover: (i) 80 cm of Hg (ii) 30 cm Hg vacuum(iii) 1.35 m			
	H_2O gauge (iv) 4.2 bar.			
1.ii	A tube contains an oil of specific gravity 0.9 to a depth of	6	BT-3	Applying
	120 cm. Plan the gauge pressure at this depth (in kN/m^2).			
2	A piston and cylinder machine containing a fluid system	13	BT-5	Evaluating
	has a stirring device in the cylinder in Fig. The piston is			
	frictionless, and it is held down against the fluid due to the			
	atmospheric pressure of 101.325 kPa. The stirring device is			
	turned 10,000 revolutions with an average torque against		-	
	the fluid of 1.275 mN. Meanwhile the piston of 0.6 m		2	
	diameter moves out 0.8 m. Determine the network transfer		0	
	for the system.		5	
	System H ^{0.3 m}		5	
	$W_1 \xrightarrow{1} \\ W_2 \xrightarrow{1} \\ W_1 \xrightarrow{1} \\ W_2 \xrightarrow{1} \\ W_1 \xrightarrow{1} \\ W_2 \xrightarrow{1} \\ W_1 \xrightarrow{1} \\ W_2 \xrightarrow{1} $			
3	A fluid at a pressure of 3 bar, and with specific volume of	13	BT-5	Evaluating
	0.18 m ³ /kg, contained in a cylinder behind a piston			
	expands reversibly to a pressure of 0.6 bar according to a			
	law, $P = C/v^2$ where C is a constant. Calculate the work done			
	by the fluid on the piston.			

4	Helium is contained in a cylinder of 10 litres at a pressure	13	BT-5	Evaluating
	of 10 MPa and 300 K. Helium starts leaking into the			
	atmosphere until the gas pressure in the cylinder becomes			
	half. Assume that the temperature of the cylinder and the			
	gas remains at 300 K all the time. If the atmospheric			
	pressure and temperature are 100 kPa and 300 K,			
	respectively, is there any energy transfer as work? If yes,			
	determine the work done by helium. Assume that helium			
	obeys the relation pV = nRT, where R = 8.314 kJ/k mol K			
	and n is the number of moles.			
5	A spherical balloon of 2 m diameter is filled with a gas at	13	BT-4	Analysing
	200 kPa and 300 K. The gas inside the balloon is heated.			
	Finally, the pressure reaches 1 MPa. During the process of	No		
	heating, assume that the pressure is proportional to the	6		
	diameter of the balloon. Simplify the work done by the gas		C	
	inside the balloon.	_	0	
6	Explain in detail the following terms path functions, point	13	BT <mark>-</mark> 2	Understanding
	functions, intensive, extensive properties of the system.		1	
7	Explain the pdv-work in various Quasi - Static process with	13	BT-2	Understanding
	neat sketch.		1	2
8	Drive the Relationship Between Two Specific Heats.	13	BT-3	Applying
9	A fluid system, contained in a piston and cylinder machine,	13	BT-4	Analysing
	passes through a co <mark>mplete</mark> cycle of four processes. The sum			
	of all heat transferre <mark>d during a</mark> cycle is – 340 kJ. The sys <mark>tem</mark>			
	completes 200 cycles per min.Complete the following table			
	showing the method <mark>for each i</mark> tem, and compute the net r <mark>ate</mark>	1		
	of work output in kW.			
	Process Q (kJ/min) W (kJ/min) ΔE (kJ/min)			
	1—2 0 4340 —			
	2-3 42000 0 -			
	34 -420073200			
	4—1 — — —			

10	A cylinder contains 0.45 m^3 of a gas at 1 \times 10 5 N/m^2 and	13	BT-5	Evaluating
	80°C. The gas is compressed to a volume of 0.13 m ³ , the			
	final pressure being $5 \times 10^5 \text{ N/m}^2$.			
	Determine :			
	(i) The mass of gas			
	(ii) The value of index 'n' for compression ;			
	(iii) The increase in internal energy of the gas ;			
	(iv) The heat received or rejected by the gas during			
	compression. Take γ = 1.4, R = 294.2 J/kg°C.			
11	A piston and cylinder machine contains a fluid system	13	BT-5	Evaluating
	which passes through a complete cycle of four processes.			
	During a cycle, the sum of all heat transfers is -170 kJ.			
	The system completes 100 cycles per min. Complete the	No		
	following table showing the method for each item, and	6		
	compute the net rate of work output in kW.		C	
	5		0	
	Process Q (kJ/min) W (kJ/min) △E (kJ/min)		1	
	a-b 0 2,170		1	
	b-c 21,000 0		1	1
	c-d -2,10036,600			
	d-a			1.0
12	In a steady flow app <mark>aratus</mark> , 135 kJ of work is done by each	13	BT-5	Evaluating
	kg of fluid. The spe <mark>cific vo</mark> lume of the fluid, pressure, and			
	velocity at the inlet are 0.37 m ³ /kg, 600 kPa, and 16 m/s.			
	The inlet is 32 m ab <mark>ove the fl</mark> oor, and the discharge pip <mark>e is</mark>			
	at floor level. The dis <mark>charge c</mark> onditions are 0.62 m ³ /kg, <mark>100</mark>			
	kPa, and 270 m/s. The total heat loss between the inlet and			
	discharge is 9 kJ/kg of fluid. In flowing through this			
	apparatus, does the specific internal energy increase or			
	decrease, and by how much?			
13	With a help of PV diagram explain the following process	13	BT-2	Understanding
	Constant Volume, Constant pressure, Constant			
	temperature, Polytropic process.			

14	100 liter of an ideal gas at 300 K and 1 bar is compressed	13	BT-5	Evaluating
	adiabatically to 10 bar. It is then cooled at constant volume			
	and further, expanded isothermally so as to reach the			
	condition from where it started. Draw the p-V diagram and			
	calculate:(i) pressure at the end of constant volume			
	cooling.(ii) change in internal energy during constant			
	volume process.(iii) net work done and heat transferred			
	during the cycle. Assume Cp = 14.3 kJ/kg K and Cv = 10.2			
	kJ/kg K			
15	In a gas turbine unit, the gases flow through the turbine is	13	BT-4	Analysing
	15 kg/s and the power developed by the turbine is 12000			
	kW. The enthalpies of gases at the inlet and outlet are			
	1260 kJ/kg and 400 kJ/kg respectively, and the velocity of	No		
	gases at the inlet and outlet are 50 m/s and 110 m/s	6		
	respectively.		C	
	Examine:	_	0	
	(i) The rate at which heat is rejected to the turbine, and		1	
	(ii) The area of the in <mark>let pipe given that the specific volume</mark>		1	
	of the gases at the in <mark>let is0.45 m³/kg</mark>		1	5
16	Consider a nozzle which is used to increase the velocity of a	13	BT-4	Analysing
	steady flowing stream. At the inlet to the nozzle, the			
	enthalpy of fluid is 3000 kJ/kg and the velocity is 50 m/s.			F.L.
	At the exit of the no <mark>zzle, the</mark> enthalpy is 2700 kJ/kg. The			
	nozzle is kept <mark>horizontal</mark> and is well insula <mark>ted.</mark>			
	Analyze			
	(i) the velocity at the exit of the nozzle and the mass flow			
	rate and			
	(ii) if the inlet area is 0.12 m ² and the specific volume of the			
	fluid at the inlet 0.19 m ³ /kg, find the exit area of the nozzle;			
	if the specific volume of the fluid at the exit is 0.5 m ³ /kg.			
17	A centrifugal pump delivers 60 kg of water per second. The	13	BT-5	Evaluating
	inlet and outlet pressures are 10 kPa and 400 kPa,			
	respectively. The suction is 2 m below and delivery is 8 m			
	above the centre line of the pump. The suction and delivery			
	pipe diameters are 20 cm and 10 cm,			
	respectively. Determine the capacity of the electric motor to			
	run the pump.			

18	An air compressor is used to supply air to a rigid tank that	13	BT-6	Creating
	has a volume of $4m^3$. Initially, the pressure and temperature			
	of the air in the tank are 200 kPa and 40°C respectively. The			
	supply pipe to the tank is 8 cm in diameter, and the velocity			
	of the air in the inlet pipe remains constant at 12 m/s. The			
	pressure and temperature of the air in the inlet pipe are			
	constant at 600 kPa and 40°C, respectively. Estimate the			
	following.			
	(a) The mass flow rate of the change.			
	(b) The mass of air added to the tank if the compressor stops			
	operating when the tank reaches 400 kPa and 60°C.			
	(c) The time that the compressor must be operated to			
	produce a tank pressure of 400 kPa and at temperature of	No		
	60°C	G		
I			0	
	PART - C (15 MARKS)		BT	
Sl.No	QUESTIONS	MARKS	LEVEL	COMPETENCE
1	0.2 m ³ of air at 4 bar and 130°C is contained in a system. A reversible adiabatic expansion takes place till the pressure falls to 1.02 bar. The gas is then heated at constant pressure till enthalpy increases by 72.5 kJ. Calculate: (i) The work done; (ii) The index of expansion, if the above processes are replaced by a single reversible polytropic process giving the same work between the same initial and final states. Take Cp = 1 kJ/kg K, Cv = 0.714 kJ/kg K.	15	BT-5	Evaluating
2	Air at a temperature of 15°C passes through a heat exchanger at a velocity of 30 m/s where its temperature is raised to 800°C. It then enters a turbine with the same velocity of 30 m/s and expands until the temperature falls to 650°C. On leaving the turbine, the air is taken at a velocity of 60 m/s to a nozzle where it expands until the temperature has fallen to 500°C. If the air flow rate is 2 kg/s, calculate (a) the rate of heat transfer to the air in the heat exchanger, (b) the power output from the turbine assuming no heat loss. (c) the velocity at exit from the nozzle, assuming no heat loss. Take the enthalpy of air as h = cpt, where Cp is the specific heat equal to 1.005 kJ/kg K and t is the	15	BT-5	Evaluating

3	0.3 m ³ of air at 4.5 bar and 140°C is contained in a system. A reversible adiabatic expansion takes place until the pressure falls to 1.02 bar. The gas is then heated at constant pressure till enthalpy increases by 75 kJ. Solve (i) the work done and (ii) the index of expansion, if the above processes are replaced by a single reversible polytropic process giving the same work between the same initial and final states. Take Cp = 1 kJ/kg K, Cv = 0.714 kJ/kg K	15	BT-6	Creating
4	A frictionless piston is free to move in a closed cylinder. Initially there is 0.035 m^3 of oxygen at 4.5 bar, 60°C on one side of the piston and 0.07 m^3 of methane at 4.5 bar and – 12°C on the other side. The cylinder walls and piston may be regarded as perfect thermal insulators but the oxygen may be heated electrically. Heating takes place so that the volume of oxygen doubles. Examine :(i) Final state condition ; (ii) Work done by the piston ;(iii) Heat transferred to oxygen.Treat both gases as perfect and take :For oxygen Cp = 0.88 kJ/kg K , R = $0.24 \text{ kJ/kg KFor methane Cp} = 1.92 \text{ kJ/kg K}$, R = 0.496 kJ/kg K.	15	BT-4	Analysing
5	Adapt the first law of thermodynamics in human bodies, I.C engines and also compare with them.	15	BT-6	Creating
	NAL STREET		E OF	

UNIT - II SECOND LAW AND ENTROPY

Heat Reservoir, source and sink. Heat Engine, Refrigerator, and Heat pump. Statements of second law and its corollaries. Carnot cycle Reversed Carnot cycle, Performance. Clausius inequality. Concept of entropy, T-s diagram, Tds Equations, entropy change for - pure substance, ideal gases- different processes, principle of increase in entropy. Applications of II Law. High and low grade energy. Irreversibility. I and II law Efficiency.

	PART - A (2 MARKS)				
S1.No	QUESTIONS	BT LEVEL	COMPETENCE		
1	A reversible heat engine operates between a source at 800°C	BT-1	Remembering		
	and sink at 30°C. What is the least rate of heat rejection per				
	KW network output of the engine?				
2	Define heat reservoir and source.	BT-1	Remembering		
3	What is Helmholtz free enginery function?	BT-1	Remembering		
4	State Clausius statement of II law of thermodynamics.	BT-2	Understanding		
5	Choose a schematic diagram of a heat pump.	BT-1	Remembering		
6	State kelvin Planck's second law statement.	BT-2	Understanding		
7	Compare difference between adiabatic and isentropic process.	BT-2	Understanding		
8	An inventor claims to develop an engine which absorbs 100KW	BT-1	Remembering		
	of heat from a reservoir at 1000 K produces 60 kW of work		5		
	and rejects heat to a reservoir at 500 K. Will you advise		171		
	investment in its development?				
9	What is thermal energy reservoir? Explain the term source and	BT-1	Remembering		
	sink.				
10	Label a reversed he <mark>at engine</mark> in practically.	BT-1	Remembering		
11	How irreversibility in a process is define.	BT-1	Remembering		
12	What is the difference between a refrigerator and an air	BT-2	Understanding		
	conditioner?				
13	What is meant by dead state?	BT-1	Remembering		
14	A turbine gets a supply of 5kg /s of steam at 7 bar, 250°C and	BT-2	Understanding		
	discharges it at 1 bar. Infer the availability.				
15	Point out the purpose of second law of thermodynamics.	BT-1	Remembering		
16	What are the causes of irreversibility?	BT-1	Remembering		
17	Sketch temperature entropy diagram.	BT-2	Understanding		
18	Illustrate the principle of increase of entropy.	BT-1	Remembering		
19	When a system is adiabatic, what changes will been happen in	BT-2	Understanding		
	entropy of a substance in the system?				

20	Summarize high grade and low grade energy.		BT-2	Understanding
21	What does the first law establish and what is its deficiency?			Remembering
22	Tell the basic principle involved in the second law?			Remembering
23	With a neat figure bring out the concept of source and	sink.	BT-1	Remembering
24	What is meant by coefficient of performance?		BT-2	Remembering
25	What is meant by quality of energy?		BT-1	Remembering
	PART - B (13 MARKS)		I	
S1 No	OUESTIONS	MARKS	BT	COMPETENCE
01.110	QUESTIONS	Mining	LEVEL	COMI LILINCL
1	Explain in detail about Carnot theorem and its	13	BT-5	Evaluating
	corollary with a neat sketch			
2	A reversible heat engine operates between two	13	BT-5	Evaluating
	reservoirs at temperatures of 600°C and 40°C. The		2	
	engine drives a reversible refrigerator which operates		-	
	between reservoirs at temperatures of 40°C and		<u>e</u>	
	-20°C. The heat transfer to the heat engine is 2000 kJ		1	
	and the net work <mark>output of the combined engine</mark>		1.54	
	refrigerator pl <mark>ant is 360 kJ.</mark>			5
	(a) Evaluate the he <mark>at transfer to the refrigerant and</mark>			111
	the net heat tran <mark>sfer to</mark> the reservoir at 40°C.			0
	(b) Reconsider (a) gi <mark>ven th</mark> at the efficiency of the heat			100
	engine and the CO <mark>P of th</mark> e refrigerator are each 40%			111
	of their maximum p <mark>ossible values.</mark>			
3	A cyclic heat engine operates between a source	13	BT-4	Analysing
	temperature of 10 <mark>00°C and</mark> a sink temperature of			
	40°C. Examine the least rate of heat rejection per kW			
	net output of the engine ?			
4	A reversible heat engine rejects heat at the rate of	13	BT-5	Evaluating
	1200 kJ/min at 30°C to a river. The efficiency of this			
	engine is 45%. Conclude (a) temperature of the source			
	and (b) power output of the engine.			
5	An ice plant working on a reversed Carnot cycle heat	13	BT-5	Evaluating
	pump produces 15 tonnes of ice per day. The ice is			
	formed from water at $0^{\circ}C$ and the formed ice is			
	maintained at 0°C. The heat is rejected to the			
	atmosphere at 25°C. The heat pump used to run the			
	ice plant is coupled to a Carnot engine which absorbs			

	heat from a source which is maintained at 220°C by			
	burning liquid fuel of 44500 kJ/kg calorific value and			
	rejects the heat to the atmosphere.			
	Determine:			
	(i) Power developed by the engine;			
	(ii) Fuel consumed per hour.			
	Take enthalpy of fusion of ice = 334.5 kJ/kg .			
6	A series combination of two Carnot engines operate	13	BT-6	Creating
	between the temperature of 180°C and 20°C.			
	Calculate the intermediate temperature of the engines			
	producing equal amount of work.			
7.i	An inventor claims to have developed an engine which	7	BT-5	Evaluating
	takes 100 MJ of heat at a temperature of 327°C,	CAV.	-	
	rejects 48 MJ at a temperature of 27°C and delivers		5	
	15 kWh of mechanical work. Is his claim valid?		0	
7.ii	A domestic food freezer maintains a temperature of	6	BT-3	Applying
	-15°C. The ambient air temperature is 30°C. If heat			-
	leaks into the freeze <mark>r at the continuous of 1.75 kJ/s,</mark>			-
	Identify the least p <mark>ower necessary to pump this out</mark>			177
	continuously?			0
8	Two reversible heat engines A and B are arranged in	13	BT-4	Analysing
	series, engine A re <mark>jectin</mark> g heat directly to engine B.			4.11
	Engine A receives 180 kJ at a temperature of 422 °C			
	from a hot source, while engine B is in communication			
	with a cold sink at a temperature of 5.5 °C. If the work			
	output of A is twice that of B,			
	output of A is twice that of B, Examine			
	output of A is twice that of B, Examine (i) the intermediate temperature between	/		
	output of A is twice that of B, Examine (i) the intermediate temperature between A and B,	/		
	output of A is twice that of B, Examine (i) the intermediate temperature between A and B, (ii) the efficiency of each engine and	/		
	output of A is twice that of B, Examine (i) the intermediate temperature between A and B, (ii) the efficiency of each engine and (iii) heat rejected to the cold sink.			
9	output of A is twice that of B, Examine (i) the intermediate temperature between A and B, (ii) the efficiency of each engine and (iii) heat rejected to the cold sink. Drive the equation for Clausius Inequality.	13	BT-3	Applying
9 10	output of A is twice that of B, Examine (i) the intermediate temperature between A and B, (ii) the efficiency of each engine and (iii) heat rejected to the cold sink. Drive the equation for Clausius Inequality. Drive the equation for the entropy change of an ideal	13 13	BT-3 BT-3	Applying Applying
9 10	output of A is twice that of B, Examine (i) the intermediate temperature between A and B, (ii) the efficiency of each engine and (iii) heat rejected to the cold sink. Drive the equation for Clausius Inequality. Drive the equation for the entropy change of an ideal gas.	13 13	BT-3 BT-3	Applying Applying
9 10 11	output of A is twice that of B, Examine (i) the intermediate temperature between A and B, (ii) the efficiency of each engine and (iii) heat rejected to the cold sink. Drive the equation for Clausius Inequality. Drive the equation for the entropy change of an ideal gas. A vessel of capacity 4 m3 contains air at pressure 2	13 13 13	BT-3 BT-3 BT-5	Applying Applying Evaluating
9 10 11	output of A is twice that of B, Examine (i) the intermediate temperature between A and B, (ii) the efficiency of each engine and (iii) heat rejected to the cold sink. Drive the equation for Clausius Inequality. Drive the equation for the entropy change of an ideal gas. A vessel of capacity 4 m3 contains air at pressure 2 bar and temperature 30°C. Then, additional air is	13 13 13	BT-3 BT-3 BT-5	Applying Applying Evaluating
9 10 11	 output of A is twice that of B, Examine (i) the intermediate temperature between A and B, (ii) the efficiency of each engine and (iii) heat rejected to the cold sink. Drive the equation for Clausius Inequality. Drive the equation for the entropy change of an ideal gas. A vessel of capacity 4 m3 contains air at pressure 2 bar and temperature 30°C. Then, additional air is pumped into the system until the pressure rises to 30 	13 13 13	BT-3 BT-3 BT-5	Applying Applying Evaluating

	following:			
	(a) The mass of air pumped in			
	(b) Equivalent volume of air pumped in expressed at 1			
	bar and 30°C If the vessel is now allowed to cool until			
	the temperature is again 30°C,			
	calculate the following:			
	(c) The pressure in the vessel			
	(d) Quantity of heat transferred			
	(e) The change of entropy of the gas during the cooling			
	process			
12	0.04 m3 of nitrogen contained in a cylinder behind a	13	BT-5	Evaluating
	piston is initially at 1.05 bar and 15°C. The gas is	21		
	compressed isothermally and reversibly until the	· A	_	
	pressure is 4.8 bar. Calculate :		G	
	(i) The change of entropy,		0	
	(ii) The heat flow, and		10	8
	(iii) The work done.			
	Sketch the proces <mark>s on a p-v and T-s diagram.</mark>			-
	Assume nitrogen to act as a perfect gas. Molecular			177
	weight of nitrogen = <mark>28.</mark>			0
13	An insulated cylinder of volume capacity 4 m ³	13	BT-5	Evaluating
	contains 20 kg of n <mark>itroge</mark> n. Paddle work <mark>is done on</mark>			111
	the gas by stirring i <mark>t till th</mark> e pressure in the vessel			
	gets increased			
	from 4 bar to 8 bar. Determine :			
	(i) Change in intern <mark>al energy</mark> ,			
	(ii) Work done,	/		
	(iii) Heat transferred, and			
	(iv) Change in entropy.			
	Take for nitrogen : c			
	p = 1.04 kJ/kg K, and $cv = 0.7432 kJ/kg K$			
14	A fluid undergoes a reversible adiabatic compression	13	BT-4	Analysing
	from 4 bar, 0.3 m^3 to 0.08 m^3 according to the law,			
	$pv^{1.25} = constant.$			
	Analyse : (i) Change in enthalpy ; (ii) Change in			
	internal energy ; (iii) Change in entropy ; (iv) Heat			
		1	1	

A rigid cylinder containing 0.004 m ³ of nitrogen at 1	13	BT-5	Evaluating
bar and 300 K is heated reversibly until temperature			
becomes 400 K. Determine :			
(i) The heat supplied. (ii) The entropy change.			
Assume nitrogen to be perfect gas (molecular mass =			
28) and take γ = 1.4.			
5 kg of air is heated from 300 K to 800 K. While the	13	BT-4	Analysing
pressure changes from 80 kPa to 500 kPa. Analyse			
the change in entropy.			
One kg of air is compressed polytropically from 1 bar	13	BT-5	Evaluating
pressure and temperature of 300 K to a pressure of			
6.8 bar and temperature of 370 K. Determine the	21.		
irreversibility if the sink temperature is 293 K.	CAV.	_	
Assume R = 0.287 kJ/kg K, Cp = 1.004 kJ/kg K and		5	
Cv = 0.716 kJ/kg K		0	
A liquid is heated at approximately constant pressure	13	BT-3	Applying
from 20°C to 80°C by passing it through tubes which			C
are immersed in a furnace. The furnace temperature			-
is constant at 1500°C. Solve the effectiveness of the			177
heating process when the atmospheric temperature is			0
15°C. Take specific <mark>heat of</mark> liquid as 6.3 kJ/kg K.			100
_	A rigid cylinder containing 0.004 m ³ of nitrogen at 1 bar and 300 K is heated reversibly until temperature becomes 400 K. Determine : (i) The heat supplied. (ii) The entropy change. Assume nitrogen to be perfect gas (molecular mass = 28) and take $\gamma = 1.4$. 5 kg of air is heated from 300 K to 800 K. While the pressure changes from 80 kPa to 500 kPa. Analyse the change in entropy. One kg of air is compressed polytropically from 1 bar pressure and temperature of 300 K to a pressure of 6.8 bar and temperature of 370 K. Determine the irreversibility if the sink temperature is 293 K. Assume R = 0.287 kJ/kg K, Cp = 1.004 kJ/kg K and Cv = 0.716 kJ/kg K A liquid is heated at approximately constant pressure from 20°C to 80°C by passing it through tubes which are immersed in a furnace. The furnace temperature is constant at 1500°C. Solve the effectiveness of the heating process when the atmospheric temperature is 15°C. Take specific heat of liquid as 6.3 kJ/kg K.	A rigid cylinder containing 0.004 m³ of nitrogen at 1 13 bar and 300 K is heated reversibly until temperature 13 becomes 400 K. Determine : (i) The entropy change. Assume nitrogen to be perfect gas (molecular mass = 28) and take γ = 1.4. 5 kg of air is heated from 300 K to 800 K. While the pressure changes from 80 kPa to 500 kPa. Analyse the change in entropy. 13 One kg of air is compressed polytropically from 1 bar pressure and temperature of 300 K to a pressure of 6.8 bar and temperature of 370 K. Determine the irreversibility if the sink temperature is 293 K. Assume R = 0.287 kJ/kg K, Cp = 1.004 kJ/kg K and Cv = 0.716 kJ/kg K 13 A liquid is heated at approximately constant pressure is constant at 1500°C. Solve the effectiveness of the heating process when the atmospheric temperature is 15°C. Take specific heat of liquid as 6.3 kJ/kg K. 13	A rigid cylinder containing 0.004 m³ of nitrogen at 1 13 BT-5 bar and 300 K is heated reversibly until temperature 13 BT-5 becomes 400 K. Determine : (ii) The entropy change. Assume nitrogen to be perfect gas (molecular mass = 28) and take $\gamma = 1.4$. 13 BT-4 5 kg of air is heated from 300 K to 800 K. While the pressure changes from 80 kPa to 500 kPa. Analyse the change in entropy. 13 BT-5 One kg of air is compressed polytropically from 1 bar pressure and temperature of 370 K. Determine the irreversibility if the sink temperature is 293 K. Assume R = 0.287 kJ/kg K, Cp = 1.004 kJ/kg K and Cv = 0.716 kJ/kg K BT-3 A liquid is heated at approximately constant pressure is constant at 1500°C. Solve the effectiveness of the heating process when the atmospheric temperature is 15°C. Take specific heat of liquid as 6.3 kJ/kg K. BT-3

	PART - C (15 MARKS)				
Sl.No	QUESTIONS	MARKS	BT	COMPETENCE	
1	Two Cornet angines A and D are connected in agrice	15		Creating	
1	hotmoor two thermal recommission maintained at	15	Ы-0	Creating	
	between two mermal reservoirs maintained at $T_1 = 1000 \text{ K}$ and $T_2 = 100 \text{ K}$ respectively. Figure A				
	11 = 1000 K and $12 = 100$ K, respectively. Engine A				
	receives 1700 kJ of neat from the high-temperature				
	reservoir and rejects neat to the Carnot engine B.				
	Engine B takes in heat rejected by engine A and				
	rejects heat to the low-temperature reservoir. If				
	engines A and B have equal thermal efficiencies, Test				
	the following,	CIA.			
	(i) The heat rejected by the engine B.	····V	0		
	(ii) The temperature at which heat is rejected by				
	engine A and		C.		
	(iii) The work done during the process by engines, A	_	0		
	and B, respectively.		1.5		
	If the engines A and B deliver equal work, determine			5	
	(iv) The amount of heat taken in by engine B and			111	
	(v) The efficiencies of engines A and B.			0	
2	A light is provided in the refrigerator. It is designed in	15	BT-5	Evaluating	
	such a way that light will be switched on when the			111	
	door of the refrigerator is opened. Due to malfunction				
	of the switch, b <mark>ulb remains 'on' continuously.</mark>				
	Calculate (a) the increase in energy consumption of				
	the refrigerator and (b) its cost per month.				
3	Series combination of three Carnot engines A, B and	15	BT-6	Creating	
	C operate between temperatures of 1500 K and 300 K.				
	If the amount of heat addition to each engine is in the				
	ratio of 6:3:2, Solve the intermediate temperatures.				
4	A closed system contains air at a pressure 2 bar, 300	15	BT-5	Evaluating	
	K, and 0.05 m ³ . The processes are given below.				
	Calculate (a) the change in entropy for each process				
	and (b) total change of entropy. Represent the cycle				
	on PV and TS diagram.				
	Process 1–2 Constant volume heat addition till				
	the pressure becomes double				

	Process 2–3 Constant pressure cooling			
	Process 3–1 Isothermal heating to initial state			
	1 kg of air initially at 8 bar pressure and 380 K	15	BT-6	Creating
	expands polytropically (Pv1-2 = constant) until the			
	pressure is reduced to one-fifth value. Predict the			
	following :			
5	(i) Final specific volume and temperature.			
	(ii) Change of internal energy, work done and heat			
	interaction.			
	(iii) Change in entropy.			

UNIT III - PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE

Formation of steam and its thermodynamic properties, p-v, p-T, T-v, T-s, h-s diagrams. p-v-T surface. Use of Steam Table and Mollier Chart. Determination of dryness fraction. Application of I and II law for pure substances. Ideal and actual Rankine cycles, Cycle Improvement Methods - Reheat and Regenerative cycles, Economizer, preheater, Binary and Combined cycles.

	PART - A (2 MARKS)				
S1.No	QUESTIONS	BT LEVEL	COMPETENCE		
1	Write a short note on Mollier Chart.	BT-1	Remembering		
2	What are compressed solid and compressed liquid?	BT-1	Remembering		
3	Discuss the critical condition of steam.	BT1	Remembering		
4	Illustrate meant by dead state.	BT-1	Understanding		
5	Superheated steam at 30 bar and 300°C enters a turbine and	BT-2	Understanding		
	expanded to 5 bar and quality 0.974 dryness, Infer the loss in	0			
	availability for the adiabatic process if the atmospheric				
	temperature is 270°C.		-		
6	Define pure substance.	BT-1	Remembering		
7	Recite triple point re <mark>presented in P-V diagram.</mark>	BT-1	Remembering		
8	Infer the terms, Degree of super heat, degree of sub-cooling.	BT-2	Understanding		
9	Discuss latent heat of vaporization.	BT-1	Remembering		
10	Draw P-T (Pressure-Temperature) diagram of a pure	BT-2	Understanding		
	substance.				
11	Give the possible wa <mark>ys to increase thermal efficiency of</mark>	BT-1	Remembering		
	Rankine cycle.				
12	Summarize the advantages of using superheated steam in	BT-2	Understanding		
	turbines.				
13	Name the different components in steam power plant working	BT-1	Remembering		
	on Rankine cycle.				
14	Why is excessive moisture in steam undesirable in steam	BT-2	Understanding		
	turbines?				
15	Draw the standard Rankine cycle on P-V and T-S coordinates	BT-2	Understanding		
16	Classify the effects of condenser pressure on the Rankine	BT-2	Understanding		
	Cycle.				
17	Show Carnot cycle cannot be realized in practice for vapour	BT-2	Understanding		
	power cycles.				
18	State the advantages of regenerative cycle.	BT-2	Understanding		
19	Describe the different operations of Rankine cycle.	BT-1	Remembering		

20	Outline the various operation of a Carnot cycle.		BT-2	Understanding
21	Define saturation pressure and saturation temperature.			Remembering
22	What do you understand by triple point and critical point?			Remembering
23	Outline the p-T diagram? What is its use?		BT-2	Understanding
24	What do you mean by the entropy of superheated stear	n	BT-1	Remembering
25	What do you understand by the degree of superheat and the		BT-1	Remembering
	degree of subcooling?			
	PART - B (13 MARKS)			
Sl.No	QUESTIONS	MARKS	BT LEVEL	COMPETENCE
1	A vessel having a capacity of 0.05 m3 contains a	13	BT-4	Analysing
	mixture of saturated water and saturated steam at a	RIA.		
	temperature of 245°C. The mass of the liquid present	N N	~	
	is 10 kg. Examine the following :		6	
	(i) The pressure, (ii) The mass, (iii) The specific volume,		0	
	(iv) The specific enthalpy, (v) The specific entropy, and			
	(vi) The specific inte <mark>rnal energy.</mark>			5
2	1000 kg of steam at a pressure of 16 bar and 0.9 dry	13	BT-5	Evaluating
	is generated by a bo <mark>iler per hour. The steam passes</mark>			177
	through a superhea <mark>ter via boiler stop valve where its</mark>			0
	temperature is raised to 380°C. If the temperature of			100
	feed water is 30°C,			111
	determine : (i) The t <mark>otal heat</mark> supplied to feed water			
	per hour to produce wet steam. (ii) The total heat			
	absorbed per hour in the superheater.			
	Take specific heat fo <mark>r superh</mark> eated steam as 2.2	1		
	kJ/kg K	/		
3.i	Find the dryness fraction, specific volume and	7	BT-1	Remembering
	internal energy of steam at 7 bar and enthalpy 2550			
	kJ/kg.			
3.ii	Steam at 120 bar has a specific volume of 0.01721	6	BT-1	Remembering
	m^3/kg , find the temperature, enthalpy and the			
	internal energy.			
4	Calculate the internal energy per kg of superheated	13	BT-5	Evaluating
	steam at a pressure of 10 bar and a temperature of			
	300°C. Also find the change of internal energy if this			
	steam is expanded to 1.4 bar and dryness fraction 0.8			

5	A rigid vessel of 10 m ³ volume contains steam at 4	13	BT-5	Evaluating
	MPa and 80% quality.			
	Evaluate (a) the enthalpy (b) internal energy of the			
	steam and (c) entropy of the steam.			
6	A processing plant requires wet steam at 10 bar, 0.9	13	BT-4	Analysing
	dry and 3000 m ³ /h.			
	Analyse			
	(a) The mass of steam supplied per hour			
	(b) The quantity of fuel required			
	Boiler efficiency = 0.35, Calorific value (C.V.) of fuel =			
	45000 kJ/kg			
7	With a neat sketch explain the working process of	13	BT-1	Remembering
	Rankine cycle with its pv diagram.	C' IV		
8	With a neat sketch explain the efficiency improvement	13	BT-2	Understanding
	methods in Rankine cycle with its pv diagram.			
9	With a neat sketch explain the working process of	13	BT-2	Understanding
	Binary combined cyc <mark>le with its pv diagram.</mark>			
10	In a steam power cy <mark>cle, the steam supply is at 15 bar</mark>	13	BT-4	Analysing
	and dry and saturat <mark>ed. The condenser pressure is 0.4</mark>			173
	bar. Calculate the Carnot and Rankine efficiencies of			-
	the cycle. Neglect pump work.			1.4
11	A Rankine cycle ope <mark>rates</mark> between pressures of 80 bar	13	BT-4	Analysing
	and 0.1 bar. The maximum cycle temperature is			
	600°C. If the steam turbine and condensate pump			
	efficiencies are 0.9 and 0.8 respectively, Analyze the			
	specific work and th <mark>ermal efficiency.</mark>			
12	A steam power plant operates on a theoretical reheat	13	BT-5	Evaluating
	cycle. Steam at boiler at 150 bar, 550°C expands			
	through the high pressure turbine. It is reheated at a			
	constant pressure of 40 bar to 550°C and expands			
	through the low pressure turbine to a condenser at			
	0.1 bar. Draw T-s and h-s diagrams. Evaluate:			
	(i) Quality of steam at turbine exhaust ; (ii) Cycle			
	efficiency			
	(iii) Steam rate in kg/kWh			
13	A simple Rankine cycle works between pressures 28	13	BT-5	Evaluating
	bar and 0.06 bar, the initial condition of steam being			
13	 through the low pressure turbine to a condenser at 0.1 bar. Draw T-s and h-s diagrams. Evaluate: (i) Quality of steam at turbine exhaust ; (ii) Cycle efficiency (iii) Steam rate in kg/kWh A simple Rankine cycle works between pressures 28 	13	BT-5	Evaluating
	bar and 0.06 bar, the initial condition of steam being			

	dry saturated. Calculate the cycle efficiency, work			
	ratio and specific steam consumption.			
14	A turbine is supplied with steam at a pressure of 32	13	BT-3	Applying
	bar and a temperature of 410°C. The steam then			
	expands isentropically to a pressure of 0.08 bar. Find			
	the dryness fraction at the end of expansion and			
	thermal efficiency of the cycle. If the steam is reheated			
	at 5.5 bar to a temperature of 395°C and then			
	expanded isentropically to a pressure of 0.08 bar,			
	what will be the dryness fraction and thermal			
	efficiency of the cycle ?			
15	A binary-vapour cycle operates on mercury and	13	BT-1	Remembering
	steam. Saturated mercury vapour at 4.5 bar is	V	~	
	supplied to the mercury turbine, from which it		S	
	exhausts at 0.04 bar. The mercury condenser		C	
	generates saturated steam at 15 bar which is			
	expanded in a steam turbine to 0.04 bar. (a) Find the			5
	overall efficiency of the cycle.			T
16	A textile factory requires 10,000 kg/h of steam for	13	BT-4	Analysing
	process heating at 3 bar saturated and 1000 kW of			0
	power, for which a back pressure turbine of 70%			and a second
	internal efficiency is to be used. Find the steam			111
	condition required at the inlet to the turbine.			
17	Steam at a pressure of 15 bar and 250°C is expanded	13	BT-4	Analysing
	through a turbine at first to a pressure of 4 bar. It is			
	then reheated at constant pressure to the initial			
	temperature of 250°C and is finally expanded to 0.1	/		
	bar. Using Mollier chart, estimate the work done per			
	kg of steam flowing through the turbine and amount			
	of heat supplied during the process of reheat.			
	Compare the work output when the expansion is			
	direct from 15 bar to 0.1 bar without any reheat.			
	Assume all expansion processes to be isentropic.			

18	A power plant generating electricity is working on a	13	BT-5	Evaluating
	binary vapour cycle. Mercury is used in upper cycle			
	and steam in the lower cycle. The ratio of mercury flow			
	rate to steam flow rate is 10:1 on mass basis. At an			
	evaporation of 106 kg/h for mercury, its specific			
	enthalpy rises by 356 kJ/kg in passing through the			
	boiler furnace adds 586 kJ to the steam specific			
	enthalpy. The mercury gives up 251.2 kJ/kg during			
	condensation, and the steam gives up 2003 kJ/kg in			
	its condenser. The overall boiler efficiency is 85%. The			
	combined turbine mechanical and generator			
	efficiencies are each 95% for the mercury and steam	Rr.		
	units. The steam auxiliaries require 5% of the energy	CAN IN	-	
	generated by the units.		G	
	Estimate the overall efficiency of the plant.		0	
	PART - C (15 MARKS)		. (2
01 N		MADKO	BT	COMPETENCE
SI.NO	QUESTIONS	MARKS	LEVEL	COMPETENCE
1	Steam from boiler 1, at 20 bar and 300°C and from	15	BT-6	Creating
	boiler 2, at 20 bar <mark>enter into a common main. The</mark>			-
	pressure in the main is 20 bar absolute and 250°C.			1.4
	Estimate the quality of the steam supplied from the			111
	boiler 2. Cp of supe <mark>rheat i</mark> s 2.4 kJ/kg K.			
2	et steam is contained in a closed vessel of capacity 2	15	BT-6	Creating
	m^3 at 5 bar and 0.8 dryness. Steam at 12 bar 0.95			
	dryness is supplied <mark>to the ve</mark> ssel untill the pressure			
	inside the vessel becomes 8 bar. Calculate (a) the	/		
	mass of the steam supplied to the vessel and (b) the			
	final quality of the steam in the vessel. Neglect the			
	volume of the moisture and thermal capacity of the			
	vessel.			
3	In a single-heater regenerative cycle the steam enters	15	BT-5	Evaluating
	the turbine at 30 bar, 400°C and the exhaust			
	pressure is 0.10 bar. The feed water heater is a direct			
	contact type			
	which operates at 5 bar. Solve :			
	(i) The efficiency and the steam rate of the cycle.			
	(ii) The increase in mean temperature of heat			

	addition, efficiency and steam rate as compared to			
	the Rankine cycle (without regeneration). Pump work			
	may be neglected.			
4	A certain chemical plant requires heat from process	15	BT-6	Creating
	steam at 120°C at the rate of 5.83 MJ/s and power at			
	the rate of 1000 kW from the generator terminals.			
	Both the heat and power requirements are met by a			
	back pressure turbine of 80% brake and 85% internal			
	efficiency, which exhausts steam at 120°C dry			
	saturated. All the latent heat released during			
	condensation is utilized in the process heater. Predict			
	the pressure and temperature of steam at the inlet to	21.		
	the turbine. Assume 90% efficiency for the generator.	C'AV	-	
5	A steam power plant of 110 MW capacity is equipped	15	BT-6	Creating
	with regenerative as well as reheat arrangement. The		0	
	steam is supplied at 80 bar and 55°C of superheat.			
	The steam is extracted at 7 bar for feed heating and			-
	remaining steam is reheated to 350°C, and then			-
	expanded to 0.4 bar in the L.P. stage. Assume indirect			173
	type of fee <mark>d heaters. Solve :</mark>			-
	(i) The ratio of st <mark>eam b</mark> led to stea <mark>m generated,</mark>			54.2
	(ii) The boiler gen <mark>erati</mark> ng capacity in tonnes of			171
	steam/hour, and			
	(iii) Thermal <mark>efficiency</mark> of the cycle.			
	Assume no losses and ideal processes of expansion			

UNIT IV - IDEAL AND REAL GASES

Properties of Ideal gas- Ideal and real gas comparison- Equations of state for ideal and real gases Reduced properties. Compressibility factor-.Principle of Corresponding states. -Generalized Compressibility Chart and its use.

	PART - A (2 MARKS)			
Sl.No	QUESTIONS	BT LEVEL	COMPETENCE	
1	State the principle of corresponding states.	BT-1	Remembering	
2	How does the Vander Waal's equation differ from the ideal gas	BT-1	Remembering	
	equation of state?			
3	State the assumptions made in deriving ideal gas equation using	BT-2	Understanding	
	the kinetic theory of gases.			
4	What is meant by partial volume?	BT-1	Remembering	
5	One Kg of ideal gas is heated from 18°C to 93°C. Taking R=269 N-	BT-1	Remembering	
	m / Kg -K and y =1.2 for the gas. Calculate the change in internal			
	energy.			
6	Define the Boyle temperature. How is it Computed?	BT-1	Remembering	
7	Using Clausius-Clapeyron equation, estimate the enthalpy of	BT-2	Understanding	
	vaporization at 200° <mark>C. Vg=0.1274 m³/Kg; Vf= 0.01157 m³/Kg;</mark>		1.50	
	dp/dt = 32KPa/K.			
8	Draw a generalized Compressibility Chart and its significance.	BT-2	Understanding	
9	What are virial coefficients? When do they become zero?	BT-2	Understanding	
10	Determine the molecular volume of any perfect gas at 600 N/m ²	BT-2	Understanding	
	and 30°C. Universal gas constant may be taken as 831 <mark>4 J/Kg</mark>			
	mole- K.			
11	Show that for an ideal gas $Cp - Cv = R$.	BT-2	Understanding	
12	List the effect of compressibility factor.	BT-2	Understanding	
13	Define isothermal Compressibility.	BT-1	Remembering	
14	Distinguish between the characteristic gas constant and the	BT-1	Remembering	
	universal gas constant.			
15	Summarize the examples of real gases.	BT-2	Understanding	
16	Recite thermodynamic gradients.	BT-1	Remembering	
17	What is known as equation of state and when it can be used for	BT-2	Understanding	
	engineering calculations?			
18	Difference between an ideal and a perfect gas.	BT-2	Understanding	

19	State Boyle's and charle's laws and derive an equation of t	the state	BT-1	Remembering
	for a perfect gas.			
20	What is meant by semi-perfect or permanent gases?		BT-1	Remembering
21	How gases are classified?			Remembering
22	What are the two basic properties of an ideal gas?		BT-1	Remembering
23	Infer solid, liquid and gas are recognised through their key	y	BT-2	Understanding
	characteristics.			
24	What is a real gas?		BT-1	Remembering
25	Define Compressibility factor.		BT-1	Remembering
	PART - B (13 MARKS)			
Sl.No	OUESTIONS	MARKS	BT	COMPETENCE
			LEVEL	
1.i	Heat is added at constant pressure to a gas at 50°C, 0.2	7	BT-4	Analysing
	m ³ . The final temperature of the gas is 250°C. Examine			
	the final volume and increase in volume during the			
	supply of heat.			
1.ii	The density of a gas at NTP is 1.5 kg/m ³ . Find	6	BT-1	Remembering
	(a) Characteristic ga <mark>s constant</mark>			
	(b) Molecular weight			N
	(c) Specific volume of the gas at 15 bar and 40°C			2
2	50°C air is contained in a spherical vessel of 2 m	<mark>1</mark> 3	BT-5	Evaluating
	diameter. The vesse <mark>l is eva</mark> cuated till it b <mark>ecomes 70 cm</mark>			P.1.
	of Hg. During the pr <mark>ocess</mark> , the temperature remains			
	constant. Determine			
	(a) The mass pump <mark>ed out</mark>			
	(b) The pressure in t <mark>he tank i</mark> n cm of Hg, if the tank is			
	cooled to 5°C			
	Assume atmospheric pressure of 760 mm Hg.			
3.i	An ideal gas is heated from 20°C to 100°C. Assume 1 kg	7	BT-5	Evaluating
	of mass, R = 0.2 kJ/kg K, g = 1.2. Find,			
	(a) Specific heats			
	(b) Change in internal energy			
	(c) Change in enthalpy.			
3.ii	A gas undergoes polytropic process from 100 N/m^2 and	6	BT-5	Evaluating
	120°C to 20 N/m ² , –20°C. Calculate polytropic index n.			
4	2 m^3 of gas is heated at constant pressure from 30° C to	13	BT-5	Evaluating
	200°C. Estimate,			
	(a) Characteristic gas constant			

	(b) Ratio of specific heats			
	(c) Heat added			
	(d) Work done			
	(e) Change in internal energy			
	(f) Final volume			
	(g) Initial pressure			
	Assume: C			
	p = 0.98 kJ/kg K Cv = 0.714 kJ/kg K m = 1 kg			
5	$2 \text{ kg of } O_2 \text{ from a pressure of 1 bar, } 60^{\circ}\text{C is compressed}$	13	BT-5	Evaluating
	to a final pressure of 5 bar along with a polytropic path			
	for which $PV^{1.3} = C$. Calculate,			
	(a) The heat transferred	1		
	(b) The change of entropy	W-		
	Assume: $R = 0.280 \text{ kJ/kg K Cp} = 0.98 \text{ kJ/kg K}$.	- G	100	
6	A gas is raised from 30°C to 120°C. Calculate,	13	BT-5	Evaluating
	(a) Molar specific heat at constant pressure		0	
	(b) Cp		~	
	(b) Cp (c) Cv		F	
	 (b) Cp (c) Cv (d) Change in specific enthalpy 		L	
	 (b) Cp (c) Cv (d) Change in specific enthalpy Assume molecular weight of the gas as 40(M) and the 		LLE	
	 (b) Cp (c) Cv (d) Change in specific enthalpy Assume molecular weight of the gas as 40(M) and the gas follows a relation of Cp = 5/3R. 		LEC	5
7	 (b) Cp (c) Cv (d) Change in specific enthalpy Assume molecular weight of the gas as 40(M) and the gas follows a relation of Cp = 5/3R. A rigid vessel is having two compartments. Both the 	13	BT-1	Remembering
7	 (b) Cp (c) Cv (d) Change in specific enthalpy Assume molecular weight of the gas as 40(M) and the gas follows a relation of Cp = 5/3R. A rigid vessel is having two compartments. Both the compartments, A and B, are of a volume 0.25 m³. The 	13	BT-1	Remembering
7	 (b) Cp (c) Cv (d) Change in specific enthalpy Assume molecular weight of the gas as 40(M) and the gas follows a relation of Cp = 5/3R. A rigid vessel is having two compartments. Both the compartments, A and B, are of a volume 0.25 m³. The pressure in A is 2 bar and that in B is 4 bar. Both the 	13	BT-1	Remembering
7	 (b) Cp (c) Cv (d) Change in specific enthalpy Assume molecular weight of the gas as 40(M) and the gas follows a relation of Cp = 5/3R. A rigid vessel is having two compartments. Both the compartments, A and B, are of a volume 0.25 m³. The pressure in A is 2 bar and that in B is 4 bar. Both the compartments are at the same temperature. When 40 kJ 	13	BT-1	Remembering
7	 (b) Cp (c) Cv (d) Change in specific enthalpy Assume molecular weight of the gas as 40(M) and the gas follows a relation of Cp = 5/3R. A rigid vessel is having two compartments. Both the compartments, A and B, are of a volume 0.25 m³. The pressure in A is 2 bar and that in B is 4 bar. Both the compartments are at the same temperature. When 40 kJ of heat is added, the partition wall is damaged. What is 	13	BT-1	Remembering

8	A container is having air at a pressure of 2 bar and	13	BT-5	Evaluating
	temperature 30°C. The volume of the container is 3 m^3 .			
	Now additional air is pumped into the container until			
	the pressure rises to 40 bar abs and the temperature			
	rises to 65°C. Determine,			
	(a) The mass of air pumped in			
	(b) Express this mass as a volume at a pressure of 1 bar			
	and 25°C.			
	If the vessel is allowed to cool until the temperature is			
	again 30°C, find,			
	(c) the pressure in the vessel			
	(d) the heat transferred during cooling process	1 -		
	(e) the change of entropy during cooling process	N-		
	Neglect the heat capacity of the vessel. Assume air as	G		
	ideal gas.		0	
9	A steel flask of 0.04 m ³ capacity is to be used to store	13	BT-5	Evaluating
	nitrogen at 120 bar, 20°C. The flask is to be protected		1	
	against excessive pr <mark>essure by a fu</mark> sible plug which will		1	
	melt and allow the gas to escape if the temperature rises			
	too high.			
	(i) How many kg of nitrogen will the flask hold at the			
	designed conditions ?			
	(ii) At what temperature must the fusible plug melt in			
	order to limit the pr <mark>essure of a</mark> full flask to a maximum			
	of 150 bar ?			
10	A vessel of capacity <mark>3 m³ con</mark> tains 1 kg mole of N ² at	13	BT-4	Analysing
	90°C.	/		
	(i) Calculate pressure and the specific volume of the gas.			
	(ii) If the ratio of specific heats is 1.4, evaluate the values			
	of cp and cv.			
	(iii) Subsequently, the gas cools to the atmospheric			
	temperature of 20° C; evaluate the final pressure of gas.			
	(iv) Evaluate the increase in specific internal energy, the			
	increase in specific enthalpy, increase in specific entropy			
	and magnitude and sign of heat transfer.			

11	1 kg of air at a pressure of 8 bar and a temperature of	13	BT-5	Evaluating
	100°C undergoes a reversible polytropic process			
	following the law $pv^{1,2}$ = constant. If the final pressure is			
	1.8 bar			
	determine :			
	(i) The final specific volume, temperature and increase in			
	entropy ;			
	(ii) The work done and the heat transfer.			
	Assume R = 0.287 kJ/kg K and γ = 1.4.			
12	Two spheres each 2.5 m in diameter are connected to	13	BT-4	Analysing
	each other by a pipe with a valve as shown in Fig. One			
	sphere contains 16 kg of air and other 8 kg of air when			
	the valve is closed. The temperature of air in both			
	sphere is 25°C. The valve is opened and the whole		1000	
	system is allowed to come to equilibrium conditions.		0	
	Assuming there is no loss or gain of energy, determine		0	
	the pressure in the spheres when the system attains		~	
	equilibrium.		1	
	Neglect the volume o <mark>f the pipe.</mark>			N
	Spheres			
				1
			11.12	
	← 2.5 m →			
13	One kg of CO ₂ has a volume of 1 m ³ at 100°C. Compute	13	BT-5	Evaluating
	the pressure by			
	(i) Van der Waals' equation			
	(ii) Perfect gas equation.			
14	A container of 3 m ³ capacity contains 10 kg of CO2 at	13	BT-5	Evaluating
	27°C. Estimate the pressure exerted by CO_2 by using :			
	(i) Perfect gas equation			
	(ii) Van der Waals' equation			
	(iii) Beattie Bridgeman equation.			

15.i	If the values for reduced pressure and compressibility	7	BT-4	Analysing
	factor for ethylene are 20 and 1.25 respectively, compute			
	the temperature.			
15.ii	Calculate the density of N_2 at 260 bar and 15°C by	6	BT-5	Evaluating
	using the compressibility chart.			
16.i	What should be the temperature of 1.3 kg of CO_2 gas in	7	BT-1	Remembering
	a container at a pressure of 200 bar to behave as an			
	ideal ?			
16.ii	A spherical shaped balloon of 12 m diameter contains H_2	6	BT-1	Remembering
	at 30°C and 1.21 bar. Find the mass of H_2 in the balloon			
	using real gas equation.			
17	Air in closed station systems expands in a reversible	13	BT-4	Analysing
	adiabatic process from 0.5 MPa, 17 °C to 0.2 MPa. Find	No.		
	the final temperature and also for unit mass of air,			
	calculate the change in enthalpy, the heat transferred		C	
	and the work done.	-	0	
18	Two kilogram of air in a closed system, having initial	13	BT <mark>-5</mark>	Evaluating
	volume and temperature of 0.5 m ³ and 7°C, respectively,		5	
	undergoes a constan <mark>t pressure heating process to</mark>		1	1
	100°C. There is no work other than pdv work. Determine		1	2
	(i) the work done du <mark>ring the</mark> process, (ii) the heat			
	transferred and (iii) the entropy change.			F.1.
	PART - C (15 MARKS)			
S1.No	OUESTIONS	MARKS	BT	COMPETENCE
			LEVEL	••••••
1	An ideal gas initially at 80°C and 1 bar undergoes the	15	BT-4	Analysing
	following reversible processes.			
	(a) The gas is compressed adiabatically to 120°C (1–2).			
	(b) It is then cooled at constant pressure from 120°C to			
	80°C (2–3).			
	(c) Finally the gas is expanded at constant temperature			
	to a final pressure of 1 bar $(3-1)$.			
	Assume: $Cv = 5/3 R kJ/kg$ mole K			
	Determine, (a) deltah, (b) deltau, (c) W and (d) q for the			
	entire cycle on per kg mole basis.			

2	Air at a pressure of 10 bar occupies a volume of 0.3 m^3	15	BT-5	Evaluating
	and contains 2 kg. This air is then expanded to a			
	volume of 1.4 m ³ . Determine,			
	(a) The final temperature			
	(b) The work done			
	(c) The heat absorbed or rejected by the air			
	(d) The change in enthalpy for each of the following			
	processes			
	1. Constant pressure			
	2. Isothermal			
	3. Adiabatic			
	4. Polytropic PV1.2 = C	1		
3	A vessel of 0.05 m ³ capacity is filled with air. The	15	BT-5	Evaluating
	pressure at the end of the pumping operation is 80 bar	G	125	
	and temperature 50°C. The air is then cooled to the		0	
	atmospheric temperature of 20°C. Then leakage	_	0	
	occurred to 20 bar. When the leakage was stopped, the		1	
	temperature of air b <mark>eing 5°C. Examine,</mark>		1	
	(a) How much heat was lost by the air in the vessel		1	1
	before the leakage b <mark>egan?</mark>			
	(b) How much heat was transferred during leakage by			
	the air remaining in <mark>the ve</mark> ssel?			1
	Assume index of exp <mark>ansion</mark> during leakage to be			
	constant. R = 0.287 kJ/kg K Cv = 0.714 kJ/kg K			
4	A balloon is filled with H_2 at 20°C and atmospheric	15	BT-4	Analysing
	pressure. The surro <mark>unding a</mark> ir is at 15°C and baromet <mark>er</mark>			
	reads 75 cm of Hg. The diameter of the balloon is 20 m.	1		
	Examine what load the balloon will lift.			
5	CO_2 flows at a pressure of 10 bar and 180°C into a	15	BT-5	Evaluating
	turbine, located in a chemical plant, and there it expands			
	reversibly and adibatically to a final pressure of 1.05 bar.			
	Calculate the final specific volume, temperature and			
	increase in entropy. Neglect changes in velocity and			
	elevation. If the mass flow rate is 6.5 kg/min. evaluate the			
	heat transfer rate from the gas and the power delivered			
	by the turbine. Assume CO $_{\rm 2}$ to be a perfect gas and cv =			
	0.837 kJ/kg K.			

UNIT V - GAS MIXTURES AND THERMODYNAMIC RELATIONS

Mole and Mass fraction, Dalton's and Amagat's Law. Properties of gas mixture Molar mass, gas constant, density, and change in internal energy, enthalpy, entropy and Gibbs function. Maxwell relations, Tds Equations, Difference and ratio of heat capacities, Energy equation, Joule Thomson Coefficient, Clausius Clapeyron equation, Phase Change Processes. Simple Calculations

PART - A (2 MARKS)				
S1.No	QUESTIONS	BT LEVEL	COMPETENCE	
1	State Amagat's Law.	BT-1	Remembering	
2	Identify the application of Clausius - Clapeyron equation	BT-1	Remembering	
3	Identify the relationship between the partial pressures of the constituents in gas mixtures.	BT-1	Remembering	
4	What is Joule-Thomson coefficient? Why is it zero for an ideal gas?	BT-1	Remembering	
5	What is metastable equilibrium?	BT-1	Remembering	
6	Explain Joule Kelvin effect. What is inversion temperature?	BT-1	Remembering	
7	Define Gibb's Theorem.	BT-2	Understanding	
8	Write down two Tds <mark>relations.</mark>	BT-2	Understanding	
9	Write the Maxwell's <mark>equations and its significance.</mark>	BT-1	Remembering	
10	Why does the Gibbs function remain constant during phase	BT-1	Remembering	
	transition?		14.1	
11	What is the condition when Cp = Cv.	BT-1	Remembering	
12	Using the definitions of mass and mole fractions, derive a relation	BT-2	Understanding	
	between them.			
13	Define Equation of state.	BT-1	Remembering	
14	Prove that specific h <mark>eat at constant volume (Cv) of a Van der Wa</mark> als'	BT-1	Remembering	
	gas is a function of temperature alone.			
15	Define molar mass.	BT-1	Remembering	
16	Using the cyclic equation, prove that; $(\delta p / \delta T)v = \beta / KT$	BT-1	Remembering	
17	For a perfect gas, show that the difference in specific heats is; cp-cv	BT-1	Remembering	
	= R/T			
18	Show that the internal energy and enthalpy of an ideal gas are	BT-2	Understanding	
	functions of temperature only.			
19	What is the energy equation? How does this equation lead to the	BT-1	Remembering	
	derivation of the Stefan –Boltzman law of thermal radiation?			
20	What do you understand by phase equilibrium?	BT-1	Remembering	
21	What are the various properties of gas mixture?	BT-2	Understanding	

22	Derive an expression for the internal energy of gas mixtures			BT-2	Understanding	
23	How the gas constant for a mixture is evaluated?			BT-1	Remembering	
24	Define the law of partial pressures.				BT-2	Understanding
25	Derive an expression	for the enthalp	y of gas mixtures.		BT-2	Understanding
	PART - B (13 MARKS)				L	
Sl.No		OUESTIONS		MARKS	BT	COMPETENCE
		ę			LEVEL	
1.i	A vessel of 0.35 m^3 c	apacity contains	s 0.4 kg of carbon	7	BT-5	Evaluating
	monoxide (molecular	weight = 28) ar	nd 1 kg of air at 20°C.			
	Calculate :					
	(i) The partial pressu	re of each const	tituent,			
	(ii) The total pressure	e in the vessel, a	and			
	The gravimetric anal	ysis of air is to b	be taken as 23.3%			
	oxygen (molecular we	eight = 32) and			-	
	76.7% nitrogen (mole	ecular weight = 2	28).			
1.ii	The gravimetric anal	ysis of air and o	other data are as	6	BT-5	Evaluating
	follows :				5	
	Constituent P	ercentage	Molecular weight		5	1.00
	Oxygen	23.14	32		1	11
	Nitrogen	75.53	28			
	Argon	1.28	40			
	Carbon dioxide	0.05	44			
	Calculate : (i) Gas co	nstant for air ;	ACT I			
	(ii) Apparent molecul	<mark>ar we</mark> ight.				
2	A vessel contains at	1 bar and 20°C	a mixture of 1 mole of	13	BT-4	Analysing
	$\rm CO^2$ and 4 moles of a	<mark>ir. Analy</mark> se for t	the mixture :			
	(i) The masses of CO	2, O ₂ and N ₂ , an	d the total mass ;			
	(ii) The percentage ca	rbon content by	y mass ;			
	(iii) The apparent mo	lecular weight a	and the gas constant			
	for the mixture ;					
	(iv) The specific volu	ne of the mixtur	re.			
	The volumetric analy	sis of air can be	e taken as 21%			
	oxygen and 79% nitr	ogen.				
3	A mixture of hydrog	en (H2) and oxyg	gen (O ₂) is to be made	13	BT-4	Analysing
	so that the ratio of H	$_2$ to O_2 is $2:1$ b	by volume. If the			
	pressure and temper	ature are 1 bar	and 25°C			
	respectively, calculat	e :				

	(i) The mass of O_2 required ; (ii) The volume of the			
	container.			
4	A gaseous mixture of composition by volume, 78% H ₂ and	13	BT-5	Evaluating
	22% CO is contained in a vessel. It is desired that the			
	mixture should be made in proportion 52% H ₂ and 48% CO			
	by removing some of the mixture and adding some CO.			
	Calculate per mole of mixture the mass of mixture to be			
	removed, and mass of CO to be added. Assume that the			
	pressure and temperature in the vessel remain constant			
	during the procedure.			
5	The analysis by weight of a perfect gas mixture at 20°C	13	BT-5	Evaluating
	and 1.3 bar is $10\% O_2$, $70\% N_2$, $15\% CO_2$ and $5\% CO$. For	In.		
	a reference state of 0°C and 1 bar determine :	No		
	(i) Partial pressures of the constituents ; (ii) Gas constant	0	-	
	of mixture.		C	
6	2.5 kg of N_2 at 15 bar and 40°C is contained a rigid	13	BT-4	Analysing
	vessel. Adequate quantity of O ₂ is added to increase the		5	
	pressure to 20 bar w <mark>hile the tempe</mark> rature remains		1	
	constant at 40°C. Analyse the mass of O ₂ added.			17
7	Given that air consists of 21% oxygen and 79% nitrogen	13	BT-5	Evaluating
7	Given that air consists of 21% oxygen and 79% nitrogen by volume. Determine :	13	BT-5	Evaluating
7	Given that air consists of 21% oxygen and 79% nitrogen by volume. Determine : (i) The moles of nitrogen per mole of oxygen ;	13	BT-5	Evaluating
7	Given that air consists of 21% oxygen and 79% nitrogen by volume. Determine : (i) The moles of nitrogen per mole of oxygen ; (ii) The partial pressure of oxygen and nitrogen if the total	13	BT-5	Evaluating
7	Given that air consists of 21% oxygen and 79% nitrogen by volume. Determine : (i) The moles of nitrogen per mole of oxygen ; (ii) The partial pressure of oxygen and nitrogen if the total pressure is atmosphere ;	13	BT-5	Evaluating
7	Given that air consists of 21% oxygen and 79% nitrogen by volume. Determine : (i) The moles of nitrogen per mole of oxygen ; (ii) The partial pressure of oxygen and nitrogen if the total pressure is atmosphere ; (iii) The kg of nitrogen per kg of mixture.	13	BT-5	Evaluating
7	 Given that air consists of 21% oxygen and 79% nitrogen by volume. Determine : (i) The moles of nitrogen per mole of oxygen ; (ii) The partial pressure of oxygen and nitrogen if the total pressure is atmosphere ; (iii) The kg of nitrogen per kg of mixture. A vessel of 6 m³ capacity contains two gases A and B in 	13	BT-5 BT-5	Evaluating
7	Given that air consists of 21% oxygen and 79% nitrogen by volume. Determine :(i) The moles of nitrogen per mole of oxygen ;(ii) The partial pressure of oxygen and nitrogen if the total pressure is atmosphere ;(iii) The kg of nitrogen per kg of mixture.A vessel of 6 m³ capacity contains two gases A and B in proportion of 45 per cent and 55 per cent respectively at	13	BT-5 BT-5	Evaluating
7	 Given that air consists of 21% oxygen and 79% nitrogen by volume. Determine : (i) The moles of nitrogen per mole of oxygen ; (ii) The partial pressure of oxygen and nitrogen if the total pressure is atmosphere ; (iii) The kg of nitrogen per kg of mixture. A vessel of 6 m³ capacity contains two gases A and B in proportion of 45 per cent and 55 per cent respectively at 30°C. If the value of R for the gases is 0.288 kJ/kg K 	13	BT-5 BT-5	Evaluating
7	 Given that air consists of 21% oxygen and 79% nitrogen by volume. Determine : (i) The moles of nitrogen per mole of oxygen ; (ii) The partial pressure of oxygen and nitrogen if the total pressure is atmosphere ; (iii) The kg of nitrogen per kg of mixture. A vessel of 6 m³ capacity contains two gases A and B in proportion of 45 per cent and 55 per cent respectively at 30°C. If the value of R for the gases is 0.288 kJ/kg K and 0.295 kJ/kg K and if the total weight of the mixture 	13	BT-5 BT-5	Evaluating
7	 Given that air consists of 21% oxygen and 79% nitrogen by volume. Determine : (i) The moles of nitrogen per mole of oxygen ; (ii) The partial pressure of oxygen and nitrogen if the total pressure is atmosphere ; (iii) The kg of nitrogen per kg of mixture. A vessel of 6 m³ capacity contains two gases A and B in proportion of 45 per cent and 55 per cent respectively at 30°C. If the value of R for the gases is 0.288 kJ/kg K and 0.295 kJ/kg K and if the total weight of the mixture is 2 kg, calculate : 	13	BT-5 BT-5	Evaluating
8	 Given that air consists of 21% oxygen and 79% nitrogen by volume. Determine : (i) The moles of nitrogen per mole of oxygen ; (ii) The partial pressure of oxygen and nitrogen if the total pressure is atmosphere ; (iii) The kg of nitrogen per kg of mixture. A vessel of 6 m³ capacity contains two gases A and B in proportion of 45 per cent and 55 per cent respectively at 30°C. If the value of R for the gases is 0.288 kJ/kg K and 0.295 kJ/kg K and if the total weight of the mixture is 2 kg, calculate : (i) The partial pressure ; (ii) The total pressure ; 	13	BT-5 BT-5	Evaluating
8	 Given that air consists of 21% oxygen and 79% nitrogen by volume. Determine : (i) The moles of nitrogen per mole of oxygen ; (ii) The partial pressure of oxygen and nitrogen if the total pressure is atmosphere ; (iii) The kg of nitrogen per kg of mixture. A vessel of 6 m³ capacity contains two gases A and B in proportion of 45 per cent and 55 per cent respectively at 30°C. If the value of R for the gases is 0.288 kJ/kg K and 0.295 kJ/kg K and if the total weight of the mixture is 2 kg, calculate : (i) The partial pressure ; (ii) The mean value of R for the mixture. 	13	BT-5 BT-5	Evaluating
7 8 9	 Given that air consists of 21% oxygen and 79% nitrogen by volume. Determine : (i) The moles of nitrogen per mole of oxygen ; (ii) The partial pressure of oxygen and nitrogen if the total pressure is atmosphere ; (iii) The kg of nitrogen per kg of mixture. A vessel of 6 m³ capacity contains two gases A and B in proportion of 45 per cent and 55 per cent respectively at 30°C. If the value of R for the gases is 0.288 kJ/kg K and 0.295 kJ/kg K and if the total weight of the mixture is 2 kg, calculate : (i) The partial pressure ; (ii) The mean value of R for the mixture. 	13	BT-5 BT-5 BT-5	Evaluating Evaluating Evaluating
7 8 9	 Given that air consists of 21% oxygen and 79% nitrogen by volume. Determine : (i) The moles of nitrogen per mole of oxygen ; (ii) The partial pressure of oxygen and nitrogen if the total pressure is atmosphere ; (iii) The kg of nitrogen per kg of mixture. A vessel of 6 m³ capacity contains two gases A and B in proportion of 45 per cent and 55 per cent respectively at 30°C. If the value of R for the gases is 0.288 kJ/kg K and 0.295 kJ/kg K and if the total weight of the mixture is 2 kg, calculate : (i) The partial pressure ; (ii) The mean value of R for the mixture. One kilogram of air is at a pressure of 5 atm and at a temperature of 227°C. It expands reversibly to a pressure 	13 13 13	BT-5 BT-5	Evaluating
7 8 9	Given that air consists of 21% oxygen and 79% nitrogen by volume. Determine : (i) The moles of nitrogen per mole of oxygen ; (ii) The partial pressure of oxygen and nitrogen if the total pressure is atmosphere ; (iii) The kg of nitrogen per kg of mixture. A vessel of 6 m ³ capacity contains two gases A and B in proportion of 45 per cent and 55 per cent respectively at 30°C. If the value of R for the gases is 0.288 kJ/kg K and 0.295 kJ/kg K and if the total weight of the mixture is 2 kg, calculate : (i) The partial pressure ; (ii) The total pressure ; (iii) The mean value of R for the mixture. One kilogram of air is at a pressure of 5 atm and at a temperature of 227°C. It expands reversibly to a pressure of 2 atm following the law, pV ^{1.3} = c. Assuming air is an	13	BT-5 BT-5	Evaluating Evaluating Evaluating
7 8 9	Given that air consists of 21% oxygen and 79% nitrogen by volume. Determine : (i) The moles of nitrogen per mole of oxygen ; (ii) The partial pressure of oxygen and nitrogen if the total pressure is atmosphere ; (iii) The kg of nitrogen per kg of mixture. A vessel of 6 m ³ capacity contains two gases A and B in proportion of 45 per cent and 55 per cent respectively at 30°C. If the value of R for the gases is 0.288 kJ/kg K and 0.295 kJ/kg K and if the total weight of the mixture is 2 kg, calculate : (i) The partial pressure ; (ii) The total pressure ; (iii) The mean value of R for the mixture. One kilogram of air is at a pressure of 5 atm and at a temperature of 227°C. It expands reversibly to a pressure of 2 atm following the law, pV ^{1.3} = c. Assuming air is an ideal gas calculate:(i) the work done and heat transferred.	13 13 13	BT-5 BT-5	Evaluating Evaluating Evaluating
7 8 9	 Given that air consists of 21% oxygen and 79% nitrogen by volume. Determine : (i) The moles of nitrogen per mole of oxygen ; (ii) The partial pressure of oxygen and nitrogen if the total pressure is atmosphere ; (iii) The kg of nitrogen per kg of mixture. A vessel of 6 m³ capacity contains two gases A and B in proportion of 45 per cent and 55 per cent respectively at 30°C. If the value of R for the gases is 0.288 kJ/kg K and 0.295 kJ/kg K and if the total weight of the mixture is 2 kg, calculate : (i) The partial pressure ; (ii) The total pressure ; (iii) The mean value of R for the mixture. One kilogram of air is at a pressure of 5 atm and at a temperature of 227°C. It expands reversibly to a pressure of 2 atm following the law, pV^{1.3} = c. Assuming air is an ideal gas calculate:(i) the work done and heat transferred. (ii) If the system does the same expansion in a steady flow 	13 13 13	BT-5 BT-5	Evaluating Evaluating Evaluating

10	Air is contained in a cylinder fitted with frictionless	13	BT-4	Analysing
	piston. Initially, the cylinder contains 0.5 m^3 of air at 2			
	bar and 27 °C. The air is then compressed reversibly			
	according to			
	the law, pvn = c, until the final pressure is 8 bar at which			
	point temperature is 137°C.			
	Examine (i) the polytropic index n; (ii) the final volume of			
	air; (iii) the work done on air; (iv) the heat transfer; and (v)			
	the change in entropy.			
11	Drive the Maxwell relations.	13	BT-2	Understanding
12	Explain the Joule – Thomson Co-efficient and express the	13	BT-1	Remembering
	relations.	1 Avr		
13	Drive the entropy equations (Tds Equations)	13	BT-2	Understanding
14	Explain the Clausius – Claperyon equation and express	13	BT-1	Remembering
	the relations.		-	
15	Drive the equation for internal energy and enthalpy.	13	BT-2	Understanding
16	An ice skate is able t <mark>o glide over the ice because the skate</mark>	13	BT-5	Evaluating
	blade exerts sufficien <mark>t pressure on</mark> the ice that a thin layer			
	of ice is melted. The skate blade then glides over this thin			11
	melted water layer. Determine the pressure an ice skate			
	blade must exert to allow smooth ice skate at – 10°C. The			
	following data is giv <mark>en for</mark> the range of temperatures and			
	pressures involved : h _{fg(ice)} = 334 kJ/kg ; v _{liq} . = 1 × 10 m ³ /kg			
	; $v_{ice} = 1.01 \times 10^3 \text{m}^3/\text{kg}.$			
17	Find the value of co-efficient of volume expansion β and	13	BT-1	Remembering
	isothermal compressibility K for a Van der Waals' gas	1		
	obeying $(p + a/v^2)(v-b) = RT$			
18	A cylinder-piston arrangement contains 2 kg of	13	BT-2	Understanding
	superheated steam at 10 bar and 573 K. It undergoes an			
	adiabatic expansion to 1 bar pressure. Find the work that			
	can be obtained during the expansion process.			
	·			

PART - C (15 MARKS)				
Sl.No	QUESTIONS	MARKS	BT LEVEL	COMPETENCE
1	In an engine cylinder a gas has a volumetric analysis of	15	BT-6	Creating
	13% CO ₂ , 12.5% O ₂ , and 74.5% N ₂ . The temperature at			
	the beginning of expansion is 950°C and the gas mixture			
	expands reversibly through a volume ratio of 8 : 1,			
	according to the law $pv^{1.2}$ = constant. Calculate per kg of			
	gas :			
	(i) The workdone ;			
	(ii) The heat flow ;			
	(iii) Change of entropy per kg of mixture.	100		
	The values of cp for the constituents CO_2 , O_2 and N_2 are	No		
	1.235 kJ/kg <mark>K, 1.088</mark> kJ/kg K and 1.172 kJ/kg K	6		
	respectively.		C	
2	A mixture of ideal gases consists of 4 kg of nitrogen and 6	15	BT-5	Evaluating
	kg of carbon dioxide at a pressure of 4 bar and a		1	
	temperature of 20°C. Find :		1	
	(i) The mole <mark>fraction of each constituent,</mark>			17
	(ii) The equivalent molecular weight of the mixture,			0
	(iii) The equivalen <mark>t gas</mark> constant of the mixture,			14.1
	(iv) The partial pressures and partial volumes,			
	(v) The volume and density of the mixture, and			
	(vi) The cp and cv o <mark>f the mixture. If the mixture is heat</mark> ed			
	at constant volume <mark>to 50°C,</mark> find the changes in internal			
	energy, enthalpy a <mark>nd entrop</mark> y of the mixture. Find t <mark>he</mark>	1		
	changes in internal energy, enthalpy and entropy of the	1		
	mixture if the heating is done at constant pressure.			
	Take γ : for CO ₂ = 1.286 and for N ₂ = 1.4.			
3	4 kg of carbon dioxide at 40°C and 1.4 bar are mixed with	15	BT-5	Evaluating
	8 kg of nitrogen at 160°C and 1.0 bar to form a mixture at			
	a final pressure of 0.7 bar. The process occurs			
	adiabatically in a steady flow apparatus. Calculate :			
	(i) The final temperature of the mixture ; (ii) The change in			
	entropy. Take value of cp : for CO_2 = 0.85 kJ/kg K and N_2			
	= 1.04 kJ/kg K.			

4	For mercury, the following relation exists between saturation pressure (bar) and saturation temperature (K) : log10 p = 7.0323 - 3276.6/T- 0.652 log10 T Calculate the specific volume vg of saturation mercury vapour at 0.1 bar. Given that the latent heat of vapourisation at 0.1 bar is 294.54 kJ/kg. Neglect the specific volume of saturated	15	BT-5	Evaluating
	mercury liquid.			
5	The pressure on the block of copper of 1 kg is increased from 20 bar to 800 bar in a reversible process maintaining the temperature constant at 15°C. Determine the following : (i) Work done on the copper during the process, (ii) Change in entropy, (iii) The heat transfer, (iv) Change in internal energy, and (v) (c p - cv) for this change of state. Given : β (Volume expansitivity = 5 × 10 ⁻⁵ /K, K (thermal compressibility) = 8.6 × 10 ⁻¹² m ² /N and v (specific volume) = 0.114 × 10 ⁻³ m ³ /kg.	15	BT-5	Evaluating
	No start			

