# SRM VALLIAMMAI ENGINEERING COLLEGE (Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

# DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

### **QUESTION BANK**



#### III SEMESTER

#### 1909307- APPLIED FLUID DYNAMICS AND THERMO DYNAMICS

Regulations-2019

Academic Year 2022 – 23

Prepared by

Ms.N.Nithya, Asst. Professor (Sr.G.) – Mechanical Engineering



# SRM VALLIAMMAI ENGINEERING COLLEGE



(An Autonomous Institution)
SRM Nagar, Kattankulathur – 603 203.

#### DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

#### **OUESTION BANK**

SUBJECT : 1909307- APPLIED FLUID DYNAMICS AND THERMO DYNAMICS

SEM / YEAR: III Semester / II Year EIE

### UNIT I - BASIC CONCEPT OF FLUID MECHANICS & FLOW OF FLUIDS

Introduction – classification - types of fluids – properties - laws of pressure - atmospheric, gauge, absolute pressure, pressure measurement – manometers - mechanical gauges. Head of a liquid - Bernoulli's theorem - orifice and venturi meter.

| PART A |                                                                                                  |       |            |  |  |
|--------|--------------------------------------------------------------------------------------------------|-------|------------|--|--|
| Q      | Questions                                                                                        | BT    | Competence |  |  |
| No     |                                                                                                  | Level |            |  |  |
| 1.     | What is specific gravity?                                                                        | 1     | Remember   |  |  |
| 2.     | Draw the shear stress-velocity gradient profile for Newtonian fluids.                            | 3     | Apply      |  |  |
| 3.     | What is the effect of cavitation?                                                                | 2     | Understand |  |  |
| 4.     | Justify the use of control volume.                                                               | 5     | Evaluate   |  |  |
| 5.     | What is meant by vapor pressure of a fluid?                                                      | 3     | Apply      |  |  |
| 6.     | Define surface tension and capillarity                                                           | 1     | Remember   |  |  |
| 7.     | When is a fluid considered steady and when it is unsteady?                                       | 1     | Remember   |  |  |
| 8.     | Identify absolute pressure in terms of gauge pressure, atmospheric pressure and vacuum pressure. | 1     | Remember   |  |  |
| 9.     | Where inverted U – tube differential manometer is used? Why?                                     | 1     | Remember   |  |  |
| 10.    | Name some examples of Newtonian and Non – Newtonian fluids.                                      | 1     | Remember   |  |  |
| 11.    | Write the mathematical equation for three-dimensional flow (Steady and Unsteady).                | 2     | Understand |  |  |
| 12.    | Differentiate kinematic viscosity with dynamic viscosity.                                        | 2     | Understand |  |  |
| 13.    | Relate temperature with dynamic viscosity of gases and liquids.                                  | 2     | Understand |  |  |
| 14.    | Define the term buoyancy.                                                                        | 1     | Remember   |  |  |

| 15. | Sho  | ow different types of mouthpieces.                                  | 3  | Apply      |
|-----|------|---------------------------------------------------------------------|----|------------|
|     | Cal  | culate the diameter of the soap bubble formed when the              | 4  | Analyze    |
| 16. | insi | de pressure is 5N/m <sup>2</sup> above the atmospheric pressure. If |    |            |
|     | sur  | face tension in the soap bubble is 0.0125 N/m.                      |    |            |
| 17. | Rel  | ate specific gravity with density.                                  | 2  | Understand |
| 18. | Cla  | ssify the different types of orifices.                              | 2  | Understand |
| 19. | Dif  | ferentiate absolute pressure from gauge pressure.                   | 2  | Understand |
| 20. | Poi  | nt out the phenomena responsible for capillary rise or fall.        | 1  | Remember   |
| 21. | Coı  | ntrast ideal and real fluids.                                       | 1  | Remember   |
| 22. | Wh   | at is viscosity?                                                    | 1  | Remember   |
| 23. | Co   | mpare uniform flow and non-uniform flow                             | 2  | Understand |
| 24. | Wr   | ite the Bernoulli's theorem mathematically.                         | 2  | Understand |
| 25. | Coı  | nvert the height of water column into pressure.                     | 3  | Apply      |
|     |      | PART B                                                              |    |            |
| 1.  |      | The space between two square flat parallel plates is filled         | 4  | Analyze    |
|     |      | with oil. Each side of the plate is 60 cm. The thickness of         | 1  |            |
|     |      | the oil film is 12.5 mm. The upper plate, which moves at 2.5        | 77 |            |
|     |      | m/s requires a force of 98.1 N to maintain the speed.               |    |            |
|     |      | Determine                                                           |    |            |
|     |      | Dynamic viscosity of the oil in poise. (7)                          |    |            |
|     |      | Byhanne viscosity of the on in poise.                               |    |            |
|     |      | kinematic viscosity of the oil in stoke if the specific gravity     |    |            |
|     |      | of the oil is 0.95. (6)                                             |    |            |
| 2.  | i)   | Name and explain any four properties of hydraulic fluid. (8)        | 1  | Remember   |
|     | ii)  | What is the difference between dynamic viscosity and                | 1  | Remember   |
|     |      | kinematic viscosity? State their units of measurements. (5)         |    |            |
| 3.  | i)   | List out the assumptions made and limitations of Bernoulli's        | 1  | Remember   |
|     |      | equation. (7)                                                       |    |            |
|     | ii)  | Calculate the density, specific weight and weight of one litre      | 4  | Analyze    |
|     |      | of petrol of specific gravity 0.7. (6)                              |    |            |
| 4.  | i)   | Explain the working principle of any one pressure gauge             | 1  | Remember   |

|     |      | with neat sketch. (8)                                                       |   |            |
|-----|------|-----------------------------------------------------------------------------|---|------------|
|     | ii)  | What do you mean by single column manometers? How are                       | 1 | Remember   |
|     |      | they used for the measurements of pressure? (5)                             | • |            |
| 5.  | Cla  | ssify manometers. Illustrate each type of manometer with neat               | 2 | Understand |
|     | ske  | tches. (13)                                                                 |   |            |
| 6.  | i)   | Explain the property viscosity in detail. (4)                               | 1 | Remember   |
|     | ii)  | A 0.5 m shaft rotates in a sleeve under lubrication with                    | 5 | Evaluate   |
|     |      | viscosity 5 poise at 200 rpm. Calculate the power lost for a                |   |            |
|     |      | length of 100 mm if the thickness of the oil is 1 mm. (9)                   |   |            |
| 7.  | i)   | Where orifices and mouth pieces are preferred? Discuss. (4)                 | 1 | Remember   |
|     | ii)  | Formulate Bernoulli's equation for steady flow of an                        | 6 | Create     |
|     |      | incompressible fluid. (9)                                                   |   |            |
| 8.  | i)   | A plate 0.025 mm distant from a fixed plate, moves at 60                    | 5 | Evaluate   |
|     |      | cm/s and requires a force of 2 N per unit area to maintain                  |   |            |
|     |      | this speed. Estimate the fluid viscosity between the plates.                |   |            |
|     |      | (8)                                                                         | 5 |            |
|     | ii)  | How fluids are classified? Explain. (5)                                     | 2 | Understand |
| 9.  | i)   | Express Euler's equation of motion for flow along a stream                  | 2 | Understand |
|     |      | line (with derivation). (9)                                                 |   |            |
|     | ii)  | What are the assumptions involved in Euler's equation? (4)                  | 2 | Understand |
| 10. | ΑŪ   | J- Tube manometer is used to measure the pressure of water                  | 5 | Evaluate   |
|     | in a | a pipe line, which is in excess of atmospheric pressure. The                |   |            |
|     | righ | nt limb of the manometer contains mercury and is open to                    |   |            |
|     | wat  | er in the main line, if the difference in level of mercury in the           |   |            |
|     | lim  | bs of U tube is 10 cm and the free surface of mercury is in                 |   |            |
|     | leve | el with the centre of the pipe. If the pressure of water in pipe            |   |            |
|     | line | e is reduced to 9810 N/m <sup>2</sup> , Calculate the new difference in the |   |            |
|     | leve | el of mercury. Sketch the arrangements in both cases. (13)                  |   |            |
| 11. | i)   | Differentiate Venturimeter and Orifice meter. (5)                           | 2 | Understand |
|     | ii)  | A horizontal Venturimeter with inlet diameter 200 mm                        | 4 | Analyze    |
|     |      | and throat diameter 100 mm is employed to measure the                       |   |            |

|     |         | flow of water. The reading of the differential mano                   | ometer      |   |            |
|-----|---------|-----------------------------------------------------------------------|-------------|---|------------|
|     |         | connected to the inlet is 180 mm of mercury. If $C_d$ =               | 0.98,       |   |            |
|     |         | Calculate the rate of flow.                                           | (8)         |   |            |
| 12. | i)      | Write short notes on Capillarity and surface tension.                 | (6)         | 1 | Remember   |
|     | ii)     | The water is flowing through a pipe having diameter                   | ers 20      | 4 | Analyze    |
|     |         | cm and 10 cm at section 1 and 2 respectively. The r                   | rate of     |   |            |
|     |         | flow through pipe is 35 litres/sec. The section 1 is                  | s 6 m       |   |            |
|     |         | above datum and section 2 is 4 m above the datum.                     | If the      |   |            |
|     |         | pressure at section 1 is 39.24 N/cm <sup>2</sup> , find the intens    | sity of     |   |            |
|     |         | pressure at section 2.                                                | <b>(7</b> ) |   |            |
| 13. | Ho      | rizontal pipe carrying water is gradually tapering. A                 | at one      | 5 | Evaluate   |
|     | sec     | tion the diameter is 150 mm and flow velocity is 1.5 r                | m/s. If     |   |            |
|     | the     | drop in pressure is 1.104 bar at a reduced section, mo                | easure      |   |            |
|     | the     | diameter of that section. If the drop is 5 kN/m <sup>2</sup> , what v | will be     |   |            |
|     | the     | diameter? — Neglect losses.                                           | (13)        |   |            |
| 14. | i)      | Summarize about atmospheric pressure, vacuum pre                      | essure      | 2 | Understand |
|     |         | and absolute pressure.                                                | (5)         | n |            |
|     | ii)     | Examine the discharge through a tapered drainage p                    | ipe of      | 3 | Apply      |
|     |         | diameters at the inlet and exits are 1000 mm and 50                   | 0 mm        |   |            |
|     |         | respectively. The water surface is 2 m above the cer                  | ntre of     |   |            |
|     |         | the inlet and exit is 3 m above the free surface of the               | water.      |   |            |
|     |         | The pressure at the exit is 250 mm of Hg vacuum                       | n. The      |   |            |
|     |         | friction loss between the inlet and exit of the pipe is 1             | /10 of      |   |            |
|     |         | the velocity head at the exit.                                        | (8)         |   |            |
| 15. | Exp     | plain the classification and theory of different typ                  | es of       | 1 | Remember   |
|     | me      | chanical gauges for pressure measurement.                             | (13)        |   |            |
| 16. | Α 3     | 300 mm diameter pipe carries water under a head of                    | 20 m        | 5 | Evaluate   |
|     | wit     | h a velocity of 3.5 m/s. If the axis of the pipe turns the            | rough       |   |            |
|     |         |                                                                       |             |   |            |
|     | 45°     | , find the magnitude and direction of the resultant force             | at the      |   |            |
|     | 45° ben | •                                                                     | at the (13) |   |            |

| 17. | A drainage pipe is tapered in a section running with full of                  | 4 | Analyze  |
|-----|-------------------------------------------------------------------------------|---|----------|
|     | water. The pipe diameter of the inlet and exit are 1000 mm and                |   |          |
|     | 500 mm respectively. The water surface is 2 m above the centre                |   |          |
|     | of the inlet and exit is 3 m above the free surface of the water.             |   |          |
|     | The pressure at the exit is 250 mm of Hg vacuum. The friction                 |   |          |
|     | loss between the inlet and exit of the pipe is 1/10 of the velocity           |   |          |
|     | head at the exit. Determine the discharge through the pipe. (13)              |   |          |
| 18. | A 45° reducing bend is connected in a pipe line, the diameters at             | 4 | Analyze  |
|     | the inlet and outlet of the bend being 600 mm and 300 mm                      | - | j        |
|     | respectively. Find the force exerted by water on the bend if the              |   |          |
|     | intensity of pressure at inlet to bend is 8.829 N/cm <sup>2</sup> and rate of |   |          |
|     | flow of water is 600 liters/s. (13)                                           |   |          |
|     | now of water is ooo neers/s.                                                  |   |          |
|     | PART C                                                                        |   |          |
| 1.  | Write Bernoulli's theorem. Discuss any one application of                     | 1 | Remember |
|     | Bernoulli's theorem in detail. (15)                                           | ^ |          |
| 2.  | A pipe 200 m long slopes down at 1 in 100 and tapers from 600                 | 5 | Evaluate |
|     | mm diameter at the higher end to 300 mm diameter at the lower                 |   |          |
|     | end, and carries 100 litres / sec of oil having specific gravity 0.8.         |   |          |
|     | If the pressure gauge at the higher end reads 60 kN/m <sup>2</sup> ,          |   |          |
|     | determine the velocities at the two ends and also the pressure at             |   |          |
|     | the lower end. Neglect all losses. (15)                                       |   |          |
| 3.  | A 30 cm x 15 cm venturimeter is provided in a vertical pipe                   | 4 | Analyze  |
|     | line carrying oil of specific gravity 0.9, the flow being upwards.            |   |          |
|     | The difference in elevation of the throat section and entrance                |   |          |
|     | section of the venturimeter is 30 cm. The differential U tube                 |   |          |
|     | mercury manometer shows a gauge deflection of 25 cm.                          |   |          |
|     | Evaluate: (a) the discharge of oil. (b) The pressure difference               |   |          |
|     | between the entrance section and the throat section. Take $C_d$ =             |   |          |
|     | 0.98 and specific gravity of mercury as 13.6. (15)                            |   |          |
| 4.  | Calculate the dynamic viscosity of oil which is used for                      | 5 | Evaluate |

|    | lubrication between square plate of size 0.8m x 0.8 m and an                 |    |         |
|----|------------------------------------------------------------------------------|----|---------|
|    | inclined plane with angle of inclination 30°. The weight of the              |    |         |
|    | square plate is 300 N and it slide down the inclined plane with a            |    |         |
|    | uniform velocity of 0.3m/s. The thickness of the oil film is 1.5             |    |         |
|    | mm. (15)                                                                     |    |         |
| 5. | The lawn sprinkler with two nozzles of diameter 4mm each is                  | 4  | Analyze |
|    | connected across a tap of water as shown in Fig.1. The nozzles               |    |         |
|    | are at a distance of 30 cm and 20 cm from the centre of the tap.             |    |         |
|    | The rate of flow of water through tap is 120 cm <sup>3</sup> /s. The nozzles |    |         |
|    | discharge water in the downward directions. Determine the                    |    |         |
|    | angular speed at which the sprinkler will rotate free.                       |    |         |
|    | ENOUNCERIN                                                                   |    |         |
|    | <del>&lt;</del> 20 cm →   < 30 cm →                                          |    |         |
|    | A                                                                            |    |         |
|    | ω'                                                                           |    |         |
|    | 1 7                                                                          | N. |         |
|    |                                                                              | 0  |         |
|    | Fig. 1                                                                       |    |         |
|    |                                                                              |    |         |
| 6. | A pipe (1) 450 mm in diameter branches into two pipes (2) and                | 4  | Analyze |
|    | (3) of diameters 300 mm and 200 mm respectively. If the                      |    |         |
|    | average velocity in 450 mm diameter pipe is 3m/s. Find, (i).                 |    |         |
|    | Discharge through 450 mm diameter pipe;(ii) Velocity in 200                  |    |         |
|    | mm diameter pipe if the average velocity in 300 mm pipe is 2.5               |    |         |
|    | m/s.                                                                         |    |         |
|    | l                                                                            | l  | l .     |

UNIT II - DIMENSIONAL ANALYSIS

Introduction – dimensions - dimensional analyses - Rayleigh's and Buckingham's method.

| P | Δ | RТ | Γ | Δ |
|---|---|----|---|---|
|   |   |    |   |   |

| PART A  |                                                                       |             |            |  |  |  |
|---------|-----------------------------------------------------------------------|-------------|------------|--|--|--|
| Q<br>No | Questions                                                             | BT<br>Level | Competence |  |  |  |
| 1.      | Define fundamental units and derived units with example.              | 1           | Remember   |  |  |  |
| 2.      | Quote Dimensionally Homogeneous equation with an example.             | 1           | Remember   |  |  |  |
| 3.      | Define the term dimensional analysis.                                 | 1           | Remember   |  |  |  |
| 4.      | Write the dimensions of the following Physical Quantities:            | 1           | Remember   |  |  |  |
|         | (i) Pressure (ii) Surface Tension                                     |             |            |  |  |  |
| 5.      | List out the advantages of Dimensional analysis.                      | 1           | Remember   |  |  |  |
| 6.      | What are the methods of dimensional analysis?                         | 1           | Remember   |  |  |  |
| 7.      | Describe the Rayleigh's method for dimensional analysis.              | 1           | Remember   |  |  |  |
| 8.      | Summarize the Buckingham's $\pi$ – theorem.                           | 2           | Understand |  |  |  |
| 9.      | Apply dimensional homogeneity for the equation $v = u + at$ .         | 3           | Apply      |  |  |  |
| 10.     | What do you mean by repeating variables?                              | 1           | Remember   |  |  |  |
| 11.     | How to calculate the number of $\pi$ terms while applying             | 3           | Apply      |  |  |  |
|         | Buckingham's π theorem.                                               | n           |            |  |  |  |
| 12.     | How are the repeating variables selected for dimensional analysis?    | 3           | Apply      |  |  |  |
| 13.     | Illustrate how the equations are derived in Raleigh's method.         | 1           | Remember   |  |  |  |
| 14.     | What are the significances of Buckingham's π theorem?                 | 1           | Remember   |  |  |  |
| 15.     | What are the needs of dimensional analysis?                           | 1           | Remember   |  |  |  |
| 16.     | List of physical quantities having the same dimensional formula.      | 2           | Understand |  |  |  |
| 17.     | What are dimensional constants?                                       | 1           | Remember   |  |  |  |
| 18.     | Give the dimensions of: i) Force ii) Viscosity.                       | 1           | Remember   |  |  |  |
| 19.     | Compare Rayleigh's method with Buckingham's method.                   | 2           | Understand |  |  |  |
| 20.     | Point out the important limitations of dimensional analysis.          | 1           | Remember   |  |  |  |
| 21.     | Give the dimensions of: i) Power ii) Kinematic viscosity.             | 2           | Understand |  |  |  |
| 22.     | Find the dimensions of: i) Angular velocity ii) Angular acceleration. | 2           | Understand |  |  |  |
| 23.     | Determine the dimensions of: i) Discharge ii) Specific weight.        | 2           | Understand |  |  |  |

| 24. | Fine   | d the dimensions of: i) Surface tension ii) Shear stress.           | 2            | Understand |  |  |  |
|-----|--------|---------------------------------------------------------------------|--------------|------------|--|--|--|
| 25. | Wh     | at are the applications of dimensional analysis?                    | 1            | Remember   |  |  |  |
|     | PART B |                                                                     |              |            |  |  |  |
| 1.  | i)     | List the criteria for selecting repeating variable in this          | 1            |            |  |  |  |
|     |        | dimensional analysis? (7)                                           | 1            | Remember   |  |  |  |
|     | ii)    | Check whether the following equation is dimensionally               | 4            | Analyze    |  |  |  |
|     |        | homogeneous. $T = 2\pi\sqrt{(L/g)}$ . (6)                           | <del>-</del> | Anaryze    |  |  |  |
| 2.  | i)     | List out the criteria for selecting repeating variable in           | 1            | Remember   |  |  |  |
|     |        | dimensional analysis. (7)                                           |              |            |  |  |  |
|     | ii)    | Write a short note on dimensional homogeneity with                  | 2            | Understand |  |  |  |
|     |        | suitable examples. (6)                                              |              |            |  |  |  |
| 3.  | The    | e pressure difference (ΔP) in a pipe of diameter D and length       | 4            | Analyze    |  |  |  |
|     | L,     | due to viscous flow depends on the velocity V, viscosity µ          |              |            |  |  |  |
|     | and    | density $\rho$ using Buckingham's $\pi$ – theorem, deduce the       |              |            |  |  |  |
|     | exp    | ression for $\Delta P$ . (13)                                       | v.           |            |  |  |  |
| 4.  | The    | e resisting force (R) of a supersonic flight can be considered      | 4            | Analyze    |  |  |  |
|     | as o   | dependent upon the length of the air craft 'l', velocity 'v',       | 2.5          |            |  |  |  |
|     | air    | viscosity 'μ', air density 'ρ' and bulk modulus of air is 'k'.      |              |            |  |  |  |
|     | Exp    | press the functional relationship between these variables and       |              |            |  |  |  |
|     | the    | resisting force. By using Rayleigh's method. (13)                   |              |            |  |  |  |
| 5.  | The    | e efficiency ( $\eta$ ) of a fan depends on $\rho$ (density), $\mu$ | 4            | Analyze    |  |  |  |
|     | (vis   | scosity) of the fluid, $\omega$ (angular velocity), d (diameter of  |              |            |  |  |  |
|     | roto   | or) and Q (discharge). Give $\eta$ in terms of non-dimensional      |              |            |  |  |  |
|     | para   | ameters. Use Buckingham's $\pi$ theorem. (13)                       |              |            |  |  |  |
| 6.  | Exp    | plain the step by step procedure of Buckingham's $\pi$ –            | 1            | Remember   |  |  |  |
|     | the    | orem with suitable example. (13)                                    |              |            |  |  |  |
| 7.  | Usi    | ng Buckingham's $\pi$ - theorem, Develop the expression for         | 4            | Analyze    |  |  |  |
|     | velo   | ocity through a circular orifice in a pipe as,                      |              |            |  |  |  |
|     |        | ,                                                                   |              |            |  |  |  |
|     | v      | $=\sqrt{2gH}\emptyset\left[\frac{D}{H},\frac{\mu}{\rho VH}\right]$  |              |            |  |  |  |
|     |        | н рун                                                               |              |            |  |  |  |

|     | where v is the velocity through orifice of diameter d and H is                                       |   |          |
|-----|------------------------------------------------------------------------------------------------------|---|----------|
|     | the head causing the flow and $\rho$ and $\mu$ are the density and                                   |   |          |
|     | dynamic viscosity of the fluid passing through the orifice and g                                     |   |          |
|     | is acceleration due to gravity. (13)                                                                 |   |          |
| 8.  | i) Explain the Rayleigh's method of dimensional analysis with                                        | 1 | Remember |
|     | an example. (9)                                                                                      |   |          |
|     | ii) List out the advantages of dimensional analysis. (4)                                             | 1 | Remember |
| 9.  | The variable controlling the motion of a floating vessel through                                     | 4 | Analyze  |
|     | water are the drag force F, the speed V, the length L, the density                                   |   |          |
|     | $\rho$ and dynamic viscosity $\mu$ of water and acceleration due to                                  |   |          |
|     | gravity g. Derive an expression for F by dimensional analysis.                                       |   |          |
|     | (13)                                                                                                 |   |          |
| 10  | The drag force exerted by a flowing fluid on a solid body                                            | 4 | Analyze  |
|     | depends upon the length of the body L, velocity of flow V,                                           |   |          |
|     | density of fluid $\rho$ , and viscosity $\mu$ . Find an expression for drag                          |   |          |
|     | force using Buckingham's $\pi$ theorem. (13)                                                         | ò |          |
| 11. | The power developed by hydraulic machines is found to depend                                         | 4 | Analyze  |
|     | on the head H, flow rate Q, density ρ, Speed N, runner diameter                                      |   |          |
|     | D and acceleration due to gravity g. Obtain suitable                                                 |   |          |
|     | dimensionless parameters to correlate experimental results. (13)                                     |   |          |
| 12. | The capillary rise h is found to be influenced by the tube                                           | 4 | Analyze  |
|     | diameter D, density $\rho$ , gravitational acceleration g and surface                                |   |          |
|     | tension $\sigma$ , determine the dimensional parameters for the                                      |   |          |
|     | correlation of experimental results. (13)                                                            |   |          |
| 13. | A partially submerged body is towed in water. The resistance R                                       | 4 | Analyze  |
|     | to its motion depends on the density $\boldsymbol{\rho},$ the viscosity $\boldsymbol{\mu}$ of water, |   |          |
|     | length l of the body, velocity v of the body and the acceleration                                    |   |          |
|     | due to gravity g. Express the functional relationship between                                        |   |          |
|     | these variables and resisting force. Using Rayleigh's method.                                        |   |          |
|     | (13)                                                                                                 |   |          |
| 14. | The resisting force(R) of a supersonic flight can be considered as                                   | 5 | Evaluate |

|     | dependent upon the length of the air craft 'l', velocity 'v', air                           |   |          |
|-----|---------------------------------------------------------------------------------------------|---|----------|
|     | viscosity 'μ', air density 'ρ' and bulk modulus of air is 'k'.                              |   |          |
|     | Express the functional relationship between these variables and                             |   |          |
|     | the resisting force. Use Buckingham's $\pi$ theorem. (13)                                   |   |          |
| 15. | A partially submerged body is towed in water. The resistance R                              | 5 | Evaluate |
|     | to its motion depends on the density $\rho$ , the viscosity $\mu$ of water,                 |   |          |
|     | length l of the body, velocity v of the body and the acceleration                           |   |          |
|     | due to gravity g. Express the functional relationship between                               |   |          |
|     | these variables and resisting force. Buckingham's $\pi$ theorem. (13)                       |   |          |
| 16. | The power required by an agitator in a tank is a function of the                            | 4 | Analyze  |
|     | following variables: a. Diameter of the agitator b. Number of rotations                     |   |          |
|     | of the impeller per unit time c. Viscosity of liquid d. Density of liquid                   |   |          |
|     | From dimensional analysis using Buckingham's method, obtain a                               |   |          |
|     | relation between power and the four variables. (13)                                         |   |          |
| 17. | The force exerted by a flowing fluid on a stationary body depends                           | 4 | Analyze  |
|     | upon the length L of a body, velocity V of the fluid, density ρ of fluid,                   | 1 |          |
|     | viscosity μ of fluid and acceleration g due to gravity. Find an                             | 5 |          |
|     | expression for the force using dimensional analysis. (13)                                   | 1 |          |
| 18. | The discharge through an orifice depends on the diameter D of the                           | 4 | Analyze  |
|     | orifice, head H over the orifice, density $\rho$ of liquid, viscosity $\mu$ of              |   |          |
|     | liquid acceleration g due to gravity. Using dimensional analysis,                           |   |          |
|     | find an expression for the discharge. Hence find the                                        |   |          |
|     | dimensionless parameters on which the discharge co-efficient of                             |   |          |
|     | an orifice meter depend. (13)                                                               |   |          |
|     | PART C                                                                                      |   | <u> </u> |
| 1.  | Using Buckingham's $\pi$ -theorem, show that the discharge Q                                | 6 | Create   |
|     | consumed by an oil ring is given by, $Q = N d^3 \Phi [\mu/\rho N d^2]$ ,                    |   |          |
|     | $\sigma/\rho N^2 d^3$ , $\omega/\rho N^2 d$ ] where d is the internal diameter of the ring, |   |          |
|     | N id rotational speed, $\rho$ is density, viscosity $\mu$ , $\sigma$ is surface             |   |          |
|     | tension and $\omega$ is the specific weight of oil. (15)                                    |   |          |
| 2.  | The power P developed by a water turbine depends on the                                     | 5 | Evaluate |
|     | rotational speed N, operating head H, gravity g, diameter D and                             |   |          |
|     | 1                                                                                           | 1 | 1        |

|    | width B of the runner, density $\rho$ and viscosity $\mu$ of water. Show                                         |    |          |
|----|------------------------------------------------------------------------------------------------------------------|----|----------|
|    | by dimensional analysis that,                                                                                    |    |          |
|    | $P = \rho D^5 N^3 \Phi\left[\frac{H}{D}, \frac{D}{B}, \frac{\rho D^2 N}{\mu}, \frac{ND}{\sqrt{gH}}\right] $ (15) |    |          |
| 3. | Derive on the basis of dimensional analysis suitable parameters                                                  | 5  | Evaluate |
|    | to present the thrust developed by a propeller. Assume that the                                                  |    |          |
|    | thrust P depends upon the angular velocity $\boldsymbol{\omega},$ speed of advance                               |    |          |
|    | V, diameter D, dynamic viscosity $\mu$ , mass density $\rho$ , elasticity of                                     |    |          |
|    | the fluid medium which can be denoted by the speed of sound in                                                   |    |          |
|    | the medium C. (15)                                                                                               |    |          |
| 4. | The efficiency $\eta$ of a fan depends on density $\rho$ , dynamic                                               | 4  | Analyze  |
|    | viscosity $\mu$ of the fluid, angular velocity $\omega$ , diameter D of the                                      |    |          |
|    | rotor and the discharge Q. Express $\eta$ in terms of dimensionless                                              |    |          |
|    | parameters. By using Rayleigh's method. (15)                                                                     |    |          |
| 5. | The pressure difference ( $\Delta P$ ) in a pipe of diameter D and length                                        | 4  | Analyze  |
|    | L, due to turbulent flow depends on the velocity V, viscosity μ                                                  | 5  |          |
|    | and density $\rho$ using Buckingham's $\pi$ – theorem, deduce the                                                | 11 |          |
|    | expression for $\Delta P$ . (15)                                                                                 |    |          |
| 6. | The resistance R, to the motion of a completely sub-merged                                                       | 4  | Analyze  |
|    | body depends upon the length of the body L, velocity of flow                                                     |    |          |
|    | $V$ , mass density of fluid $\rho$ and kinematic viscosity of fluid $v$ . By                                     |    |          |
|    | dimensional analysis                                                                                             |    |          |
|    | $R = \rho V^2 L^2 \phi (VL / v) $ (15)                                                                           |    |          |

## **UNIT III - PUMPS AND TURBINES**

Introduction - types of pumps - reciprocating pump - construction details - co-efficient of discharge - slip - power required - centrifugal pump - classification - working principle - specific speed - turbines - classification - working principle

|         | PART A                                                                              |             |            |  |  |
|---------|-------------------------------------------------------------------------------------|-------------|------------|--|--|
| Q<br>No | Questions                                                                           | BT<br>Level | Competence |  |  |
| 1.      | Define slip of reciprocating pump.                                                  | 1           | Remember   |  |  |
| 2.      | Where air-vessels are used? Why?                                                    | 2           | Understand |  |  |
| 3.      | What is suction head of a pump?                                                     | 1           | Remember   |  |  |
| 4.      | Define mechanical efficiency of a pump.                                             | 1           | Remember   |  |  |
| 5.      | List out various Roto dynamic pumps.                                                | 1           | Remember   |  |  |
| 6.      | Name the parts of a centrifugal pump.                                               | 1           | Remember   |  |  |
| 7.      | Why actual discharge be greater than theoretical discharge in a reciprocating pump? | 2           | Understand |  |  |
| 8.      | Where impulse turbine is preferred?                                                 | 1           | Remember   |  |  |
| 9.      | Label the parts of single acting reciprocating pump with simple sketch.             | 2           | Understand |  |  |
| 10.     | Differentiate Francis turbin <mark>e from</mark> Kaplan turbine.                    | 2           | Understand |  |  |
| 11.     | Discuss briefly about indicator diagram.                                            | 1           | Remember   |  |  |
| 12.     | Define percentage of slip of reciprocating pump.                                    | 1           | Remember   |  |  |
| 13.     | Classify the different types of turbines.                                           | 2           | Understand |  |  |
| 14.     | Explain specific speed of a turbine.                                                | 1           | Remember   |  |  |
| 15.     | Point out the functions of a draft tube.                                            | 1           | Remember   |  |  |
| 16.     | Compare turbines with pumps.                                                        | 2           | Understand |  |  |
| 17.     | Select the type of turbine for low head power plants and high                       | 1           | Remember   |  |  |
|         | head power plants.                                                                  |             |            |  |  |
| 18.     | What is an air vessel?                                                              | 1           | Remember   |  |  |
| 19.     | Combine the velocity triangles of inlet and outlet of centrifugal                   | 1           | Remember   |  |  |
|         | pump.                                                                               |             |            |  |  |
| 20.     | Find the expression for the head lost due to friction in suction                    | 2           | Understand |  |  |

|     | and   | delivery pipe of reciprocating pump.                                |   |            |
|-----|-------|---------------------------------------------------------------------|---|------------|
| 21. | Def   | fine cavitations.                                                   | 1 | Remember   |
| 22. | Wh    | at do you understand by the term Priming?                           | 2 | Understand |
| 23. |       | t the parts of double acting reciprocating pump with simple         | 2 | Understand |
| 24. |       | tch.                                                                | 2 | TT 1 . 1   |
|     |       | en does negative slip occur?                                        | 2 | Understand |
| 25. | Wh    | at are the losses in centrifugal pump?                              | 1 | Remember   |
| 1.  | 2)    | PART B                                                              | 1 | D l        |
| 1.  | i)    | Describe the working principle of single acting                     | 1 | Remember   |
|     |       | reciprocating pump with neat sketch. (9)                            |   |            |
|     | ii)   | Tabulate the differences between reciprocating pump and             | 1 | Remember   |
|     |       | centrifugal pump. (4)                                               |   |            |
| 2.  | i)    | Define and classify pumps. (3)                                      | 1 | Remember   |
|     | ii)   | Describe the construction and working principle of                  | 2 | Understand |
|     |       | centrifugal pump with neat sketch. (10)                             |   |            |
| 3.  | i)    | Draw and explain the velocity triangle of centrifugal pump.         | 2 | Understand |
|     |       | (8)                                                                 | 5 |            |
|     | ii)   | Draw and discuss about the performance curves of                    | 2 | Understand |
|     |       | centrifugal pump. (5)                                               |   |            |
| 4.  | Exa   | nmine the theoretical discharge, coefficient of discharge,          | 5 | Evaluate   |
|     | sli   | p and the percentage slip of a single acting reciprocating          |   |            |
|     |       | np running at 50 rpm, delivers 0.01 m <sup>3</sup> /s of water. The |   |            |
|     |       | meter of the piston is 200 mm and stroke of 400 mm. (13)            |   |            |
| 5.  |       | e diameter and stroke of a single acting reciprocating pump         | 5 | Evaluate   |
|     |       | 120 mm and 300 mm respectively. The water is lifted by a            |   |            |
|     |       |                                                                     |   |            |
|     | _     | np through a total head of 25 m. The diameter and length of         |   |            |
|     |       | ivery pipe are 100 mm and 20 mm respectively. Calculate:            |   |            |
|     | (i) ' | Theoretical discharge and theoretical power required to run         |   |            |
|     | the   | pump if its speed is 60rpm. (4)                                     |   |            |
|     | (ii)  | Percentage slip, if the actual discharge is 2.35 1/s. (4)           |   |            |
|     | (iii) | The acceleration head at the beginning and middle of the            |   |            |

|    | delivery stroke. (5)                                                      |   |            |
|----|---------------------------------------------------------------------------|---|------------|
| 6. | The diameter and length of a suction pipe of a single acting              | 4 | Analyze    |
|    | reciprocating pump are 10 cm and 5 m respectively. The pump               |   |            |
|    | has a plunger diameter of 15 cm and a stroke length of 35 cm.             |   |            |
|    | The center of the pump is 3 m above the water surface in the              |   |            |
|    | sump. The atm. Pressure head is 10.3 m of water and the pump              |   |            |
|    | runs at 50 rpm. Collect (Find),                                           |   |            |
|    | i)Pressure head due to Acceleration at the beginning of the               |   |            |
|    | suction stroke. (4)                                                       |   |            |
|    | ii)Maximum pressure head due to Acceleration. (4)                         |   |            |
|    | iii)Pressure head in the cylinder at the beginning and end of the         |   |            |
|    | suction stroke. (5)                                                       |   |            |
| 7. | Give short notes on following                                             | 1 | Remember   |
|    | i)Indicator diagram of single acting reciprocating pump. (5)              |   |            |
|    | ii)Priming of pump. (4)                                                   |   |            |
|    | iii)Specific speed of pump. (4)                                           | 5 |            |
| 8. | Deduce the expression for the following:                                  | 2 | Understand |
|    | i)Specific speed of pump. (4)                                             |   |            |
|    | ii)Power required to drive reciprocating pump. (4)                        |   |            |
|    | iii)Coefficient of discharge in reciprocating pump. (5)                   |   |            |
| 9. | A double acting reciprocating pump running at 60 rpm is                   | 5 | Evaluate   |
|    | discharging 1.5 m <sup>3</sup> of water per minute. The pump has a stroke |   |            |
|    | length of 400 mm. The diameter of the piston is 250 mm. The               |   |            |
|    | delivery and suction heads are 20 m and 5 m respectively.                 |   |            |
|    | Predict (Find) the power required to drive the pump and the slip          |   |            |
|    | of the pump. (13)                                                         |   |            |

| 10. | Αc   | louble acting reciprocating pump has a bore of 150 mm and        | 4 | Analyze    |
|-----|------|------------------------------------------------------------------|---|------------|
|     | stro | ke of 250 mm and runs at 35 rpm. The piston rod diameter is      |   |            |
|     | 20   | mm. The suction head is 6.5 m and the delivery head is 14.5      |   |            |
|     | m.   | The discharge of water was 4.7 lit/s. Prepare (Determine) the    |   |            |
|     | slip | and the power required. (13)                                     |   |            |
| 11. | The  | e internal and external diameters of the impeller of centrifugal | 4 | Analyze    |
|     | pun  | nps are 200 mm and 400 mm respectively. The pump is              |   |            |
|     | run  | ning at 1200 rpm. The vane angles of the impeller at inlet and   |   |            |
|     | out  | let are 20° and 30° respectively. The water enters the impeller  |   |            |
|     | rad  | ally and velocity of flow is constant. Examine the work done     |   |            |
|     | by   | the impeller per unit weight of water. Sketch the velocity       |   |            |
|     | tria | ngle. (13)                                                       |   |            |
| 12. | i)   | Discuss about cavitations, its causes, effects and prevention.   | 2 | Understand |
|     |      | (9)                                                              |   |            |
|     | ii)  | Differentiate impulse turbine from reaction turbine. (4)         | 2 | Understand |
| 13. | i)   | Summarize the importance of draft tube in hydraulic              | 2 | Understand |
|     |      | turbines. (3)                                                    |   |            |
|     | ii)  | List the classification of turbines and explain the working of   | 1 | Remember   |
|     |      | Pelton wheel with neat sketch. (10)                              |   |            |
| 14. | i)   | Explain the construction and working of Francis turbine          | 1 | Remember   |
|     |      | with neat sketch. (10)                                           |   |            |
|     | ii)  | Differentiate Francis turbine from Kaplan turbine. (3)           | 2 | Understand |
| 15. | Coı  | mpare and contrast Francis turbine and Pelton wheel with         | 2 | Understand |
|     | sim  | ple sketches. (13)                                               |   |            |
| 16. | i)   | Define Specific speed of turbine. (3)                            | 2 | Understand |
|     | ii)  | Explain the working principle of Kaplan turbine with neat        | 1 | Remember   |
|     |      | sketch. (10)                                                     |   |            |
| 17. | i)   | Give short note on air vessels. (4)                              | 2 | Understand |
|     | ii)  | Explain the working principle of double acting                   | 2 | Understand |
|     |      | reciprocating pump with a neat sketch. (9)                       |   |            |

| 18. |      | A Pelton wheel has a mean bucket speed of 10 m/s with a jet            | 4   | Analyze    |
|-----|------|------------------------------------------------------------------------|-----|------------|
|     |      | of water flowing at the rate of 700 lps under a head of 30 m.          |     |            |
|     |      | The buckets deflect the jet through an angle of 160°.                  |     |            |
|     |      | Identify the power given by the water to the runner and the            |     |            |
|     |      | hydraulic efficiency of the turbine. Assume coefficient of             |     |            |
|     |      | velocity as 0.98. (13)                                                 |     |            |
| 1.  |      | PART C                                                                 |     |            |
| 1.  | i)   | Hustrate an inward and an outward flow reaction turbine. (7)           | 2   | Understand |
|     | ii)  | Appraise the significance of specific speed in pumps and               | 1   | Remember   |
|     |      | turbines. (8)                                                          |     |            |
| 2.  | The  | e diameter and length of a suction pipe of a single acting             | 5   | Evaluate   |
|     | reci | procating pump are 10 cm and 5 m respectively. The pump                |     |            |
|     | has  | a plunger diameter of 15 cm and a stroke length of 35 cm.              |     |            |
|     | The  | e centre of the pump is 3 m above the water surface in the             |     |            |
|     | sun  | np. The atm. Pressure head is 10.3 m of water and the                  | ų.  |            |
|     | pun  | np runs at 50 rpm. Collect (Find), (i) pressure head due to            | ٨   |            |
|     | Aco  | celeration at the beg <mark>inning of the suction str</mark> oke. (ii) | 0.0 |            |
|     | Ma   | ximum pressure head due to Acceleration and (iii) pressure             |     |            |
|     | hea  | d in the cylinder at the beginning and end of the suction              |     |            |
|     | stro | ske. (15)                                                              |     |            |
| 3.  | i)   | A single acting reciprocating pump has a bore of 200 mm                | 5   | Evaluate   |
|     |      | and a stroke of 350 mm and runs at 45 rpm. The suction                 |     |            |
|     |      | head is 8 m and the delivery head is 20 m. Evaluate the                |     |            |
|     |      | theoretical discharge of water and power required. If slip is          |     |            |
|     |      | 10%, what is the actual flow rate? (10)                                |     |            |
|     | ii)  | Explain the term Priming. Why is it necessary? (5)                     | 1   | Remember   |
| 4.  | Des  | sign the construction and working principle of single acting           | 6   | Create     |
|     | and  | double reciprocating pump with indicator diagram. (15)                 |     |            |
| 5.  | A I  | Pelton turbine is required to develop 9000 kW when working             | 4   | Analyze    |
|     | und  | ler a head of 300 m the impeller may rotate at 500 rpm.                |     |            |
|     | Ass  | suming a jet ratio of 10 and an overall efficiency of 85%              |     |            |
| L   | 1    |                                                                        |     |            |

|    | calculate(i) Quantity of water required, (ii) Diameter of the wheel, (iii) No of jets, (iv) No and size of the bucket vanes on |   |         |
|----|--------------------------------------------------------------------------------------------------------------------------------|---|---------|
|    | the runner. (15)                                                                                                               |   |         |
| 6. | A centrifugal pump having outer diameter equal to two times the                                                                | 4 | Analyze |
|    | inner diameter and running at 1000 r.p.m works against a total                                                                 |   |         |
|    | head of 40m. The velocity of flow through the impeller is                                                                      |   |         |
|    | constant and equal to 2.5 m/s. The vanes are set back at an angle                                                              |   |         |
|    | of 40° at outlet. If the outer diameter of the impeller is 500 mm                                                              |   |         |
|    | and width at outlet is 50mm, determine: (i) Vane angle at inlet,                                                               |   |         |
|    | (ii) Work done by impeller on water per second (iii) Manometric                                                                |   |         |
|    | efficiency. (15)                                                                                                               |   |         |



## UNIT IV - LAWS OF THERMODYNAMICS AND BASIC IC ENGINE CYCLES

Systems, Zeroth law, first law of thermodynamics - concept of internal energy and enthalpy - applications of closed and open systems - second law of thermodynamics. Basic IC engine, 2 stroke and 4 stroke engine and gas turbine cycle- Brayton cycle.

|         | PART A                                                            |             |            |  |  |
|---------|-------------------------------------------------------------------|-------------|------------|--|--|
| Q<br>No | Questions                                                         | BT<br>Level | Competence |  |  |
| 1.      | Compare homogeneous and heterogeneous system.                     | 2           | Understand |  |  |
| 2.      | Define state, process and cycle.                                  | 1           | Remember   |  |  |
| 3.      | List out the various non – flow processes.                        | 1           | Remember   |  |  |
| 4.      | Define the term scavenging related with IC engines.               | 1           | Remember   |  |  |
| 5.      | Label various parts of four stroke diesel engine with a sketch.   | 1           | Remember   |  |  |
| 6.      | Distinguish between open and closed system.                       | 2           | Understand |  |  |
| 7.      | Tabulate the differences between two stroke and four stroke       | 2           | Understand |  |  |
|         | petrol engine.                                                    |             |            |  |  |
| 8.      | Name the different types of I.C engines.                          | 1           | Remember   |  |  |
| 9.      | Summarize the functions of carburetor in petrol engine.           | 2           | Understand |  |  |
| 10.     | Distinguish Clausius statement with Kelvin Plank statement.       | 2           | Understand |  |  |
| 11.     | Give examples for intensive and extensive properties.             | 1           | Remember   |  |  |
| 12.     | State zeroth law of thermodynamics.                               | 2           | Understand |  |  |
| 13.     | Express the equations for work done and heat transfer in          | 2           | Understand |  |  |
|         | polytrophic process                                               |             |            |  |  |
| 14.     | Compare intensive and extensive properties.                       | 2           | Understand |  |  |
| 15.     | Calculate the mass of the air, if the specific heats at constant  | 4           | Analyze    |  |  |
|         | pressure and volume are 1 kJ/kg K and 0.72 kJ/kg K                |             |            |  |  |
|         | respectively. The volume of air at a pressure of 5 bar and 47°C   |             |            |  |  |
|         | is 0.5 m <sup>3</sup>                                             |             |            |  |  |
| 16.     | Give the limitations of first law of thermodynamics.              | 2           | Understand |  |  |
| 17.     | Illustrate reversible and irreversible process.                   | 1           | Remember   |  |  |
| 18.     | State any one Gas law.                                            | 1           | Remember   |  |  |
| 19.     | Prove that for an isolated system, there is no change in internal | 2           | Understand |  |  |
|         | energy.                                                           |             |            |  |  |

| 20.      | Indicate any one of process in PV diagram.                             | 2        | Understand |
|----------|------------------------------------------------------------------------|----------|------------|
| 21.      | Prove that the difference in specific heat capacities equal to Cp -    | 5        | Evaluate   |
|          | Cv = R.                                                                |          |            |
| 22.      | Compare isothermal process with adiabatic process.                     | 2        | Understand |
| 23.      | Analyze the functions of piston and crankshaft of an I.C engine.       | 2        | Understand |
| 24.      | What is perpetual motion machine of first kind?                        | 2        | Understand |
| 25.      | Differentiate between point function and path function                 | 2        | Understand |
|          | PART B                                                                 | l.       |            |
| 1.       | i) Describe the following: a) Enthalpy, b) Entropy (4)                 | 1        | Remember   |
|          | ii) 0.336 m³ of gas at 10 bar and 150°C expands adiabatically,         | 5        | Evaluate   |
|          | until its pressure is 4 bar. It is then compressed,                    |          |            |
|          | isothermally, to its original volume. Evaluate the final               |          |            |
|          | temperature and pressure of the gas. Also evaluate the                 |          |            |
|          | change in internal energy. Take Cp= 0.996 kJ/kg K; and                 |          |            |
|          | Cv = 0.703  kJ/kg K. (9)                                               |          |            |
| 2.       | Derive the expression for work done in the open cycle gas              | 2        | Understand |
|          | turbine with regeneration and explain the importance of                | 0        |            |
|          | regeneration. (13)                                                     |          |            |
| 3.       | Explain the working principle of four stroke petrol engine with        | 1        | Remember   |
|          | suitable sketches. And draw the P-V diagram for the four stroke        |          |            |
|          | petrol engine. (13)                                                    |          |            |
| 4.       | Explain the working principle of two stroke petrol engine with         | 1        | Remember   |
|          | suitable sketches. And draw the P-V diagram for the two stroke         |          |            |
|          | petrol engine. (13)                                                    |          |            |
| 5.       | Air enters the compressor of an open cycle constant pressure gas       | 3        | Apply      |
|          | turbine at a pressure of 1 bar and temperature 200 C. The              |          |            |
|          | pressure of the air after compression is 4 bar. The isentropic         |          |            |
|          | efficiencies of compressor and turbine are 80% and 85%                 |          |            |
|          | respectively. The air-fuel ratio used is 90:1. If the flow rate of air |          |            |
|          | is 3 kg/s, find a) Power developed, b) Thermal efficiency of the       |          |            |
|          | cycle. Assume Cp=1 kJ/kg K and γ=1.4 of air and gases calorific        |          |            |
| <u> </u> |                                                                        | <u> </u> | <u> </u>   |

|    | value of fuel=41800kJ/kg. (13)                                                 |   |          |
|----|--------------------------------------------------------------------------------|---|----------|
| 6. | Examine the efficiency of an open circuit constant pressure gas                | 3 | Apply    |
|    | turbine plant with the following specifications. The extreme                   |   |          |
|    | value of pressure and temperature in plant are 1 bar, 5.25 bar and             |   |          |
|    | 25°C and 560°C respectively. The isentropic efficiency of the                  |   |          |
|    | turbine is 88% and that of the compressor is 84%. (13)                         |   |          |
| 7. | A constant volume gas thermometer containing nitrogen is                       | 4 | Analyze  |
|    | brought into constant with a system of unknown temperature and                 |   |          |
|    | then into contact with a system maintained at the triple point of              |   |          |
|    | water. The mercury column attached to the device has readings                  |   |          |
|    | of 59.2 and 2.28 cm respectively for the two systems. If the                   |   |          |
|    | barometric pressure is 960 m of bar, what is the unknown                       |   |          |
|    | temperature in kelvin, if $g = 9.806$ m/sec <sup>2</sup> . Specific gravity of |   |          |
|    | mercury may be taken as 13.6. (13)                                             |   |          |
| 8. | Evaluate the non-flow work of a gas undergoing a reversible                    | 5 | Evaluate |
|    | process in terms of p1, V1 and p2 according to the following                   |   |          |
|    | relationships:                                                                 | T |          |
|    | i)P = C, i.e. Isobaric                                                         |   |          |
|    | ii) V = C, i.e. Isometric                                                      |   |          |
|    | iii) $T = C$ , i.e. Isothermal (13)                                            |   |          |
| 9. | A gas is at a pressure of 3 bar in a cylinder with frictionless                | 4 | Analyze  |
|    | movable piston. Shown in Fig. 1. The spring force exerted                      |   |          |
|    | through the piston is proportional to the volume of gas. Also an               |   |          |
|    | additional atmospheric pressure of 1 bar acts on the spring side               |   |          |
|    | of piston, Determine the work done by gas in expansion from 0.1                |   |          |
|    | $m^3$ to 0.5 $m^3$ .                                                           |   |          |
|    | - 3181H.                                                                       |   |          |
|    | Fig. 1 ° (13)                                                                  |   |          |

| 10. | i)   | Explain the working of gas turbine plant with the help of                   | 4  | Analyze    |
|-----|------|-----------------------------------------------------------------------------|----|------------|
|     |      | Brayton cycle. (6)                                                          |    |            |
|     | ii)  | Express by deriving, the air standard efficiency of a Brayton               | 2  | Understand |
|     |      | cycle in terms of pressure ratio and compression ratio. (7)                 |    |            |
| 11. | i)   | Explain the working principle of four stroke diesel engine.                 | 4  | Analyze    |
|     |      | (8)                                                                         |    | A 1        |
|     | ii)  | Illustrate Diesel cycle and Dual cycle with the help of                     | 3  | Apply      |
|     |      | P–V and T–S diagram. (5)                                                    |    |            |
| 12. | In a | a constant pressure open cycle gas turbine air enters at 1 bar              | 2  | Understand |
|     | and  | 200°C and leaves the compressor at 5 bar. Using the                         |    |            |
|     | foll | owing data: Temperature of the gas entering the turbine =                   |    |            |
|     | 680  | °C, the pressure loss in the compression chamber =0.1 bar, $\eta$           |    |            |
|     | con  | npressor = 85%, η turbine = 80%, η combustion = 85%,                        |    |            |
|     | γ=1  | .4, Cp=1.024 kJ/kg K for air and gas, find a) The quantity of               |    |            |
|     | air  | circulation if the plants develop 1065 kW b) Heat supplied                  |    |            |
|     | per  | kg of air circulation c) The thermal efficiency if the cycle,               | S  |            |
|     | mas  | ss of the fuel may be neglected. (13)                                       | 77 |            |
| 13. | i)   | Describe the following: i) PMM2 and ii) First Law of                        | 1  | Remember   |
|     |      | thermodynamics. (6)                                                         | 4  | Analyze    |
|     | ii)  | State and explain the corollaries of second law of                          |    |            |
|     |      | thermodynamics. (7)                                                         |    |            |
| 14. | Eva  | duate the total work done and the pressure, volume and                      | 5  | Evaluate   |
|     | tem  | perature at all the points for the following sequence of                    |    |            |
|     | pro  | cesses of a system. It exists with 0.2 m <sup>3</sup> of a gas at 4 bar and |    |            |
|     | 425  | K. If it is expanded adiabatically to 1 bar. The gas is then                |    |            |
|     | hea  | ted at constant pressure till the enthalpy increases by 70                  |    |            |
|     | KJ.  | Sketch the process on PV plot. (13)                                         |    |            |
| 15. |      | pressure ratio of an open cycle gas turbine power plant is                  | 4  | Analyze    |
|     | 5.6  | Air taken as 30°C and 1 bar. The compression is carried out                 |    |            |
|     | in   | two stages with perfect inter cooling in between. The                       |    |            |
|     | max  | ximum temperature of the cycle is limited to 700°C.                         |    |            |

|     | Assuming the isentropic efficiency of each compressor stage as                              |   |            |
|-----|---------------------------------------------------------------------------------------------|---|------------|
|     | 85% and that of turbine as 90%, determine the power developed                               |   |            |
|     | and efficiency of the power plant, if the air flow is 1.2 kg/s. The                         |   |            |
|     | mass of fuel may be neglected, and it may be assumed that Cp =                              |   |            |
|     | 1.02 kJ/kg K and $\gamma = 1.41$ . (13)                                                     |   |            |
| 16. | A gas turbine unit receives air at 1 bar and 300K and compresses                            | 5 | Evaluate   |
|     | it adiabatically to 6.2 bar. The compressor efficiency is 88%.                              |   |            |
|     | The fuel has a heating value of 44186 kJ/kg and the fuel air ratio                          |   |            |
|     | is 0.017. Take turbine internal efficiency is 90%. Calculate the                            |   |            |
|     | work of turbine and compressor per kg of air compressed and                                 |   |            |
|     | thermal efficiency. For product of combustion, $cp = 1.147 kJ/kg~K$                         |   |            |
|     | and $\gamma = 1.333$ . (13)                                                                 |   |            |
| 17. | Tabulate the differences between four stroke and two stroke                                 | 1 | Remember   |
|     | engines and also tabulate the differences between petrol and                                |   |            |
|     | diesel engines. (13)                                                                        |   |            |
| 18. | Briefly explain about the working of heat engine and derive the                             | 2 | Understand |
|     | expression of thermal efficiency of it. (13)                                                | m |            |
| 1.  | PART C                                                                                      | 6 | Create     |
| 1.  | Construct the working of gas turbine power plant and its cycle with neat sketch. (15)       |   | Create     |
| 2.  | An imaginary engine receives heat and does work on a slowly                                 | 5 | Evaluate   |
|     | moving piston at such rate that the cycle of operation of 1 kg of                           |   | Lvaluate   |
|     | working fluid can be represented as a circle 10 cm in diameter on                           |   |            |
|     | a p-v diagram on which 1 cm = $300 \text{ kPa}$ and 1 cm = $0.1 \text{ m}^3/\text{kg}$ . 1. |   |            |
|     | how much work is done by each kg of working fluid for each                                  |   |            |
|     | cycle of operation? 2. the thermal efficiency of an engine is                               |   |            |
|     | defined as the ratio of work done and heat input in a cycle. If the                         |   |            |
|     | heat rejected by the engine in a cycle is 1000 kJ per kg of                                 |   |            |
|     | working fluid, what would be its thermal efficiency? (15)                                   |   |            |
| 3.  | Collaborate the list of engine parts, material to be used and                               | 6 | Create     |
|     | method of manufacture and its functions. (15)                                               |   |            |
|     | The first of manufacture and its functions.                                                 |   |            |

| 4. | A gas turbine unit has a pressure ratio of 6:1 and maximum cycle         | 5 | Evaluate |
|----|--------------------------------------------------------------------------|---|----------|
|    | temperature of 610°C. The isentropic efficiencies of compressor          |   |          |
|    | and turbine are 80% and 82% respectively. Calculate the power            |   |          |
|    | output in KW of an electric generator geared to the turbine when         |   |          |
|    | the air enters the compressor at 15°C at the rate of 16 kg/s. Take       |   |          |
|    | Cp=1.005 kJ/kg K and $\gamma$ =1.4 for the compression process, and      |   |          |
|    | take Cp=1.11kJ/kg K and $\gamma$ =1.333 for the expansion process.(15)   |   |          |
| 5. | Apply the first law of thermodynamics in human bodies, I.C               | 3 | Apply    |
|    | engines and also compare with them. (15)                                 |   |          |
| 6. | A gas of mass 1.5 kg undergoes a quasi-static expansion which            | 4 | Analyze  |
|    | follows a relationship $p = a + bV$ , where a and b are constants.       |   |          |
|    | The initial and final pressures are 1000 kPa and 200 kPa                 |   |          |
|    | respectively and the corresponding volumes are 0.20 m³ and 1.20          |   |          |
|    | m <sup>3</sup> . The specific internal energy of the gas is given by the |   |          |
|    | relation                                                                 |   |          |
|    | u = 1.5  pv - 85  kJ/kg                                                  | 3 |          |
|    | Where p is in kPa and v is in m <sup>3</sup> /kg. Calculate the net heat | n |          |
|    | transfer and the maximum internal energy of the gas attained             |   |          |
|    | during expansion. (15)                                                   |   |          |

UNIT V - THERMODYNAMICS OF REFRIGERATORS AND HEAT PUMPS

Properties of steam - Rankine cycle - Boilers and its accessories - Basic thermodynamics of refrigerators and heat pumps.

|         | PART A                                                                       |             |            |  |  |
|---------|------------------------------------------------------------------------------|-------------|------------|--|--|
| Q<br>No | Questions                                                                    | BT<br>Level | Competence |  |  |
| 1.      | Give the possible ways to increase thermal efficiency of Rankine cycle.      | 1           | Remember   |  |  |
| 2.      | Name the different components in steam power plant working on Rankine cycle. | 1           | Remember   |  |  |
| 3.      | List out boiler mountings and accessories.                                   | 1           | Remember   |  |  |
| 4.      | Define boiler. How it is classified?                                         | 1           | Remember   |  |  |
| 5.      | Tabulate the differences between mountings and accessories of boiler.        | 2           | Understand |  |  |
| 6.      | When the steam is called as saturated and when it is called super-heated?    | 1           | Remember   |  |  |
| 7.      | Define the terms sensible heat and latent heat of vaporization of water.     | 1           | Remember   |  |  |
| 8.      | Write a short note on Mollier Chart.                                         | 1           | Remember   |  |  |
| 9.      | Define pure substance.                                                       | 1           | Remember   |  |  |
| 10.     | What is the purpose of condenser in steam power plant?                       | 1           | Remember   |  |  |
| 11.     | Identify the thermodynamic definitions of heat pump and refrigerator.        | 1           | Remember   |  |  |
| 12.     | Express the term dryness fraction.                                           | 2           | Understand |  |  |
| 13.     | Differentiate between refrigeration & air conditioning.                      | 2           | Understand |  |  |
| 14.     | Estimate the volume occupied by 5 kg of dry saturated steam at 10 bar.       | 5           | Evaluate   |  |  |
| 15.     | Discuss latent heat of vaporization.                                         | 1           | Remember   |  |  |
| 16.     | State the limitations of first law of thermodynamics.                        | 2           | Remember   |  |  |
| 17.     | List the suitable example for reversible and irreversible process.           | 1           | Remember   |  |  |
| 18.     | What is the function of steam superheater?                                   | 2           | Understand |  |  |

| 19. | Illu                                                                | strate the Rankine cycle with the help of p - V diagram.         | 1  | Remember   |
|-----|---------------------------------------------------------------------|------------------------------------------------------------------|----|------------|
| 20. | Cor                                                                 | mpare source and sink thermodynamically.                         | 2  | Understand |
| 21. | Me                                                                  | asure the Entropy of the wet steam with dryness fraction of      | 4  | Analyze    |
|     | 0.8                                                                 | at 10 bar.                                                       |    |            |
| 22. | Poi                                                                 | nt out the working of heat engine with the help of block         | 1  | Remember   |
|     | diag                                                                | gram.                                                            |    |            |
| 23. | Exp                                                                 | plain the effect of reheating in Rankine cycle.                  | 1  | Remember   |
| 24. | Rec                                                                 | commend the parts required to improve the efficiency of a        | 2  | Understand |
|     | stea                                                                | m power plant.                                                   |    |            |
| 25. | Mo                                                                  | dify heat pump into refrigerator with the help of block          | 4  | Analyze    |
|     | diag                                                                | gram.                                                            |    |            |
|     |                                                                     | PART B                                                           |    |            |
| 1.  |                                                                     | Find the enthalpy, internal energy and entropy of 1 kg of        | 4  | Analyze    |
|     |                                                                     | steam at a pressure of 10 bar i) when steam is dry saturated,    |    |            |
|     |                                                                     | ii) when steam is 0.75 dry and iii) when steam is                |    |            |
|     |                                                                     | superheated to 250°C. Use steam tables and neglect volume        |    |            |
|     |                                                                     | of water.                                                        | 77 |            |
| 2.  | i)                                                                  | Describe the construction and working of a Water tube            | 1  | Remember   |
|     |                                                                     | boiler with neat sketch. (9)                                     |    |            |
|     | ii)                                                                 | Classify boilers with examples. (4)                              | 1  | Remember   |
| 3.  | i)                                                                  | Describe the characteristics of high-pressure boilers. (4)       | 1  | Remember   |
|     | ii)                                                                 | Explain the construction and working of any one high             | 1  | Remember   |
|     |                                                                     | pressure boiler with neat sketch. (9)                            |    |            |
| 4.  | The                                                                 | e steam conditions at inlet to the turbine are 42 bar and 500°C, | 4  | Analyze    |
|     | and the condenser pressure is 0.035bar. Assume that the steam is    |                                                                  |    |            |
|     | just dry saturated on leaving the first turbine, and is reheated to |                                                                  |    |            |
|     | its initial temperature. Calculated the Rankine cycle efficiency    |                                                                  |    |            |
|     | and specific steam consumption with reheating by neglecting the     |                                                                  |    |            |
|     | pun                                                                 | np work using Mollier chart.                                     |    |            |
| 5.  | A                                                                   | steam power plant operates on a theoretical reheat cycle.        | 4  | Anayze     |
|     | Stea                                                                | am at 25 bar pressure and 400°C is supplied to a high            |    |            |
|     |                                                                     |                                                                  |    |            |

|     | pressure turbine. After its expansion to dry state the steam is    |   |            |
|-----|--------------------------------------------------------------------|---|------------|
|     |                                                                    |   |            |
|     | reheated to a constant pressure to its original temperature.       |   |            |
|     | Subsequent expansion occurs in the low pressure turbine to a       |   |            |
|     | condenser pressure of 0.04 bar. Considering feed pump work,        |   |            |
|     | make calculation to determine                                      |   |            |
|     | (i) quality of steam at the entry to the condenser                 |   |            |
|     | (ii) thermal efficiency                                            |   |            |
|     | (iii) Specific steam consumption.                                  |   |            |
| 6.  | Illustrate the Rankine cycle with p - V and h - S diagram          | 3 | Apply      |
|     | and derive the efficiency of steam power plant. (13)               |   |            |
| 7.  | One kg of steam at 10 bar exists at the following conditions:      | 3 | Apply      |
|     | Wet and 0.8 dry, dry and saturated and at a temperature of         |   |            |
|     | 199.9°C. Interpret the data using steam tables and find the        |   |            |
|     | enthalpy, specific volume, density, internal energy and entropy at |   |            |
|     | each case. Take specific heat of super-heated steam = 2.25 kJ/kg   |   |            |
|     | K. (13)                                                            | 2 |            |
| 8.  | Consider a steam power plant operating on the ideal Rankine        | 3 | Apply      |
|     | cycle. Steam enters the turbine at 3 MPa and 623 K and is          |   |            |
|     | condensed in the condenser at a pressure of 10 kPa. Measure (i)    |   |            |
|     | the thermal efficiency of this power plant, (ii) the thermal       |   |            |
|     | efficiency if steam is superheated to 873 K instead of 623 K. (13) |   |            |
| 9.  | Steam at 30 bar and 350°C is expanded in a non-flow isothermal     | 4 | Anayze     |
|     | process to a pressure of 1 bar. The temperature and the pressure   |   |            |
|     | of the surroundings are 25°C and 100 kPa respectively.             |   |            |
|     | Determine the maximum work that can be obtained from this          |   |            |
|     | process per kg of steam. Also find the maximum useful work.        |   |            |
| 10. | A simple Rankine Cycle works between pressure 28 bar and           | 3 | Apply      |
|     | 0.06 bar, the initial condition of steam being dry Saturated.      |   |            |
|     | Calculate the Cycle Efficiency, Work Ratio and SFC. (13)           |   |            |
| 11. | i) Discuss about boiler accessories with examples. (5)             | 2 | Understand |
|     | ii) Explain the function of pressure gauge and fusible plug. (8)   | 2 |            |
|     | , I                                                                | 4 | Understand |

| 12. | i)                                                               | Estimate the internal energy and enthalpy of steam when the            | 3 | Apply      |
|-----|------------------------------------------------------------------|------------------------------------------------------------------------|---|------------|
|     |                                                                  | steam conditions at 10 bar are i) 0.8% dry and ii) 320°C. (8)          |   |            |
|     | ii)                                                              | Explain the function of economizer and super heater used in            | 2 | Understand |
|     |                                                                  | boilers. (5)                                                           |   |            |
| 13. | In                                                               | a steam power plant the condition of steam at inlet to the             | 5 | Evaluate   |
|     |                                                                  | am turbine is 20 bar and 300°C and the condenser pressure is           |   |            |
|     | 0.1                                                              | •                                                                      |   |            |
|     | tem                                                              | aperatures. Determine (1) The quality of steam at turbine              |   |            |
|     |                                                                  | aust (2) Network per kg of steam (3) Cycle efficiency (4) The          |   |            |
|     | stea                                                             | am rate. Neglect pump work. (13)                                       |   |            |
| 14. | i)                                                               | Calculate the efficiency of a steam power plant operating              | 4 | Analyze    |
|     |                                                                  | on Rankine cycle between pressure limits of 30 bar and                 |   |            |
|     |                                                                  | 0.04 bar. Steam at turbine inlet is dry saturated. (7)                 |   |            |
|     | ii)                                                              | Point out the quantity of heat required to produce 1 kg of             | 4 | Analyze    |
|     |                                                                  | steam at a pressure of 6 bar and at a temperature of 25°C              |   |            |
|     |                                                                  | When the steam is wet having a dryness fraction of 0.9.                | 0 |            |
|     |                                                                  | (6)                                                                    | 1 |            |
| 15. | A                                                                | reversible heat engine operates between two reservoirs at              | 5 | Evaluate   |
|     | tem                                                              | peratures 700°C and 5 <mark>0°C. The engine drives a reversible</mark> |   |            |
|     | refrigerator which operates between reservoirs at temperatures   |                                                                        |   |            |
|     | of 50°C and 25°C. The heat transfer to the engine is 2500 kJ and |                                                                        |   |            |
|     | the net work output of the combined engine refrigerator plant is |                                                                        |   |            |
|     | 400                                                              | kJ. Determine the heat transfer to the refrigerant and the net         |   |            |
|     | hea                                                              | t transfer to the reservoir at $50^{\circ}$ C. (13)                    |   |            |
| 16. | Ste                                                              | am at 50 bar and 400°C expands in a Rankine cycle to 0.34              | 4 | Analyze    |
|     | bar                                                              | . For a mass flow rate of 150 kg/s of steam, determine Power           |   |            |
|     | dev                                                              | eloped, Thermal efficiency and Specific steam consumption.             |   |            |
|     |                                                                  | (13)                                                                   |   |            |
| 17. | Ste                                                              | am at 480°C, 90 bar is supplied to a Rankine cycle. It is              | 5 | Evaluate   |
|     | reh                                                              | eated to 12 bar and 480°C. the minimum pressure is 0.07 bar.           |   |            |
|     | Cal                                                              | culate the work output and the cycle efficiency using steam            |   |            |

|     | tables with and without considering the pump work. (13)             |   |          |
|-----|---------------------------------------------------------------------|---|----------|
| 18. | The steam conditions at inlet to the turbine are 42 bar and 500°C,  | 5 | Evaluate |
|     | and the condenser pressure is 0.035 bar. Assume that the steam      |   |          |
|     | is just dry saturated on leaving the first turbine, and is reheated |   |          |
|     | to its initial temperature. Calculated the Rankine cycle efficiency |   |          |
|     | and specific steam consumption with reheating by neglecting the     |   |          |
|     | pump work using Mollier chart. (13)                                 |   |          |
|     | PART C                                                              |   |          |
| 1.  | Two boilers discharge equal amounts of steam into the same          | 4 | Analyze  |
|     | main. The steam from one is at 18 bar and 380°C and from the        |   |          |
|     | other at 18 bar and 95% quantity. Determine                         |   |          |
|     | i)the equilibrium condition after mixing (4)                        |   |          |
|     | ii) the loss of entropy by the high temperature steam (4)           |   |          |
|     | iii) gain of entropy of low temperature steam (4)                   |   |          |
|     | iv) net increase or decrease of entropy (3)                         |   |          |
| 2.  | Explain the working principle of steam power plant with the         | 6 | Create   |
|     | help of P-V and T-S diagrams. How do you design the                 | 5 |          |
|     | efficiency of the steam power plant to be improved? (15)            |   |          |
| 3.  | Why boiler mountings are essential in a boiler? Design the          | 6 | Create   |
|     | different mountings with neat sketch. (15)                          |   |          |
| 4.  | Illustrate in detail the methods of increasing the thermal          | 5 | Evaluate |
|     | efficiency of a Rankine cycle. (15)                                 |   |          |
| 5.  | In a Rankine Cycle, the steam at inlet to the turbine is saturated  | 4 | Analyze  |
|     | at a pressure of 35 bar and the exhaust pressure is 0.2 bar.        |   |          |
|     | Determine i. The pump work ii. The turbine work iii. The            |   |          |
|     | condenser heat flow iv. The dryness at the end of expansion.        |   |          |
|     | Assume flow rate of 9.5kg/s. (15)                                   |   |          |
| 6.  | Consider a steam power plant that operates on a reheat Rankine      | 4 | Anayze   |
|     | cycle and has a net power output of 80MW. Steam enters the          |   |          |
|     | high-pressure turbine at 10 MPa and 500°C and the low-pressure      |   |          |
|     | turbine at 1 MPa and 500°C. Steam leaves the condenser as a         |   |          |
|     |                                                                     |   |          |

saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 80 percent, and that of the pump is 95 percent. Show the cycle on a T-s diagram with respect to saturation lines, and determine, (i) The quality (or temperature, if superheated) of the steam at the turbine exit, (ii) The thermal efficiency of the cycle, and (iii) The mass flow rate of the steam. (15)

