SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur- 603 203

DEPARTMENT OF MECHANICAL ENGINEERING

QUESTION BANK

Regulation-2019

Academic Year: 2022 – 2023 (Odd Semester)

Prepared by

S. Sivasankar, Assistant Professor G. Rajesh, Assistant Professor Department of Mechanical Engineering

SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203

OUESTION BANK

SUBJECT / SUBJECT CODE

SEM/YEAR

: THERMAL ENGINEERING / 1909501

: V / III

UNIT I-BOILERS

Types and comparison. Mountings and Accessories. Fuels - Solid, Liquid and Gas. Performance calculations, Boiler trial.

-	PART-A (2 Marks)					
S.No	QUESTIONS	LEVEL	COMPETENCE			
1.	What is water level indicator?	BT-1	Remembering			
2.	Define boiler efficiency.	BT-1	Remembering			
3.	Define equivalent evaporation from and at 100 ⁰ C.	BT-1	Remembering			
4.	Define boiler thermal efficiency.	BT-1	Remembering			
5.	Discuss chemical fuel.	BT-3	Applying			
6.	Types of Boiler Fuel.	BT-2	Understanding			
7.	What are primary fuels? List some important fuels.	BT-2	Understanding			
8.	Define heating value of fuel.	BT-2	Understanding			
9.	Explain the function of th <mark>e boiler c</mark> himney.	BT-1	Remembering			
10.	Why is there no chimney in the case of a locomotive boiler?	BT-1	Remembering			
11.	What is safety valve? And define safety valve.	BT-4	Analysing			
12.	Explain various types of draughts used in usual practice.	BT-1	Remembering			
13.	Merits and demerits of the dead weight safety valve.	BT-3	Applying			
14.	Define fusible plug.	BT-6	Creating			
15.	How to working boiler injector?	BT-6	Creating			
16.	Write the draught losses.	BT-2	Understanding			
17.	Discuss steam jet draught.	BT-2	Understanding			
18.	Write the power of F.D & I.D fan equations.	BT-1	Remembering			
19.	Write short notes on bomb calorimeter.	BT-5	Evaluating			
20.	What is Junkers gas calorimeter?	BT-4	Analysing			

21.	What happen if the boiler injector pressure increases during the operation	BT-6	Creating	
22.	Compare the types of draught.	BT-5	Evaluating	
23.	Define steam boiler and list its function.	BT-6	Creating	
24.	List the types of boilers according to various factors	BT-1	Remembering	
25.	List the advantages of Cochran boilers		BT-1	Remembering
	PART-B			
1.	Explain the function of boiler mountings. Can a boiler work without mountings.	13	BT-3	Applying
2.	Explain in detail about how accessories differ from mountings.	13	BT-3	Applying
3.	Enumerate the various accessories normally used in a steam generating plant.	13	BT-1	Remembering
4.	Discuss the function of a safety value. State the minimum number of safety value to be used in boiler.	13	BT-2	Understanding
5.	Explain fusible plug and state where it is located in a boiler	13	BT-3	Applying
6.	Explain with neat sketch any three of the following mounting: (i) Water level indicator (ii) Pressure gauge (iii) Feed check value (iv) Blow of cock (v) High steam and low water safety value (vi) Junction or stop value	13	BT-3	Applying
7.	Give a schematic sketch of a boiler plant. What are the observations to be recorded during a boiler trial?	13	BT-1	Remembering
8.	Explain what the sources of heat losses in boiler plants are. What are the methods used to reduce these losses?	13	BT-3	Applying
9.	With the help of neat sketch, explain and injector for feeding water to the boiler drum. Why it is not used for large capacity boilers? Explain its location in boiler installation.	13	BT-4	Analysing
10.	Explain with neat sketches any two of the following boiler accessories: (i) Injector (ii) super heater (iii) Air preheated (iv) Economizer.	13	BT-3	Applying

11.	Explain with neat sketch expansion type of steam trap.	13	BT-3	Applying
12.	Explain the function of steam separator. Discuss with a neat sketch anyone types of steam separators.	13	BT-4	Analysing
13.	A boiler generates 13000kg of steam at 7 bars during a period of 24 hrs and consume 1250 kg of coal whose CV. = 30000 kJ/kg. Taking the enthalpy of steam coming out of boiler = 2507.7 kJ/kg and water	13	BT-6	Creating
	is supplied to the boiler at 40°C. Find: (a) efficiency of the boiler (b) Equivalent evaporation per kg of coal.			
14.	Calculate the quantity of air supplied per kg of fuel burnt in the combustion chamber of the boiler when the required draught of 1.85 cm of water is produced by a chimney of 32 m height. The temperature of the flue gases and ambient air recorded are 370°C and 30°C respectively.	13	BT-6	Creating
15.	Explain the working principle of the steam jet draught.	13	BT-3	Applying
16.	Explain with neat sketch and function of the safety valve.	13	BT-3	Applying
17.	Outline the neat sketch of the Babcock and Wilcox water tube boiler.	13	BT-3	Applying
18.	Compare the advantages of high pressure boiler over low pressure boiler.	13	BT-1	Remembering
	PART-C (15 Marks)			
1.	(a)Describe with a neat diagram, the construction and working of a Babcock and Wilcox water tube boiler.	15	BT-2	Understanding
	(b) Describe with a neat line sketch of a Benson boiler mentioning its distinguishing features. State the advantages for this type of boilers.	15	BT-2	Understanding
2.	Discuss, briefly, the working of an economizer in a boiler plant giving a neat sketch.	15	BT-2	Understanding
3.	(a)A coal fired boiler plant consumes 400 kg of coal per hour. The boiler evaporates 3200 kg of water at 44.5°Cinto superheated steam at a pressure of 12 bar and 274.5°C. If the calorific value of fuel is 32760 kJ/kg of coal, determine: 1. Equivalent evaporation "from and at 100°C," and 2. Thermal efficiency of the boiler. Assume specific heat of superheated steam as 2.1 kJ/kg K.	10	BT-6	Creating
	(b) Discuss briefly the term boiler efficiency.	5	BT-2	Understanding
4.	In a boiler, the following observations were made:			

	Pressure of steam		= 10 bar			
	Steam condensed		= 540 kg/h			
	Fuel used		= 65 kg/h			
	Moisture in fuel		= 2% by mass			
	Mass of dry flue gases		= 9 kg/kg of fuel			
	Lower calorific value of fu	ıel	= 32000 kJ/kg	15	BT-5	Evaluating
	Temperature of the flue ga	ases	= 325°C	15	D1-5	Lvaluating
	Temperature of boiler hou	se e e e	= 28°C	1.		
	Feed water temperature		$= 50^{\circ}C$	'N	C.	
	Mean specific heat of flue	gases	= 1 kJ/kg K		\sim	
	Dryness fraction of steam=	=0.95 Draw up a	heat		1 × 2	
	balance sheet for the boile	r.			· · · ·	
5.	Construct neat sketch and	explain the Lan	cashire boiler.	15	BT-2	Understanding
	UNIT II - STEAM NOZZLE					11
Types	and Shapes of nozzles- Flow	v of steam throu	gh nozzles, Critical press	ure Rat	tio-Variation	n of mass flow
rate wi	th pressure Ratio-Effect of f	riction - Metasta	ble flow.			
	rate with pressure Ratio-Effect of filenon- inclustable flow.					
		PA	RT-A (2 Marks)			
S.No		PA QUESTION	RT-A (2 Marks)		LEVEL	COMPETENCE
S.No	Define critical pressure rati	PA QUESTION o in steam flow	RT-A (2 Marks) NS through nozzles.)	LEVEL BT-1	COMPETENCE Remembering
S.No 1. 2.	Define critical pressure rations of the enthalpy drops in a st	PA QUESTION o in steam flow eam nozzle of e	RT-A (2 Marks) IS through nozzles. fficiency 92% is 100 kJ/k	cg	LEVEL BT-1 BT-5	COMPETENCE Remembering Evaluating
S.No 1. 2.	Define critical pressure rations of the enthalpy drops in a st determine the exit velocity of	PA QUESTION o in steam flow eam nozzle of e of steam.	RT-A (2 Marks) NS through nozzles. fficiency 92% is 100 kJ/k	sg	LEVEL BT-1 BT-5	COMPETENCE Remembering Evaluating
S.No 1. 2. 3.	Define critical pressure ration If the enthalpy drops in a st determine the exit velocity What is the effect of super s	PA QUESTION o in steam flow eam nozzle of e of steam. saturation in the	RT-A (2 Marks) NS through nozzles. fficiency 92% is 100 kJ/k nozzles?	¢g	LEVEL BT-1 BT-5 BT - 2	COMPETENCE Remembering Evaluating Understanding
S.No 1. 2. 3. 4.	Define critical pressure rational field of the enthalpy drops in a st determine the exit velocity what is the effect of supersonal field of Supers	PA QUESTION o in steam flow eam nozzle of e of steam. saturation in the nic Nozzle.	RT-A (2 Marks) IS through nozzles. fficiency 92% is 100 kJ/k nozzles?	¢g	LEVEL BT-1 BT-5 BT - 2 BT - 3	COMPETENCE Remembering Evaluating Understanding Applying
S.No 1. 2. 3. 4. 5.	Define critical pressure ration If the enthalpy drops in a st determine the exit velocity What is the effect of super so Draw the Shape of Superso Express the effects of friction	PA QUESTION o in steam flow eam nozzle of e of steam. saturation in the nic Nozzle. on on the flow the	RT-A (2 Marks) NS through nozzles. fficiency 92% is 100 kJ/k nozzles? hrough a steam nozzle.	xg	LEVEL BT-1 BT-5 BT - 2 BT - 3 BT - 3	COMPETENCERememberingEvaluatingUnderstandingApplyingApplying
S.No 1. 2. 3. 4. 5. 6.	Define critical pressure ration If the enthalpy drops in a st determine the exit velocity What is the effect of super so Draw the Shape of Superso Express the effects of friction Name the various types of r	PA QUESTION o in steam flow eam nozzle of e of steam. saturation in the nic Nozzle. on on the flow the nozzles and their	RT-A (2 Marks) NS through nozzles. fficiency 92% is 100 kJ/k nozzles? hrough a steam nozzle. r function.	xg	LEVEL BT-1 BT-5 BT - 2 BT - 3 BT - 3 BT - 2	COMPETENCE Remembering Evaluating Understanding Applying Applying Understanding
S.No 1. 2. 3. 4. 5. 6. 7.	Define critical pressure rational pressure ratio	PA QUESTION o in steam flow eam nozzle of e of steam. saturation in the nic Nozzle. on on the flow th nozzles and their r saturation in a	RT-A (2 Marks) IS through nozzles. fficiency 92% is 100 kJ/k nozzles? hrough a steam nozzle. r function. nozzle.	¢g	LEVEL BT-1 BT-5 BT - 2 BT - 3 BT - 3 BT - 2 BT - 4	COMPETENCERememberingEvaluatingUnderstandingApplyingApplyingUnderstandingAnalysing
S.No 1. 2. 3. 4. 5. 6. 7. 8.	Define critical pressure rational pressure ratio	PA QUESTION o in steam flow eam nozzle of e of steam. saturation in the nic Nozzle. on on the flow the nozzles and their r saturation in a	RT-A (2 Marks) NS through nozzles. fficiency 92% is 100 kJ/k nozzles? hrough a steam nozzle. r function. nozzle.	sg	LEVEL BT-1 BT-5 BT - 2 BT - 3 BT - 3 BT - 2 BT - 2 BT - 4 BT-1	COMPETENCE Remembering Evaluating Understanding Applying Applying Understanding Analysing Remembering

10.	If the enthalpy drops in a steam nozzle of efficiency 88% is 95 kJ/kg determine the exit velocity of steam.		BT - 5	Evaluating
11.	Explain various types of nozzles.		BT - 3	Applying
12.	Define the term stream nozzle.		BT-1	Remembering
13.	What is the effect of friction on the flow through a stream nozzle?		BT-3	Applying
14.	What you mean by a supersaturated flow?		BT-1	Remembering
15.	Explain what is meant by critical pressure ratio of a nozzle.		BT - 3	Applying
16.	The dry and saturated steam at a pressure of 5 bar is expanded isentropically in a nozzle to a pressure of 0.2 bar. Find the velocity of steam leaving the nozzle.	BT-5	Evaluating	
17.	What are the effects of super saturation on discharge and heat drop?		BT-2	Understanding
18.	What is meant by overexpansion and under expansion?		BT-2	Understanding
19.	State the relation between the velocity of steam and heat during any par	BT - 3	Applying	
20.	Give the five applications of steam nozzles.	BT-2	Understanding	
21.	Write down the expression for velocity at exit from steam nozzle.	BT-2	Understanding	
22.	Derive the expression for critical pressure ratio in a steam nozzle.	BT-5	Evaluating	
23.	Write the general energy equation for a steady flow system and from the obtain the energy equation for nozzle.	is	BT-2	Understanding
24.	Draw the T-S and H-S pl <mark>ot of super</mark> saturated expansion of steam in a nozzle.		BT - 3	Applying
25.	Differentiate supersaturated flow and isentropic flow.	1	BT - 3	Applying
	PART-B (13 Marks)			
1.	(a) Mention the types of nozzles you know, Where are these used?	3	BT - 1	Remembering
	(b) Steam having pressure of 10.5 bar and 0.95 dryness is expanded through a convergent-divergent nozzle and the pressure of steam leaving the nozzle is 0.85 bar. Find the velocity at the throat for maximum discharge conditions. Index of expansion may be assumed as 1.135. Calculate mass rate of flow of steam through the nozzle.	10	BT-5	Evaluating
2.	(a) Dry saturated steam enters a frictionless adiabatic nozzle with negligible velocity at a temperature of 300°C. It is expanded to pressure of 5000 KPa. The mass flow rate is 1 kg/s. Calculate the exit velocity of the steam.	6	BT-5	Evaluating

	(b) Steam is expanded in a set of nozzles from 10 bar and 200°C to 5				
	bar. What type of Nozzle is it? Neglecting the initial velocity find				
	minimum area of the nozzle required to allow a flow of 3 kg/s under	7			
	the given conditions. Assume that expansion of steam to be	/	BT-5	Evaluating	
	isentropic				
2	In a steam nozzla, the steam avands from 4 her to 1 her. The initial				
5.	In a steam nozzie, the steam expands from 4 bar to 1 bar. The initial value it is 60 m/s and the initial temperature is 200% . Determine the				
	velocity is 60 m/s and the initial temperature is 200°C. Determine the	13	BT-5	Evaluating	
	exit velocity if the hozzle efficiency is 92%.				
4.	Derive the expression for critical pressure ratio in terms of index of	13	BT-5	Evaluating	
	expansion.				
5.	Dry saturated steam enters a steam nozzle at a pressure of 15 bar and	TV.	~		
	is discharged at a pressure of 2 bar. If the dryness fraction of discharge		S		
	steam is 0.96, what will be the final velocity of steam? Neglect initial	13	DT 5		
	velocity of steam. If 10% of heat drop is lost in friction, Examine		BL - 2	Evaluating	
	(find) the percentage reduction in the final velocity.				
6.	Dry saturated steam at a pressure of 11 bar enters a convergent-				
	divergent nozzle and leaves at a pressure of 2 bar. If the flow is			11	
	adiabatic and frictionless, determine: (i) The exit velocity of steam.			0	
	(ii) Ratio of cross section at exit and that at throat. Assume the index	13	BT - 6	Creating	
	of adiabatic expansion to be 1.135.	10		111	
7.	The nozzles of De-Laval stream turbine are supplied with dry				
	saturated steam at a pressure of 9 bar. The pressure at the outlet is 1				
	bar. The turbine has two nozzles with a throat diameter of 2.5 mm.	13			
	Assuming nozzle efficiency as 90% and that of turbine rotor 35%,	10	BT - 5	Evaluating	
	find the quality of steam used per hour and the power developed.				
8.	Dry saturated steam at a pressure of 8 bar enters a convergent				
	divergent nozzle and leaves it at a pressure of 1.5 bar. If the flow is				
	isentropic and if the corresponding expansion index is 1.33, find the	13			
	ratio of cross-sectional area at exit and throat for maximum discharge.	10	BT - 5	Evaluating	
9.	Air at a pressure of 20 bar and at a temperature of 18°C is supplied to				
	a convergent divergent nozzle having a throat diameter of 1.25 cm				
	and discharging to atmosphere. The adiabatic index for air is 1.4 and	13			
	the characteristic constant is 287. Find the weight of air discharged	10	BT - 5	Evaluating	
	per minute.				
10.	Derive an expression for maximum discharge through convergent				
		13	BT-5	Evaluating	

	divergent nozzle for steam.				
11.	Steam enters a group of CD nozzles at 21 bars and 270°C. The				
	discharge pressure of the nozzle is 0.07 bars. The expansion is				
	equilibrium throughout and the loss of friction in convergent portion				
	of the nozzle is negligible, but the loss by friction in the divergent				
	section of the nozzle is equivalent to 10% of the enthalpy drop	13	BT-5	Evaluating	
	available in that section. Calculate the throat and exit area to	10	D1-5	Evaluating	
	discharge 14 kg/sec of steam.				
12.	Steam initially dry and saturated is expanded in a nozzle from 15 bar				
	300°C at 1 bar. if the friction loss in the nozzle is 12% of the total				
	head drop calculate the mass of steam discharged when exit diameter	13	BT-4	Analyzing	
	of the nozzle is 15 mm.		G 👘		
13.	(a)Define critical pressure ratio of a nozzle and discuss why	6	PT 2		
	attainment of sonic velocity determines the maximum mass rate of	0	D1-5	Applying	
	flow through steam noz <mark>zle.</mark>			Арргушд	
	(b)Air enters a frictionless adiabatic converging nozzle at 10 bar500			1 C	
	K with negligible velocity. The nozzle discharges to a region at 2 bar.			11	
	If the exit area of the nozzle is 2.5 cm ² , find the flow rate of air	7	BT-4	Analysing	
	through the nozzle.			170	
14	Steam enters a group of convergent-divergent nozzles at a pressure				
	of 22 bar and with a temperature of 240°C. The exit pressure is 4 bar				
	and 9% of the total heat drop is lost in friction. The mass flow rate is				
	10kg/s and the flow up to throat may be assumed friction less.	13			
	Calculate 1. The throat and exit velocities, and 2. The throat and	13	BT-5	Evaluating	
	exit areas.				
15.	Steam at a pressure of 15 bar with 50° C of superheat is allowed to				
	expand through a convergent-divergent nozzle. The exit pressure is				
	1 bar. If the nozzle is required to supply 2 kg/sec. of steam to the				
	turbine, then calculate (i) The velocities at throat and exit. (ii) Areas	13			
	at throat and exit Assume 10% frictional loss in divergent part only		BT-5	Evaluating	
	and percentage taken as % of, total heat drop.				
16.	Steam enters the blade row of an impulse turbine with a velocity of				
	600m/s at an angle of 25°C to the plane of rotation of blades. The				
	mean blade speed is 200m/s. the blade angle at the exit is 30°. The	13			
	blade friction loss is 10%. Determine (i) The blade angle at inlet (ii)		ВТ - 5	Evaluating	

	The work done per kg of steam (iii)The diagram efficiency (iv)The			
	axial thrust per kg of steam per second.			
17.	(a) Steam at a pressure of 15 bar saturated is discharged through a			
	convergent divergent nozzle to a back pressure of 0.2 bar. The mass			
	flow rate is 9 kg/kW-hr, if the power developed is 220 kW, determine			
	number nozzles required if each nozzle has a throat of rectangular	9	BT - 5	Evaluating
	cross section of 4mm x 8mm. If 12% of overall isentropic enthalpy			
	drop occurs in the divergent portion due to friction, find the cross			
	section of the exit rectangle? (9)			
	(b) Explain the supersaturated expansion of steam in a nozzle.	4	BT - 3	Applying
18.	(a) Derive the expression for critical pressure ratio in terms of index	6	BT-5	Evaluating
	of expansion.	U		Lvaruating
	(b) A convergent divergent adiabatic steam nozzle is supplied with		0	
	steam at 10bar and 2500C. The discharge pressure is 1.2bar.		- C	
	Assuming the nozzle efficiency as 100% and initial velocity of steam	7		
	is 50m/s, find the discharge velocity.		BT - 5	Evaluating
	< A			

	PART-C (15 Marks)			
1.	A Convergent-Divergent nozzle is required to discharge 2 kg of steam per			
	second. The nozzle is supplied with steam at 6.9 bar and 180°C and			
	discharge takes place against a back pressure of 0.98 bar. Expansion up to			
	throat is isentropic and the frictional resistance between the throat and exit			
	is equivalent to 62.76 kJ/kg of steam. Taking approach velocity of 75 m/s			
	and throat pressure 3.9 bar, Estimate:			
	(i) Suitable areas for the throat and Exit			
	(ii) Overall efficiency of the nozzle based on the enthalpy drop	15	BT - 6	Creating
	between the actual inlet pressure, and temperature and the exit pressure.	G.	~	
2.	(a) Define Critical pressure ratio of nozzle and discuss why attainment of		5	
	sonic velocity determines the maximum mass rate of flow through	0	DT 0	A 1 '
	steam nozzle.	8	BT - 3	Applying
	(b) Explain the metastable expansion of steam in a nozzle with help of	7	BT - 4	Analysing
	h-s diagram.			
3.	In an installation 5 kg/s of steam at 30 bar and 300°C is supplied to group			
	of six nozzles in a whee <mark>l cham</mark> ber maintained at 7.5 bar.			
	(a) Determine the dimensions of the nozzles of rectangular cross-sectional			
	flow area with aspect ratio 3: 1.			
	The expansion may be considered meta-stable and friction is neglected.			
	(b) Also calculate:			
	(i) degree of under-cooling and super-saturation;			
	(ii) loss in available drop due to irreversibility;	15	BT-5	Evaluating
	(iii) increases in entropy			
	(iv) Ratio of mass flow rate with meta-stable			

	expansion to that if expansion is in thermal equilibrium.			
4	A gas expands in a convergent-divergent nozzle from 5 bar to 1.5 bar, the			
•	initial temperature being 700°C and the nozzle efficiency is 90%. All the			
	losses take place after the throat. For 1 kg/s mass flow rate of	15	BT-5	Evaluating
	the gas, find throat and exit areas. Take $n = 1.4$ and $R = 287$ J/kg K.			
5	Steam at a pressure of 10.5 bar and 0.95 dry is expanded through a			
	convergent divergent nozzle. The pressure of steam leaving the nozzle is			
	0.85 bar. (i) Find the velocity of steam at throat for maximum discharge	15	BT-5	Evaluating
	take n=1.135. (ii) Also find the area at the exit and the steam discharge if			
	the throat area is 1.2 cm ² . Assume flow is isentropic and there are no			
	friction losses.	G		

UNIT III-STEAM TURBINES

Types, Impulse and reaction principles, Velocity diagrams, Work done and efficiency – optimal operating conditions. Multi-staging, compounding and governing.

PART-A (2 Marks)						
S.No	QUESTIONS	LEVEL	COMPETENCE			
1.	Distinguish between impulse and reaction principle.	BT - 2	Understanding			
2.	Discuss the importance of compounding of steam turbine.	BT - 2	Understanding			
3.	Define stage efficiency.	BT - 1	Remembering			
4.	Discuss the importance of compounding of steam turbine.	BT - 2	Understanding			
5.	What is meant by Pressure Compounding?	BT - 1	Remembering			
6.	Summarize the different losses involved in steam turbines.	BT - 5	Evaluating			
7.	Define Diagram efficiency.	BT - 1	Remembering			
8.	Explain 'Degree of Reaction' in a steam turbine.	BT - 3	Applying			
9.	Define a steam turbine and state its fields of application.	BT - 1	Remembering			
10.	How are the steam turbines classified?	BT - 4	Analysing			
11.	Discuss the advantages of a steam turbine over the steam engines.	BT - 2	Understanding			
12.	What you mean by compounding of steam turbines?	BT - 2	Und <mark>erstanding</mark>			
13.	What methods are used in reducing the speed of the turbine rotor?	BT - 2	Understanding			
14.	Define the term degree of reaction used in reaction turbines.	BT - 1	Remembering			
15.	Write a short note on bleeding of steam turbines.	BT - 1	Remembering			
16.	Explain reheat factor. Why is its magnitude always greater than unity?	BT - 1	Remembering			
17.	Give the classification of steam turbines.	BT - 2	Understanding			
18.	Explain the principle of impulse turbines.	BT - 3	Applying			
19.	What are the different losses that occur in a steam turbine?	BT - 1	Remembering			
20.	State the advantages and disadvantages of reheating steam.	BT - 2	Understanding			
21.	What is Curtis turbine?	BT - 1	Remembering			
22.	What is blading efficiency?	BT - 1	Remembering			
23.	State the functions of fixed and moving blades.	BT - 3	Applying			
24.	Explain the need of compounding in steam turbines.	BT - 3	Applying			
25.	What is the function of governors in steam turbines?	BT - 1	Remembering			

	PART-B (13 Marks)			
	In a certain stage of an impulse turbine, the nozzle angle is 20°			
1.	with the plane of the wheel. The mean diameter of the ring is 2.8	13	BT - 1	Analysing
	meters. It develops 55 kW at 2400 rpm. Four nozzles, each of 10	15	D1 - +	Anarysing
	mm diameters expand steam isentropically from 15 bar and 250°C			
	to 0.5 bar. The axial thrust is 3.5 Calculate: 1. Blade angles at			
	entrance and exit, and 2.power lost in blade friction.			
2.	The velocity of steam exiting the nozzle of the impulse stage of a			
	turbine is 400 m/s. The blades operate close to the maximum			
	blading efficiency. The nozzle angle is 20°. Considering	13		
	equiangular blades and neglecting blade friction, calculate for a	ν.	BT - 5	Evaluating
	steam flow of 0.6 kg/s, the diagram power and the diagram	1	£	
	efficiency.		0	
3.	The blade speed of a single ring impulse blading is 250 m/s and		- C	
	nozzle angle is 20°. The heat drop is 550 kJ/kg and nozzle			
	efficiency is 0.85. Th <mark>e blade discharge angle is 30° and the machine</mark>			r
	develops 30 kW, whe <mark>n consuming 360 kg of steam per hour. Draw</mark>	13		177
	the velocity diagram and calculate: 1. Axial thrust on the blading		BT-3	Applying
	and 2.the heat equivalent per kg of steam friction of the blading.			100
4.	At a stage of reaction turbine, the mean diameter of the rotor is 1.4			
	m. The speed ratio is 0.7. Determine the blade inlet angle if the			
	blade outlet angle is 20°. The rotor speed is 3000 rpm. Also find			
	the diagram efficiency. Find the percentage increase in diagram			
	efficiency and rotor speed if the rotor is designed to run at the best	13	BT 5	Evoluating
	theoretical speed, the exit angle being 20°.	10	DI - 3	Evaluating
5.	In a single stage impulse turbine, the blade angles are equal and			
	the nozzle angle is 20°. The velocity coefficient for the blade is			
	0.83. Find the maximum blade efficiency possible. If the actual	13		
	blade efficiency is 90% of maximum blade efficiency, find the		BT - 4	Analysing
	possible ratio of blade speed to steam speed.			

6.	A single stage impulse turbine rotor has a diameter of 1.2m running			
	at 3000 rpm. The nozzle angle is 18°. Blade speed ratio is 0.42. The			
	ratio of the relative velocity at outlet to relative velocity at inlet			
	in 0.9. The outlet angle of the blade is 3° smaller than the inlet			
	angle. The steam flow rate is 5 kg/s. Draw the velocity diagram and			
	find the following:	13		
	(i) Velocity of whirl	15	BT - 6	Creating
	(ii) Axial thrust on the			
	bearing (iii)Blade angles			
	(iv) Power developed			
7.	A de-Level turbine it supplied with dry steam and works on a	Ν,		
	pressure range from 10.5 bar to 0.3 bar. The nozzle angle is 20° and	1	÷	
	the blade exit angle is 30°. The mean blade speed is 270 m/s. If there			
	is a 10% loss due to friction in the nozzle and blade velocity	13	BT - 3	Applying
	coefficient 0.82, find the thrust on the shaft per kW power			
	developed.			r
8.	Explain with a neat sketch of velocity compounding, pressure	13	BT-3	Applying
	compounding, pressure-velocity compounding.	10	210	
9.	A 50 % reaction turbine (with symmetrical velocity triangles)			222
	running at 400 rpm has the exit angle of the blades as 20° C and the			
	velocity of steam rela <mark>tive to</mark> the blades at the exit is 1.35 times the			
	mean speed of the bl <mark>ade. The st</mark> eam flow rate is 8.33 Kg/s and at a			
	particular stage the s <mark>pecific vol</mark> ume is 1.381 m ³ /Kg. Evaluat <mark>e for</mark>	13	BT - 5	Evaluating
	this stage. (i) A suitable blade height, assuming the rotor mean	1	DI	Lituluung
	diameter 12 times the blade height, and (ii) The diagram work			
10.	A single row impulse turbine develops 132.4 kW at a blade speed			
	of 175 m/s, using 2 kg of steam per sec. Steam leaves the nozzle at			
	400 m/s. Velocity coefficient of the blades is 0.9. Steam leaves the	13		
	turbine blades axially. Calculate nozzle angle, blade angles at entry		BT - 5	Evaluating
	and exit, assuming no shock.			

11.	A single-stage impulse turbine is supplied steam at 5 bar and 200°C			
	at the rate of 50 kg/min and it expands into a condenser at a pressure			
	of 0.2 bar. The blade speed is 400 m/s and nozzles are inclined at			
	20°C to the plane of the wheel. The blade angle at the exit of the			
	moving blade is 30°C. Neglecting friction losses in the moving	13	BT 5	Evoluating
	blade, evaluate (i) Velocity of the steam entering the blades (ii)	10	DI - 3	Evaluating
	Power developed, (iii). Blade efficiency and (iv) Stage efficiency.			
	In a stage of impulse reaction turbine operating with 50% degree			
	of reaction, the blades are identical in shape. The outlet angle of the			
	moving blades in 19° and the absolute discharge velocity of steam	_		
	is 100 m/s in the direction 70° to the motion of the blades. If the	13		
12.	rate of flow through the turbine is 15000 kg/hr., calculate the power	1	BT - 4	Analysing
	developed by the turbine.		C.	
12	A stage of a steam turbine is supplied with steam at a pressure of		DT 2	Applying
15.	50 bar and 350oC, and exhausts at a pressure of 5 bar. The		DI - 3	Apprying
	isentropic efficiency of the stage is 0.82 and the steam consumption	13		1
	is 2270 kg/min. Determine the power of the stage.			177
14.	The velocity of steam exiting the nozzle of the impulse stage of a			Ð
	turbine is 400 m/s. The blades operate close to maximum blading			in .
	efficiency. The nozzl <mark>e angle</mark> is 20°. Considering equiangular blades			
	and neglecting blade <mark>friction, calculate for a steam flow of 0.6 kg/s,</mark>	13		
	the diagram power and the diagram efficiency.		BT - 3	Applying
15.	Steam enters the blad <mark>e row of an</mark> impulse turbine with a velocity of	13	BT - 3	Applying
	600m/s at an angle of 25°C to the plane of rotation of blades. The	13	D 1 - 3	Apprying
	mean blade speed is 200m/s. the blade angle at the exit is 30°. The			
	blade friction loss is 10%. Determine			
	(i) The blade angle at inlet			
	(ii) The work done per kg of steam			
	(iii)The diagram efficiency			
	(iv)The axial thrust per kg of steam per second.			
16.	In a stage of impulse reaction turbine, steam enters with a speed of	13	BT - 3	Applying
	250 m/sec, at an angle of 30° in the direction of blade motion. The	15	<u> </u>	, thur and
	mean speed of the blade is 150 m/sec. when the rotor is running at			
	3000 r.p.m. The blade height is 10 cm. The specific volume of			
	steam at nozzle outlet and blade outlet are 3.5 m^3/kg and 4 m^3/kg			

respectively. The turbin	ne develops 250 kW. Assuming the						
Efficiency of nozzle and l	blades combinedly considered is 90% and						
carryover coefficient is (carryover coefficient is 0.8 ; find (i) The enthalpy drop in each						
stage (ii) Degree of reacti	on (iii) Stage efficiency.						
17. The blade speed of a sing	gle ring of an impulse turbine is 300 m/s	13	BT - 3	Applying			
and the nozzle angle is 2	0°. The isentropic heat drop is 473 kJ/kg	15	D 1 - 5	Applying			
and the nozzle efficiency	y is 0.85. Given that the blade velocity						
coefficient is 0.7 and the	blades are symmetrical, draw the velocity						
diagrams and calculate for	or a mass flow of 1 kg/s: (i) Axial thrust						
on the blading. (ii) Ste	am consumption per B.P. hour if the						
mechanical efficiency is	90 per cent. (iii) Blade efficiency and	Nr.					
stage efficiency		. (÷ _				
18. In a 50 percent reaction to	urbine stage running at 50 revolutions per	13	BT - 3	Applying			
second, the exit angles a	re 30° and the inlet angles are 50°. The	15	DI 5	rippiying			
mean diameter is 1m. The	e steam flow rate is 10000 kg/mm and the						
stage efficiency is 85%.	Determine (i) The power output of the			۲. I			
stage (ii) The specific e	nthalpy drop in the stage and (iii) The			177			
percentage increase in the	e relative velocity of steam when it flows			6			
over the moving blades.				Ē			

	PART-C (15 Marks)			
1.	300 kg/min of steam (2 bar, 0.98 dry) flows through a given stage of a			
	reaction turbine. The exit angle of fixed blades as well as moving			
	blades is 20° and 3.68 kW of power developed. If the rotor speed is			
	360 rpm. and tip leakage is 5 percent, calculate the mean drum	13		
	diameter and the blade height. The axial flow velocity is 0.8 times the		BT - 6	Creating
	blade velocity.			
2.	In a stage of impulsive reaction turbine, steam enters with a speed of			
	250 m/s at an angle of 30° in the direction of blade motion. The mean			
	speed of the blade is 150 m/s when the rotor is running at 3000 r.p.m.	1		
	The blade height is 10 cm. The specific volume of steam at nozzle	1		
	outlet and blade outlet are 3.5 m ³ /kg and 4 m ³ /kg respectively. The		N 1	
	turbine develops 250 kW. Assuming the efficiency of nozzle and	13	0	
	blades combined considered is 90% and carryover coefficient is 0.8,	2	BT - 5	Evaluating
	find (i) The enthalpy drop in each stage, (b) Degree of reaction and	0		er
	(iii) Stage efficiency.		1	1
3.	A simple impulse turbine has one ring of moving blades running at 150		E	0
	m/s. the absolute velocity of steam at exit from the stage is 85 m/s at		<u> </u>	
	an angle of 80° from the tangential direction. Blade velocity co-		m	
	efficient is 0.82 and the rate of steam flowing through the stage is			
	2.5 kg/s. if the blades are equiangular, determine:			
	(i) Blade angles			
	(ii)Nozzle angle	13	BT - 5	Evaluating
	(iii)Absolute velocity of the steam issuing from the nozzle		D 1 <i>J</i>	Druiduung
	(iv)Axial thrust.			

4.	In a De-Laval turbine steam issues from the nozzle with a velocity of			
	1200 m/s. The nozzle angle is 20°, the mean blade velocity is 400 m/s,			
	the inlet and outlet angles of blades are equal. The mass of steam			
	flowing through the turbine per hour is 1000 kg. Calculate:			
	(i)Blade angles,			
	(ii) Relative velocity of steam entering the blades,	10	BT - 5	Evaluating
	(iii)Tangential force on the blades,	13	DIS	Dvardadning
	(iv) Power developed			
	(v) Blade efficiency, Take blade velocity co-efficient as 0.8.			
5.	The blade angles of both fixed and moving blades of reaction steam		~	
	turbine are 35° at the receiving tips and 20° at the discharging tips. At		÷	
	a certain point in the turbine, the drum diameter is 1.37 m and blade		C	
	height is 127 'mm. The pressure of steam supply to a ring of fixed		0	
	blades at this point is 1.25 bar and the dryness fraction is 0.925. Find		<	
	the work done in next row of moving blades for 1 kg of steam at 600	13	i i	
	rpm, the steam passing through the blades without shock. Assuming an	BT - 5	Evaluating	
	efficiency of 85% for the pair of rings of fixed an moving blades, find the		0	
	heat drop in the pair and state the properties of steam at the entrance to the		1. I I I I I I I I I I I I I I I I I I I	
	next row of fixed blades.			
	UNIT IV PSYCHROMETRY	Г		
	PART-A (2 Marks)			
Psychom	netric and psychometric charts, property calculations of air vapour mixture	es. I	Psychrometri	c
process -	- Sensible heat exchange processes. Latent heat exchange processes. Adia	ibati	ic mixing, ev	aporative cooling
S.NO	QUESTIONS		LEVEL	COMPETENCE
1	Define Psychometric.		BT-1	Remembering
2	What is moist air?		BT-1	Remembering
3	Summarize various psychometric processes.	BT-2	Understanding	
4	Give the application where heating and humidification of air used.	BT-2	Understanding	
5	List various types of air conditioning.	BT-1	Remembering	
6	Compare evaporative cooling and adiabatic mixing.		BT-4	Analyze
7	Define adiabatic saturation temperature.		BT-1	Remembering

8	Summarize why humidification of air is necessary.		BT-2	Understanding	
9	How the wet bulb temperature does differ from the dry bulb temperature	BT-2	Understanding		
10	Express the term bypass factor.	BT-2	Understanding		
11	Define dew point temperature.		BT-1	Remembering	
12	What is chemical dehumidification?		BT-1	Remembering	
13	Summarize why wet clothes dry in sun faster.		BT-2	Understanding	
14	Analyse sensible heat factor at different conditions.		BT-4	Analyze	
15	What do you understand by Dew Point Temperature?	٧.	BT-1	Remembering	
16	Illustrate the need of psychometric process.		BT-1	Remembering	
17	What is sensible heating?		BT-1	Remembering	
18	Define degree of saturation.	1	BT-1	Remembering	
19	Sketch the Cooling and dehumidifying process on a skeleton Psychometric chart.	BT-2	Understanding		
20	Describe comfort zone.	BT-2	Understanding		
21	Define Dry bulb Temperature.	T	BT-1	Remembering	
22	Define Wet bulb Depression.		BT-1	Remembering	
23	What is adiabatic humidification of air?		BT-1	Remembering	
24	Define effective temperature (ET).	7	BT-1	Remembering	
25	What is comfort chart?		BT-1	Remembering	
	PART-B (13 Marks)				
S.NO	QUESTIONS		LEVEL	COMPETENCE	
1	Define psychrometric process. Explain various psychrometric process	13			
	in detail with neat sketch.		BT-4	Analysing	
2.	Explain the following Air Conditioning Process.				
	a) Sensible cooling and Sensible heating process.				
	b) Cooling and dehumidification process.	13	BT-4	Analysing	
	c) Evaporative cooling.	13			

3.	Atmospheric air at 1.0132 bar has a DBT of 30°C and WBT of 25°C.			
	Calculate			
	(i) the partial pressure of water vapour			
	(ii) specific humidity			
	(iii) the dew point temperature			
	(iv) the relative humidity	13		
	(v) the degree of saturation			
	(vi) the density of air in the mixture			
	(vii) the density of vapour in the mixture and		BT-3	Applying
	(viii) the enthalpy of the mixture. Use the thermodynamic tables only.	6		
4.	(i) Classify various Psychometric process and their significance.	4	BT-3	Applying
	(ii) One kg of air at 40°C dry bulb temperature and 50% RH is mixed		5	
	with 2kg of air at 20°C DBT and 20°C dew point temperature. Calculate		0	
	the temperature and specific humidity of the mixture.	9	BT-6	Creating
5.	Atmospheric air at 38°C and 25% relative humidity passes through an			-
	evaporator cooler. If the final temperature of air is 18°C, how much			~
	water is added per kg of dry air and what is the	13	BT-3	Applying
	final relative humidity?			m
6.	(i) Briefly discuss about evaporative cooling process.	6	BT-4	Analysing
	(ii) Explain adiabatic saturation process with a schematic.	7		
7.	120 m ³ of air per minute at 35°C DBT and 50% relative humidity is			
	cooled to 20°C DBT by passing through cooling coil.			
	Determine the following			
	i. Relative humidity of out coming air and its WBT.		BT-5	Evaluating
	ii. Capacity of cooling coils in tones of refrigeration.	13		
	iii. Amount of water vapor removed per hour.			
8.	(i) Derive the sensible heat factor for cooling and dehumidification			
	process. Also explain the process.	6	BT-4	Analyzing
	(ii) One kg of air at 40°C DBT and 50% RH is mixed with 2 Kg of air		BT-3	Applying
	at 20°C DBT and 20°C dew point temperature. Calculate the	7		
	temperature and specific humidity of the mixture.			
9.	It is required to design an air conditioning system for an industrial			
	process for the following hot and wet summer conditions			

	Outdoor conditions : 32°C DBT and 65% RH			
	Required air inlet conditions: $25^{\circ}C$ DBT and 60% RH			
	Amount of free air circulated: 20 m ³ /min			
	Coil dew temperature : 13° C			
	The required conditions are achieved by first cooling and			
	dehumidifying and then by heating. Calculate the following (by			
	psychometric chart)		рт 5	Evoluating
	(i)The cooling capacity of the cooling coil and its bypass factor.	13	D1-J	Evaluating
	(ii)Heating capacity of the heating coil in kW and surface temperature			
	of the heating coil if the bypass factor is 0.3.			
	The mass of the water vapor removed per hour.	٧,	S	
10	An air water vapor mixture enters an air conditioning unit at pressure		÷.	
	of 1.0 bar 38°C DBT, and a relative humidity of 75%. The mass of dry		- S.,	
	air entering is 1Kg/s. The air-vapour mixture leaves the air		0	
	conditioning unit at 1 bar, 18°C, 85% relative humidity. The moisture	13	BT-3	Applying
	condensed leaves at 18°. Determine the heat transfer rate for the			, pp. j. mg
	process			TT.
11	200 m ³ of air per minute at 15°C DBT and 75% R.H. is heated	13	BT-3	Applying
	until its temperature is 25°C. Find:			m
	(i) R.H. of heated air.			
	(ii) Wet bulb temperature of heated air.			
	(iii) Heat added to air per minute.			
12	Saturated air at 3°C is required to be supplied to a room where the			
	temperature must be held at 22°C with a relative humidity of 55%. The			
	air is heated and then water at 10°C is sprayed to give the required			
	humidity. Determine:			
	(i) The mass of spray water required per m3 of air at room conditions.			
	(ii) The temperature to which the air must be heated.	13		A 1 ·
	Neglect the fan power. Assume that the total pressure is constant at		ы1-3	Applying
	1.0132 bar			
13.	150 m^3 of air per minute is passed through the adiabatic humidifier.			
	The condition of air at inlet is 35°C DBT and 20 per cent relative			
	humidity and the outlet condition is 20°C DBT and 15°C WBT.	13	BT-5	Evaluating
	Determine the following:			
	(i) Dew point temperature			

	(ii) Relative humidity of the exit air					
	(iii) Amount of water vapor added to the air per minute.					
14.	0.004 kg of water vapor per kg of atmospheric air is removed and					
	temperature of air after removing the water vapor becomes 20°C.					
	Determine:					
	(i) Relative humidity	13	BT-5	Evaluating		
	(ii) Dew point temperature.					
	Assume that condition of atmospheric air is 30°C and 55% R.H. and					
	pressure is 1.0132 bar.					
15.	A sling psychometric reads 40°C DBT and 36°C WBT. Find the	ν,	~			
	humidity ratio, relative humidity, DPT, specific volume of air, density		÷			
	of air, density of water vapor and enthalpy.	13	BT-5	Evaluating		
16.	Saturated air at 21°C is passed through a drier so that the final relative		0			
	humidity is 20%. The air is then passed through a cooler until its final		- T			
	temperature is 21°C wit <mark>hout a change in</mark> specific humidity. Find (i) The	13	BT-5	Evaluating		
	temperature of air after drying process, (ii) the heat rejected in cooling					
	process, (iii) the dew point temperature at the end of drying process.			G		
17.	40 m ³ of air per minute at 31°C DBT and 18.5°C WBT is passed over			m		
	the cooling coil whose surface temperature is 4.4°C. The coil cooling					
	capacity is 3.56 tons of refrigeration under the given condition of air.	13	BT-5	Evaluating		
	Determine DBT and WBT of the air leaving the cooling coil.			6		
18.	A sling psychometric in a laboratory test recorded the following					
	readings. Dry bulb temperature = 35°C, Wet bulb temperature = 25°C					
	Calculate the following (i) specific humidity (ii) relative humidity (iii)	13	BT-5	Evaluating		
	vapor density in air (iv) dew point temperature and (v) enthalpy of			C		
	mixture per kg of dry air Take atmospheric pressure = 1.0132 bar.					
PART-C (15 Marks)						
1	An air-water vapor mixture enters an air-conditioning unit at a pressure					
	of 1.0 bar. 38°C DBT, and a relative humidity of 75%. The mass of dry					
	air entering is 1kg/s. The air-vapor mixture leaves the air-conditioning					
	unit at 1.0 bar, 18°C, 85% relative humidity. The moisture condensed	15				
	leaves at 18°C. Sketch the process in the Psychometric chart and		BT-6	Creating		
	determine the heat transfer rate for the process.					

2	Consider the room contains air at 1 atm, 35°C and 40% RH. Using the			
	Psychometric chart determine, specific humidity, enthalpy, WBT, DPT,	15		
	specific volume of the air.		B1-0	Creating
3	Explain the practical application of the adiabatic mixing of two streams	1.5		
	and derive the expression for mass ratio.	15	BT-3	Applying
4	The following data pertain to an air-conditioning system:			
	Unconditioned space DBT $=30^{\circ}C$			
	Unconditioned space WBT=22°C			
	Cold air duct supply surface temperature = 14°C	15		
	Determine	_	BT-6	Creating
	(i) Dew point temperature	12	DIU	creating
	(ii) Whether or not condensation will form on the duct.	1	÷	
5.	An office is to be air-conditioned for 50 staff when the outdoor		0	
	conditions are 30°C DBT and 75% RH if the quantity of air supplied		0	
	is 0.4m ³ /min/person, find the following: (i) Capacity of the cooling	15		
	coil in tonnes of refrigeration (ii) Capacity of the heating coil in kW		BT-5	Evaluating
	(iii) Amount of water vapor removed per hour Assume that required			11
	air inlet conditions are 2 <mark>0°C DBT and 60% RH, Air is conditioned first</mark>			0
	by cooling and dehumidifying and then by heating. (iv) If the heating			100
	coil surface temperature is 25°C, find the by-pass factor of the heating			
	coil?			
	UNIT V - REFRIGERATION AND AIR – CONDIT	ION	ING	
Vapor	compression refrigeration cycle- super heat, sub cooling – Performance cal	culat	tions - worki	ing principle of vapor
absorp	tion system- Alternate refrigerants - Air conditioning system: Types, Workin	g Pri	nciples Cool	ing Load calculations
-Conce	ept of RSHF, GSHF, ESHF.			
	PART-A (2 Marks)			
S.NO	QUESTIONS		LEVEL	COMPETENCE
1	Define refrigeration affect		BT 1	Pamamharing
-			DI-I	Kemembering
2	Draw the Electrolux refrigeration system.		BT-2	Understanding
3	Discuss the working principle of air cycle.		BT-2	Understanding
4	What is the function of the throttling valve in vapour compression		BT-1	Remembering
	refrigeration system?			
5	Write down four important properties of a good refrigerant.		BT-2	Understanding

6	Define super heating.	BT-1	Remembering				
7	Illustrate the necessity of refrigeration.	BT-3	Applying				
8	Estimate the effect of super heat and sub cooling on the vapour compression cycle.	BT-5	Evaluating				
9	Compare vapor compression and vapor absorption system	BT-5	Evaluating				
10	Point out the unit of refrigeration, with an example.	BT-3	Applying				
11	Evaluate the functions of Cooling load calculations.	BT-5	Evaluating				
12	Define thermoelectric refrigeration	BT-1	Remembering				
13	Compare RSHF, GSHF and ESHF.	BT-3	Applying				
14	Define GSHF.	BT-1	Remembering				
15	Define RSHF.	BT-1	Remembering				
16	Define ESHF.	BT-1	Remembering				
17	Give the concept of cooling towers.	BT-2	Understanding				
18	Name the types of cooling towers.	BT-2	Understanding				
19	How are air-conditioning systems classified?	BT-2	Understanding				
20	Point out the various sources of heat gain of an air-conditioned space.	BT-2	Understanding				
21	Explain unit of refrigeration.	BT-3	Applying				
22	Define COP.	BT-1	Remembering				
23	Differentiate between refrigeration & air conditioning.	BT-2	Understanding				
24	What are the properties of good refrigerants?	BT-1	Remembering				
25	What is meant by sub-cooling?	BT-1	Remembering				
PART-B (13 Marks)							
1.	Explain the working of a simple vapor compression refrigeration system 13 with neat diagram.	BT-4	Analyzing				
2.	A refrigerating machine using R-12 as refrigerant operates between the pressures 2.5 bar and 9.0 bar. The compression is isentropic and there is not under cooling in the condenser. The vapor is dry and saturated condition at the beginning of the compression. Estimate the	BT-3	Applying				
	suchated condition at the beginning of the compression. Estimate the						

	theoretical COP. If the actual COP is 0.65 of theoretical COP, calculate							
	the net cooling produced per hour. The refrigerant flow is 5Kg/min.							
	The Properties of Refrigerant are:							
	Pressure	Satu. temp.	Enthalpy (kJ/	/kg)	Entropy			
	(Bar)	(C)			(kJ/kg K)			
	9.0	36	70.55	201.8	0.6836			
	2.5	-7	29.62	184.5	0.7001			
	Take specific	e heat of superh	eated vapour	at 9 bar as ().64 kJ/kg K.	V,	<u>`</u>	
	A Refrigerat	ting <mark>mac</mark> hine w	orking betwe	en the tempe	erature limits of 13		· ~ .	
3.	°C and 37°C	C and has 90%	relative COF	P. It consum	es 4.8 kW power.		5	
	Determine 7	FR capacity. Fo	or same TR ca	apacity, how	much power will	12	9	
	be consume	ed by Carnot	refrigerator?	Also for	the same power	15	BT-4	Analyzing
	consumption	n, determin <mark>e T</mark> l	R capacity of	Carnot refri	gerator		1	-
	operating be	etween same te	mperature lin	nits.				<u> </u>
	A cold storage room has walls made of 0.23 m of brick on the outside,							69
4.	0.08 m of p	lastic foam and	<mark>l finall</mark> y 15 m	nm of w <mark>ood</mark>	on the inside. The			m
	outside and	inside temper	ature is 22°C	C and 2°C re	espectively. If the			
	inside and	outside heat t	ransfer coeffi	icient is 29	and 12 W/m ² K	12	BT-5	Evaluating
	respectively	the thermal co	onductivities of	of bricks, fo	am and wo <mark>od are</mark>	13		
	0.98, 0.02	and 0.17 W/1	n K respect	ively. Deter	mine rate of heat	У.		
	removal by	refrigeration po	er unit area of	f wall.				
5.	Air at 25 °C	WBT 25% RF	I is to be cond	ditioned to 2	2 ° C. DBT and			
	11 gm / kg s	specific humidi	ty. Determine	e heat transf	er per kg of dry			
	air referring	the psychome	tric chart. Rej	present the p	process on chart	13	BT-3	Applying
	by sketch.							
6.	cycle. (b) If	f the cycle is a	bsorbing 113	0 kJ/min at 2	270 K, how many			
	kJ of work i	is required per s	second. (c) If	the Carnot h	eat pump operates			
	between the	e same tempera	tures as the a	bove refrige	ration cycle, what	10		
	1s the coeffi	icient of perfor	mance. (d) He	ow many kJ	min will the heat	13	BT-5	Evaluating
	pump deliv	er at 300 K if	it absorbs 11	30 kJ/min at	t 2/0 K.			
1.	The capacity	y of a refrigera	tor 1s 200 TR	when work	ing between -6°C			
	and 25° C. L	betermine the r						

	25°C.Also find the power required to drive the unit. Assume that the		BT-5	Evaluating
	cycle operates on reversed Carnot cycle and latent heat of ice is	13		C
	335kJ/kg.			
8.	Five hundred kg of fruits are supplied to a cold storage at 20°C. The			
	cold storage is maintained at 5°C and the fruits get cooled to the storage			
	temperature in10 hours. The latent heat of freezing is 105 kJ/kg and			
	specific heat of fruit is1.256 kJ/kg K. Find the refrigeration capacity of	13	В1-4	Analyzing
	the plant.			
9.	A cold storage plant is required to store 20 tons of fish. The fish is			
	supplied at a temperature of 30°C. The specific heat of fish above			
	freezing point is 2.93 kJ/kg K. The specific heat offish below freezing			
	point is 1.26 kJ/kg K. The fish is stored in cold storage which is	13	BT-5	Evaluating
	maintained at -8° C. The freezing point of fish is -4° C. The latent heat		0	
	of fish is 235 kJ/kg. If the plant requires 75Kwto drive it, find(a)The		- 0	
	capacity of the plant, and (b)Time taken to achieve cooling.		1	-
	Assume actual C.O.P. of the plant as 0.3 of the Carnot C.O.P.			
10.	Explain the following Counter flow induced draft; Counter flow forced	13	BT-5	Evaluating
	draft and Cross flow induced draft.			0
11.	Illustrate the factors affecting cooling tower performance in detail.	13	BT-3	Applying
12.	Illustrate the efficient system operation in cooling towers.	13	BT-3	Applying
13.	Elaborate the flow control strategies used in fans of cooling tower.	13	BT-3	Applying
14.	Explain the concept of RSHF, GSHF and ESHF, with suitable	13	BT-4	Analyzing
	examples.			
15.	A refrigeration system of 10.5 tones capacity at an evaporator			
	temperature of -12°C and a condenser temperature of 27°C is needed in			
	a food storage locker. The refrigerant ammonia is sub cooled by 6°C			
	before entering the expansion valve. The vapor is 0.95 dry as it leaves	13	BT-5	Evaluating
	the evaporator coil. The compression in the compressor is of adiabatic			
	type. Find (i) Condition of vapor at the outlet of the compressor (ii)			
	Condition of vapor at the entrance of the evaporator (iii) COP and (iv)			
	The power required. Neglect valve throttling and clearance effect.			
16.	A Freon-12 refrigerator producing a cooling effect of 20 kJ/s operates			
	on a simple vapor compression cycle with pressure limits of 1.509 bar			
	and 9.607 bar. The vapor leaves the evaporator dry saturated and there			

	is no under cooling. Determine the power required by the machine.	13	BT-5	Evaluating			
17.	A simple saturation refrigeration cycle developing 15 tons of						
	refrigeration using R12 operates with a condensing temperature of 35°C						
	and an evaporator temperature of - 6°C. Calculate: (i) The refrigerating	13	BT-5	Evaluating			
	effect, (ii) Refrigerant flow rate, (iii) The power required to drive the		210	g			
1.0	compressor, (iv) COP.	1.0					
18.	Explain summer Air Conditioning with a neat layout.	13	ВТ-4	Analyzing			
PART-C (15 Marks)							
1.	Explain about Cooling load calculations in refrigeration and air-	15	BT-4	Analyzing			
	conditioning systems.	۲.	2				
2.	Generalize the effect of superheat and sub-cooling in refrigeration and	15	BT-6	Creating			
	air-conditioning systems.		10				
3.	Explain unitary and central air conditioning systems and their	15	BT-5	Evaluating			
	application in contemporary industries.	10	210				
4.	Exp1ain summer Air Conditioning with a neat layout.	15	BT-5	Evaluating			
5.	With a neat sketch, discuss briefly the ammonia absorption refrigeration	15	BT-5	G Evaluating			
	cycle			m			