SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203

(An Autonomous Institution)

DEPARTMENT OF MECHANICAL ENGINEERING

QUESTION BANK

V SEMESTER 1909504–DYNAMICS OF MACHINES Regulation – 2019

Academic Year 2022 – 2023 Prepared by

Mr.J.P.Ramesh ,Assistant Professor (O.G) / Mechanical Engineering Mr.R.Ramkumar ,Assistant Professor (O.G) / Mechanical Engineering

SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur - 603203 (An Autonomous Institution)

QUESTION BANK

SUBJECT CODE / NAME : 1909504 – DYNAMICS OF MACHINES

SEM / YEAR

: V SEM / III YEAR

UNIT – I FORCE ANALYSIS

Dynamic force analysis – Inertia force and Inertia torque– D Alembert's principle –Dynamic Analysis in reciprocating engines – Gas forces – Inertia effect of connecting rod– Bearing loads – Crank shaft torque – Turning moment diagrams –Fly Wheels – Flywheels of punching presses- Dynamics of Cam-follower mechanism.

	PART – A (2 Marks)				
S.No	Questions	Level	Competence		
1.	Define static force analysis.	BT-1	Remember		
2.	Define dynamic force analysis.	BT-1	Remember		
3.	List the sufficient conditions of static equilibrium of a body.	BT-2	Understand		
4.	Mention some examples of applied forces.	BT-2	Understand		
5.	Differentiate between active force and reactive force.	BT-2	Understand		
6.	Define constraint forces.	BT-1	Remember		
7.	Point out the methods used for static force analysis of mechanisms.	BT-2	Understand		
8.	State the principle of superposition.	BT-1	Remember		
9.	Compare inertia force and inertia torque.	BT-2	Understand		
10.	State D'Alembert's principle.	BT-1	Remember		
11.	Write the expression for acceleration of the piston at the inner dead	BT-1	Remember		
	centre position.				
12.	Write the expression for piston effort for a vertical engine by considering	BT-1	Remember		
	the weight of the engine and frictional resistance.				
13.	Determine the thrust on the sides of the cylinder walls having the piston	BT-5	Evaluate		
	effort as 400 N and angle made by the connecting rod as 30°.				

14.	Define crank effort.	BT-1	Remember
15.	A force of 4000 N is applied on a piston along the line of stroke of a	BT-5	Evaluate
	horizontal steam engine. When the crank is at 60° to IDC, Calculate the		
	torque on the crank shaft, when the length of the connecting rod is 0.8		
	m and the length of the stroke is 0.4 m.		
16.	Define obliquity ratio.	BT-1	Remember
17.	Sketch the turning moment diagram for a single cylinder double acting	BT-1	Remember
	steam engine.		
18.	Sketch the turning moment diagram for a single cylinder four stroke IC	BT-1	Remember
	engine.		
19.	List the significance of turning moment diagram.	BT-2	Understand
20.	Multi cylinder engines have less fluctuation in turning moment diagram.	BT-2	Understand
	Justify		
21.	Mention the significance of flywheels used in engines.	BT-2	Understand
22.	Write the expression for maximum fluctuation of energy stored in a	BT-1	Remember
	flywheel.		
23.	Define coefficient of steadiness.	BT-1	Remember
24.	List the reasons for windup in the camshaft.	BT-2	Understand
25.	Point out the objectives of analyzing the dynamics of any cam system.	BT-2	Understand

	PART-B (13 Marks)				
S.No	Questions	Marks	Level	Competence	
1.	Derive the expression for the velocity and acceleration of the	13	BT-4	Analyze	
	piston and connecting rod in a reciprocating engine.				
2.	The length of crank and connecting rod of a horizontal	13	BT-5	Evaluate	
	reciprocating engine are 100 mm and 500 mm respectively.				
	The crank is rotating at 400 rpm when the crank has turned 30°				
	from the inner dead centre, find analytically (i) acceleration of				
	the piston (ii) velocity of the piston (iii) angular velocity of the				
	connecting rod (iv) angular acceleration of the connecting rod.				
3.	The length of the crank and connecting rod of a vertical	13	BT-5	Evaluate	
	reciprocating engine are 300 mm and 1.5 m respectively. The				

	crank is rotating at 200 rpm clockwise. Determine analytically			
	(i) acceleration of the piston (ii) velocity of the piston (iii)			
	angular acceleration of the connecting rod when the crank has			
	turned through 40° from the top dead centre and the piston is			
	moving downwards.			
4.	The crank and connecting rod of a reciprocating engine are 150	13	BT-5	Evaluate
	mm and 600 mm respectively. The crank makes an angle of			
	60° with the inner dead centre and revolves at a uniform speed			
	of 300 rpm. By using Klien's construction determine (i)			
	velocity and acceleration of the piston (ii) velocity and			
	acceleration of the mid point of the connecting rod (iii)			
	Angular velocity and angular acceleration of the connecting			
	rod.			
5.	Derive the expression for the forces acting in the reciprocating	13	BT-4	Analyze
	parts of an engine neglecting the weight of the connecting rod.			
6.	During a trial on a steam engine, it is found that the	13	BT-5	Evaluate
	acceleration of the piston is 36 m/s^2 when the crank has moved			
	30° from the inner dead centre position. The net effective steam			
	pressure on the piston is 0.5 MPa and the frictional resistance			
	is equivalent is equivalent to a force of 600 N. The diameter of			
	the piston is 300 mm and the mass of the reciprocating parts is			
	180 kg. If the length of the crank is 300 mm and the ratio of			
	the connecting rod length to the crank length is 4.5. Determine			
	(i) Reaction on the guide bars (2) Thrust on the crank shaft			
	bearings (3) Turning moment on the crankshaft.			
7.	A horizontal steam engine running at 120 rpm has a bore of	13	BT-5	Evaluate
	250 mm and a stroke of 400 mm. The connecting rod is 0.6 m			
	and mass of the reciprocating parts is 60 kg. When the crank			
	has turned through an angle of 45° from the inner dead centre,			
	the steam pressure on the cover end side is 550 kN/mm2 and			
	that on the crank end side is 70 kN/mm2. Considering the			
	diameter of the piston rod equal to 50 mm. Determine (i)			
	Turning moment on the crank shaft (ii) Thrust on the bearings			

	(iii) Acceleration of the flywheel, if the power of the engine is			
	20 kW, mass of the flywheel is 60 kg and radius of the gyration			
	is 0.6 m.			
8.	A petrol engine 90 mm in diameter and 120 mm stroke has a	13	BT-5	Evaluate
	connecting rod of 240 mm length. The piston has a mass of 1			
	kg and the speed is 1800 rpm. On the expansion stroke with the			
	crank at 30° from top dead centre, the gas pressure is 0.5			
	N/mm ² . Determine (i) The resultant load on the gudgeon pin			
	(ii) The thrust on the cylinder walls (iii) The speed above which			
	other things remains the same, the gudgeon pin load would be			
	reversed in direction. Also calculate the crank effort at the			
	given position of the crank.			
9.	A vertical single cylinder diesel engine running at 300 rpm has	13	BT-3	Apply
	a cylinder diameter 250 mm and stoke 400 mm. The mass of			
	the reciprocating parts is 200 kg. The length of the connecting			
	rod is 0.8 m. The ratio of the compression ratio is 14 and the			
	pressure remains constant during the injection of the oil for			
	1/10 th of the stroke. If the index of the law of expansion and			
	compression is 1.35, Estimate the torque on the crankshaft			
	when it makes an angle of 60° with the top dead centre during			
	the expansion stroke. The suction pressure may be taken as 0.1			
	N/mm ² .			
10.	(i) Derive the expression for the energy stored in a flywheel.	8	BT-4	Analyze
	(ii) A vertical double-acting steam engine develops 75 kW at	5	BT-5	Evaluate
	250 r.p.m. The maximum fluctuation of energy is 30% of the			
	work done per cycle. The maximum and minimum speeds are			
	not to vary more than 1% on either side of the mean speed.			
	Find the mass of the flywheel required if the radius of gyration			
	is 0.6metres.			
11.	The areas above and below the mean torque line for an IC	13	BT-3	Apply
	engine are -25,+200, -100, +150, -300, +150 and -75 mm ²			
	taken in order. The scale for the turning moment diagram is			
	1mm vertical scale = 10 Nm and 1 mm of the horizontal scale			

	= 1.5° . The mass of the rotating parts are 45 kg with a radius			
	of gyration of 150 mm. If the engine speed is 1500 rpm. Find			
	the coefficient of the fluctuation of speed.			
12.	The turning moment diagram for a petrol engine is drawn to a	13	BT-3	Apply
	scale of 1mm to 6 N-m and the horizontal scale of 1mm to			
	1°. The turning moment repeat itself after every half revolution			
	of the engine. The area above and below the mean torque line			
	are 305, 710, 50, 350, 980and 275 mm ² . The mass of rotating			
	parts is 40kg at a radius of gyration of 140 mm. calculate the			
	coefficient of fluctuation of speed if the mean speed is 1500			
	rpm.			
13.	(i) In an engine, the speed varies from 98 rpm to 102 rpm. It	7	BT-5	Evaluate
	has a flywheel of mass 5000 kg and the radius of gyration is			
	900 mm. Determine (i) The mean speed of the flywheel (ii)			
	Coefficient of fluctuation of speed (iii) Maximum fluctuation			
	of energy.			
	(ii) Determine the coefficient of fluctuation of speed and the	6	BT-5	Evaluate
	limiting speeds of a flywheel of mass 4000 kg having a radius			
	of gyration of 1.4 m. The mean speed of the engine is 200			
	rpm and the fluctuation of energy is 90 kNm.			
14.	The turning moment diagram for a four stroke gas engine may	13	BT-3	Apply
	be assumed for simplicity to be represented by four triangles,			
	the areas of which from the line of zero pressure are as follows			
	: Suction stroke = 0.45×10^{-3} m ² ; Compression stroke = $1.7 \times$			
	10^{-3} m ² ; Expansion stroke = 6.8×10^{-3} m ² ; Exhaust stroke =			
	0.65×10^{-3} m ² . Each m ² of area represents 3 MN-m of energy.			
	Assuming the resisting torque to be uniform, find the mass of			
	the rim of a flywheel required to keep the speed between 202			
	and 198 r.p.m. The mean radius of the rim is 1.2 m.			
15.	A shaft fitted with a flywheel rotates at 250 r.p.m. and drives a	13	BT-5	Evaluate
	machine. The torque of machine varies in a cyclic manner over			
	a period of 3 revolutions. The torque rises from 750 N-m to			
	3000 Nm uniformly during 1/2 revolution and remains			

	constant for the following revolution. It then falls uniformly to			
	750 N-m during the next 1/2 revolution and remains constant			
	for one revolution, the cycle being repeated thereafter.			
	Determine the power required to drive the machine and			
	percentage fluctuation in speed, if the driving torque applied to			
	the shaft is constant and the mass of the flywheel is 500 kg with			
	radius of gyration of 600mm			
16.	A punching press is driven by a constant torque electric motor.	13	BT-4	Analyze
	The press is provided with a flywheel that rotates at maximum			
	speed of 225 rpm. The radius of gyration of the flywheel is 0.5			
	m. The press punches 720 holes per hour, each punching			
	operation takes 2 seconds and requires 15 kNm of energy.			
	Determine the power of the motor and the minimum mass of			
	the flywheel if speed of the same is not to fall below 200 rpm.			
17.	A constant torque 4 kW motor drives a riveting machine. A	13	BT-5	Evaluate
	flywheel of mass 130 kg and radius of gyration 0.5 m is fitted			
	to the riveting machine. Each riveting operation takes 1 second			
	and requires 9000 Nm of energy. If the speed of the flywheel			
	is 420 rpm before riveting. Estimate (i) The fall in speed of the			
	flywheel after riveting (ii) The number of rivets fitted per hour.			
18.	A single cylinder single acting 4 stroke cycle gas engine	13	BT-5	Evaluate
	develops 22 kW at 300 r.p.m. The flywheel mass is 100 kg.			
	Hoop stress developed is 5MPa. Density of material of rim of			
	flywheel is 8000 kg/m ³ . The speed variation on either side is			
	1% of mean speed. Determine ratio of work done during			
	expansion and compression strokes. Work done in suction and			
	exhaust stroke is negligible.			

PART-C (15 Marks)				
S.No	Questions	Marks	Level	Competence
1	A vertical double acting steam engine has cylinder diameter of	15	BT-5	Evaluate
	240 mm, length of the stroke is 360 mm and length of the			
	connecting rod is 0.6 m. The crank rotates at 300 rpm and the			

	mass of the reciprocating parts is 160 kg. The steam is admitted			
	at a pressure of 8 bar gauge and cut off takes place at $1/3$ rd of			
	the stroke. The expansion of steam is hyperbolic. The exhaust			
	of steam takes place at a pressure of -0.75 bar gauge. The			
	frictional resistance is equal to a force of 500 N. Determine the			
	turning moment on the crank shaft, when the piston is 75° from			
	the top dead centre. Neglect the effect of clearance and assume			
	the atmospheric pressure as 1.03 bar.			
2	A single cylinder, single acting, four stroke gas engine	15	BT-5	Evaluate
	develops 20 kW at 300 r.p.m. The work done by the gases			
	during the expansion stroke is three times the work done on the			
	gases during the compression stroke, the work done during the			
	suction and exhaust strokes being negligible. If the total			
	fluctuation of speed is not to exceed ± 2 per cent of the mean			
	speed and the turning moment diagram during compression			
	and expansion is assumed to be triangular in shape, find the			
	moment of inertia of the flywheel.			
3	During forward stroke of the piston of the double acting steam	15	BT-5	Evaluate
	engine, the turning moment has the maximum value of 2000			
	engine, the turning moment has the maximum value of 2000 N-m when the crank makes an angle of 80° with the inner dead			
	engine, the turning moment has the maximum value of 2000 N-m when the crank makes an angle of 80° with the inner dead centre. During the backward stroke, the maximum turning			
	engine, the turning moment has the maximum value of 2000 N-m when the crank makes an angle of 80° with the inner dead centre. During the backward stroke, the maximum turning moment is 1500 N-m when the crank makes an angle of 80°			
	engine, the turning moment has the maximum value of 2000 N-m when the crank makes an angle of 80° with the inner dead centre. During the backward stroke, the maximum turning moment is 1500 N-m when the crank makes an angle of 80° with the outer dead centre. The turning moment diagram for			
	engine, the turning moment has the maximum value of 2000 N-m when the crank makes an angle of 80° with the inner dead centre. During the backward stroke, the maximum turning moment is 1500 N-m when the crank makes an angle of 80° with the outer dead centre. The turning moment diagram for the engine may be assumed for simplicity to be represented by			
	engine, the turning moment has the maximum value of 2000 N-m when the crank makes an angle of 80° with the inner dead centre. During the backward stroke, the maximum turning moment is 1500 N-m when the crank makes an angle of 80° with the outer dead centre. The turning moment diagram for the engine may be assumed for simplicity to be represented by two triangles. If the crank makes 100 r.p.m. and the radius of			
	engine, the turning moment has the maximum value of 2000 N-m when the crank makes an angle of 80° with the inner dead centre. During the backward stroke, the maximum turning moment is 1500 N-m when the crank makes an angle of 80° with the outer dead centre. The turning moment diagram for the engine may be assumed for simplicity to be represented by two triangles. If the crank makes 100 r.p.m. and the radius of gyration of the flywheel is 1.75 m, find the coefficient of			
	engine, the turning moment has the maximum value of 2000 N-m when the crank makes an angle of 80° with the inner dead centre. During the backward stroke, the maximum turning moment is 1500 N-m when the crank makes an angle of 80° with the outer dead centre. The turning moment diagram for the engine may be assumed for simplicity to be represented by two triangles. If the crank makes 100 r.p.m. and the radius of gyration of the flywheel is 1.75 m, find the coefficient of fluctuation of energy and the mass of the flywheel to keep the			
	engine, the turning moment has the maximum value of 2000 N-m when the crank makes an angle of 80° with the inner dead centre. During the backward stroke, the maximum turning moment is 1500 N-m when the crank makes an angle of 80° with the outer dead centre. The turning moment diagram for the engine may be assumed for simplicity to be represented by two triangles. If the crank makes 100 r.p.m. and the radius of gyration of the flywheel is 1.75 m, find the coefficient of fluctuation of energy and the mass of the flywheel to keep the speed within $\pm 0.75\%$ of the mean speed. Also determine the			
	engine, the turning moment has the maximum value of 2000 N-m when the crank makes an angle of 80° with the inner dead centre. During the backward stroke, the maximum turning moment is 1500 N-m when the crank makes an angle of 80° with the outer dead centre. The turning moment diagram for the engine may be assumed for simplicity to be represented by two triangles. If the crank makes 100 r.p.m. and the radius of gyration of the flywheel is 1.75 m, find the coefficient of fluctuation of energy and the mass of the flywheel to keep the speed within \pm 0.75% of the mean speed. Also determine the crank angle at which the speed has its minimum and maximum			
	engine, the turning moment has the maximum value of 2000 N-m when the crank makes an angle of 80° with the inner dead centre. During the backward stroke, the maximum turning moment is 1500 N-m when the crank makes an angle of 80° with the outer dead centre. The turning moment diagram for the engine may be assumed for simplicity to be represented by two triangles. If the crank makes 100 r.p.m. and the radius of gyration of the flywheel is 1.75 m, find the coefficient of fluctuation of energy and the mass of the flywheel to keep the speed within \pm 0.75% of the mean speed. Also determine the crank angle at which the speed has its minimum and maximum values.			
4	engine, the turning moment has the maximum value of 2000 N-m when the crank makes an angle of 80° with the inner dead centre. During the backward stroke, the maximum turning moment is 1500 N-m when the crank makes an angle of 80° with the outer dead centre. The turning moment diagram for the engine may be assumed for simplicity to be represented by two triangles. If the crank makes 100 r.p.m. and the radius of gyration of the flywheel is 1.75 m, find the coefficient of fluctuation of energy and the mass of the flywheel to keep the speed within $\pm 0.75\%$ of the mean speed. Also determine the crank angle at which the speed has its minimum and maximum values.	15	BT-5	Evaluate
4	engine, the turning moment has the maximum value of 2000 N-m when the crank makes an angle of 80° with the inner dead centre. During the backward stroke, the maximum turning moment is 1500 N-m when the crank makes an angle of 80° with the outer dead centre. The turning moment diagram for the engine may be assumed for simplicity to be represented by two triangles. If the crank makes 100 r.p.m. and the radius of gyration of the flywheel is 1.75 m, find the coefficient of fluctuation of energy and the mass of the flywheel to keep the speed within \pm 0.75% of the mean speed. Also determine the crank angle at which the speed has its minimum and maximum values. The turning moment curve for an engine is represented by the equation,T = (20 000 + 9500 sin 2 Θ – 5700 cos 2 Θ) N-m,	15	BT-5	Evaluate

	centre. If the resisting torque is constant, find:1. Power developed by the engine ; 2. Moment of inertia of flywheel in kg-m ² , if the total fluctuation of speed is not exceed 1% of mean speed which is 180 r.p.m; and 3. Angular acceleration of the flywheel when the crank has turned through 45° from inner dead centre.			
5	A certain machine requires a torque of $(5000 + 500 \sin \Theta)$ N- m to drive it, where Θ is the angle of rotation of shaft measured from certain datum. The machine is directly coupled to an engine which produces a torque of $(5000 + 600 \sin 2 \Theta)$ N-m. The flywheel and the other rotating parts attached to the engine has a mass of 500 kg at a radius of gyration of 0.4 m. If the mean speed is 150 r.p.m., find : 1. the fluctuation of energy, 2. the total percentage fluctuation of speed, and 3. the maximum and minimum angular acceleration of the flywheel and the corresponding shaft position.	15	BT-5	Evaluate

UNIT II – BALANCING

Static and dynamic balancing – Balancing of rotating masses – Balancing a single cylinder engine – Balancing of Multi-cylinder inline, V-engines – Partial balancing in engines – Balancing of linkages – Balancing machines-Field balancing of discs and rotors.

	PART – A (2 Marks)			
S.No	Questions	Level	Competence	
1.	Define Balancing.	BT-1	Remember	
2.	List the types of balancing.	BT-1	Remember	
3.	Point out the necessity of balancing.	BT-2	Understand	
4.	Define centrifugal force.	BT-1	Remember	
5.	Write the expression for the centrifugal disturbing force.	BT-1	Remember	
6.	Define static balancing.	BT-1	Remember	
7.	Define dynamic balancing.	BT-1	Remember	
8.	State the conditions for static balancing.	BT-2	Understand	
9.	State the conditions for dynamic balancing.	BT-2	Understand	
10.	Differentiate between static balancing and dynamic balancing.	BT-2	Understand	
11.	Mention the conditions for complete balancing.	BT-2	Understand	
12.	State the effect of centrifugal force on the rotating system.	BT-2	Understand	
13.	List the important cases used for balancing of the rotating mass.	BT-1	Remember	
14.	Point out the methods used for balancing several masses rotating in a	BT-2	Understand	
	same plane.			
15.	Define the term reference plane.	BT-1	Remember	
16.	Indicate the significance of the reference plane in balancing.	BT-2	Understand	
17.	Define shaking force.	BT-1	Remember	
18.	Mention the purpose of balancing the reciprocating mass.	BT-2	Understand	
19.	Write the expression for primary unbalanced force and secondary	BT-1	Remember	
	unbalanced force.			
20.	Differentiate between inside cylinder locomotive and outside cylinder	BT-2	Understand	
	locomotive.			
21.	Differentiate between single locomotive and coupled locomotive.	BT-2	Understand	
22.	Mention the effect of partial balancing of reciprocating parts of the two-	BT-2	Understand	
	cylinder locomotives.			

23.	Define hammer blow.	BT-1	Remember
24.	Define tractive force.	BT-1	Remember
25.	Write the expression for swaying couple.	BT-1	Remember

	PART-B (13 Marks)				
S.No	Questions	Marks	Level	Competence	
1.	Four masses M1, M2, M3, and M4 are 200 kg, 300 kg, 240 kg	13	BT-5	Evaluate	
	and 260 kg respectively. The corresponding radii of rotation				
	are 0.2 m, 0.15 m, 0.25 m and 0.3 m respectively and the angle $% \left(1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,$				
	between successive masses 45° , 75° , and 135° . Find the position				
	and magnitude of balance mass required if its radius of rotation				
	is 0.2 m.				
2.	A rigid rotor has all its unbalance in one plane and can be	13	BT-5	Evaluate	
	considered to consist of three masses $m_1 = 5$ kg, $m_2 = 3$ kg at				
	an angle 165° counter clockwise from m1 and m_3 = 8 kg at				
	angle 85° clockwise from m_1 . The radii r_1 = 20 cm, r_2 =8 cm,				
	$r_3=14$ cm. Determine the balancing mass required at a radius				
	of 10 cm. Specify the location of this mass with respect to m_1 .				
3.	A rotating shaft carries four unbalanced masses 18 kg, 14 kg,	13	BT-5	Evaluate	
	16 kg and 12 kg at radii 5 cm, 6 cm, 7 cm and 6 cm				
	respectively. The 2nd, 3rd and 4th masses revolve in planes 8				
	cm, 16 cm and 28 cm respectively measured from the plane of				
	the first mass and are angularly located at $60^\circ,135^\circ$ and 270°				
	respectively measured clockwise from the first mass looking				
	from this mass end of the shaft. The shaft is dynamically				
	balanced by two masses, both located at 5 cm radii and				
	revolving in planes mid-way between those of 1s and 2nd				
	masses and mid-way between those of 3rd and 4th masses.				
	Determine graphically or otherwise, the magnitudes of the				
	masses and their respective angular positions				
4.	A shaft caries four rotating masses A, B, C and D which	13	BT-5	Evaluate	
	are completely balanced. The masses B, C and D are 50 kg, 80				

	kg and 70 kg respectively. The masses C and D make angles			
	of 90° and 195° respectively with mass B in the same sense.			
	The masses A, B, C and D are concentrated at radius 75 mm,			
	100 mm, 50 mm and 90 mm respectively. The plane of rotation			
	of masses B and C are 250 mm apart. Determine (i) the			
	magnitude of mass A and its angular position (ii) the position			
	of planes A and D.			
5.	A, B, C and D are four masses carried by a rotating shaft at	13	BT-5	Evaluate
	radii 100 mm,150 mm, 150 mm and 200 mm respectively. The			
	planes in which the masses revolve are spaced 500 mm apart			
	and the masses of B, C and D are 9 kg, 5 kg and 4 kg			
	respectively. Find the required mass A and relative angular			
	setting of the four masses so that the shaft be in complete			
	balance.			
6.	Four masses A, B, C and D revolves at equal radii and are	13	BT-5	Evaluate
	equally spaced along a shaft. The mass B is 7 kg and the radii			
	of C and D make angles of 90° and 240° respectively with			
	the radius of B. Find the magnitude of masses A, C and D and			
	angular position of A so that the system may be completely			
	balanced.			
7.	A shaft has three eccentrics, each 75 mm diameter and 25 mm	13	BT-5	Evaluate
	thick, machined in one piece with the shaft. The central planes			
	of the eccentric are 60 mm apart. The distance of the centres			
	from the axis of rotation are 12 mm, 18 mm and 12 mm and			
	their angular positions are 120° apart. The density of metal is			
	7000 kg/m3. Find the amount of out-of-balance force and			
	couple at 600 r.p.m. If the shaft is balanced by additional two			
	masses at a radius 75 mm and at a distance of 100 mm from			
	the central plane of the middle eccentric, find the amount of			
	the masses and their angular positions.			
8.	A, B, C and D are four masses carried by a rotating shaft at	13	BT-5	Evaluate
	radii 100, 125, 200 and 150 mm respectively. The planes in			
	which the masses revolve are spaced 600 mm apart and the			

	mass of B, C and D are 10 kg, 5 kg, and 4 kg respectively. Find			
	the required mass A and the relative angular settings of the four			
	masses so that the shaft shall be in complete balance.			
9.	(i) A single cylinder horizontal engine runs at 120 rpm. The	13	BT-5	Evaluate
	length of the stroke is 400 mm. The mass of the revolving parts			
	assumed concentrated at the crank pin is 100 kg and mass of			
	the reciprocating parts is 150 kg. Determine the magnitude of			
	the balancing mass required to be placed opposite to the crank			
	at a radius of 150 mm which is equivalent to all the revolving			
	and $2/3^{rd}$ of the reciprocating masses. If the crank turns 30°			
	from the inner dead centre, find the magnitude of the			
	unbalanced force due to the balancing mass.			
	(ii) Prove that the resultant unbalanced force is minimum when	13	BT-4	Analyze
	half of the reciprocating masses are balanced by rotating			
	masses i.e, when $c = 1/2$.			
10.	An inside cylinder locomotive has its cylinder centre lines 0.7	13	BT-5	Evaluate
	m apart and has a stroke of 0.6 m. The rotating masses per			
	cylinder are equivalent to 150 kg at the crank pin and the			
	reciprocating masses per cylinder to 180 kg. The wheel centre			
	lines are 1.5 m apart. The cranks are at right angles. The whole			
	of the rotating and 2/3 of the reciprocating masses are to be			
	balanced by masses placed at a radius of 0.6 m. Find the			
	magnitude and direction of the balancing masses. Find the			
	fluctuation in rail pressure under one wheel, variation of			
	tractive effort and the magnitude of swaying couple at a crank			
	speed of 300 r.p.m.			
11.	The three cranks of a three cylinder locomotive are all on the	13	BT-5	Evaluate
	same axle and are set at 120° . The pitch of the cylinders is 1			
	metre and the stroke of each piston is 0.6 m. The reciprocating			
	masses are 300 kg for inside cylinder and 260 kg for each			
	outside cylinder and the planes of rotation of the balance			
	masses are 0.8 m from the inside crank. If 40% of the			
	reciprocating parts are to be balanced, find the magnitude and			

	the position of the balancing masses required at a radius of 0.6			
	m and the hammer blow per wheel when the axle makes 6 r.p.s.			
12.	The following data refer to two cylinder locomotive with	13	BT-5	Evaluate
	cranks at 90° :			
	Reciprocating mass per cylinder = 300 kg ; Crank radius = 0.3			
	m ; Driving wheel diameter = 1.8 m ; Distance between			
	cylinder centre lines = 0.65 m ; Distance between the driving			
	wheel central planes = 1.55 m. Determine : 1. the fraction of			
	the reciprocating masses to be balanced, if the hammer blow			
	is not to exceed 46 kN at 96.5 km.p.h. ; 2. the variation in			
	tractive effort ; and 3. the maximum swaying couple.			
13.	The following data apply to an outside cylinder uncoupled	13	BT-5	Evaluate
	locomotive :			
	Mass of rotating parts per cylinder = 360 kg ; Mass of			
	reciprocating parts per cylinder = 300 kg ; Angle between			
	cranks = 90° ; Crank radius = 0.3 m; Cylinder centres =1.75			
	m ; Radius of balance masses $= 0.75$ m ; Wheel centres $= 1.45$			
	m. If whole of the rotating and two-thirds of reciprocating parts			
	are to be balanced in planes of the driving wheels, find :			
	1. Magnitude and angular positions of balance masses,			
	2. Speed in kilometres per hour at which the wheel will lift off			
	the rails when the load on each driving wheel is 30 kN and the			
	diameter of tread of driving wheels is 1.8 m, and			
	3. Swaying couple at speed arrived at in (2) above.			
14.	The following particulars relate to a two-cylinder locomotive	13	BT-5	Evaluate
	with two coupled wheels on each side :			
	Stroke = 650 mm,Mass of reciprocating parts per cylinder =			
	240 kg, Mass of revolving parts per cylinder = 200 kg, Mass of			
	each coupling $rod = 250 kg$, Radius of centre of coupling rod			
	pin = 250 mm, Distances between cylinders = 0.6 m, Distance			
	between wheels = 1.5 m, Distance between coupling rods = 1.8			
	m, The main cranks are at right angles and the coupling rod			
	pins are at 180° to their respective main cranks. The balance			

	masses are to be placed in the wheels at a mean radius of 675			
	mm in order to balance whole of the revolving and 3/4th of the			
	reciprocating masses. The balance mass for the reciprocating			
	masses is to be divided equally between the driving wheels and			
	the coupled wheels. Find : 1. The magnitudes and angular			
	positions of the masses required for the driving and trailing			
	wheels, and 2. The hammer blow at 120 km/h, if the wheels are			
	1.8 metre diameter.			
15.	Derive the expression for primary and secondary unbalanced	13	BT-4	Analyze
	forces of reciprocating masses.			
16.	Write short notes on partial balancing of unbalanced primary	13	BT-4	Analyze
	forces in a reciprocating engine.			
17.	Enumerate on the effect of partial balancing of reciprocating	13	BT-4	Analyze
	parts of two cylinder locomotives.			
18.	Explain the various methods of balancing the rotating masses.	13	BT-4	Analyze

	PART-C (15 Marks)				
S.No	Questions	Marks	Level	Competence	
1	The cranks 2 to 9 of a nine cylinder engine running at 1000	13	BT-4	Analyze	
	rpm makes 240°, 120 °, 160 °, 280 °, 40 °, 80 °, 320 ° and 200 °				
	respectively with crank 1, when measured in a counter				
	clockwise direction. The rotating masses for each cylinder are				
	estimated to be 20 kg at 0.5 m radius. The distance between				
	centre lines of the cranks is 0.4 m. it is proposed to balance this				
	engine by two masses, one in the damper at a distance of 0.6 m				
	from the cylinder one and the other located in the flywheel at				
	a distance of 0.6 m from cylinder nine. Determine the kg-m				
	magnitudes and locations of the balancing masses.				
2	A shaft carries four masses in parallel planes A, B, C and D in	13	BT-4	Analyze	
	this order along its length. The masses at B and C are 18 kg				
	and 12.5 kg respectively, and each has an eccentricity of 60				
	mm. The masses at A and D have an eccentricity of 80 mm.				
	The angle between the masses at B and C is 100° and that				

	between the masses at B and A is 190°, both being measured			
	in the same direction. The axial distance between the planes A			
	and B is 100 mm and that between B and C is 200 mm. If the			
	shaft is in complete dynamic balance, determine : 1. The			
	magnitude of the masses at A and D ; 2. the distance between			
	planes A and D; and 3. the angular position of the mass at D.			
3	A shaft carries four masses A, B, C and D of magnitude 200	13	BT-5	Evaluate
	kg, 300 kg, 400 kg and 200 kg respectively and revolving at			
	radii 80 mm, 70 mm, 60 mm and 80 mm in planes measured			
	from A at 300 mm, 400 mm and 700 mm. The angles between			
	the cranks measured anticlockwise are A to B 45° , B to C 70°			
	and C to D 120°. The balancing masses are to be placed in			
	planes X and Y. The distance between the planes A and X is			
	100 mm, between X and Y is 400 mm and between Y and D is			
	200 mm. If the balancing masses revolve at a radius of 100			
	mm, find their magnitudes.			
4	A shaft is supported in bearings 1.8 m apart and projects 0.45	13	BT-5	Evaluate
	m beyond bearings at each end. The shaft carries three pulleys			
	one at each end and one at the middle of its length. The mass			
	of end pulleys is 48 kg and 20 kg and their centre of gravity are			
	15 mm and 12.5 mm respectively from the shaft axis. The			
	centre pulley has a mass of 56 kg and its centre of gravity is 15			
	mm from the shaft axis. If the pulleys are arranged so as to give			
	static balance, determine (i).relative angular positions of the			
	pulleys.			
5	A four crank engine has the two outer cranks set at 120° to each	13	BT-5	Evaluate
	other, and their reciprocating masses are each 400 kg. The			
	distance between the planes of rotation of adjacent cranks are			
	450 mm, 750 mm and 600 mm. If the engine is to be in			
	complete primary balance, find the reciprocating mass and the			
	relative angular position for each of the inner cranks. If the			
	length of each crank is 300 mm, the length of each connecting			
	rod is 1.2 m and the speed of rotation is 240r.p.m., what is the			

maximum secondary.	
--------------------	--

UNIT III – FREEVIBRATION

Basic features of vibratory systems – Degrees of freedom – single degree of freedom – Free vibration – Equations of motion – Natural frequency – Types of Damping – Damped vibration– Torsional vibration of shaft– Critical speeds of shafts – Torsional vibration – Two and three rotor torsional systems.

PART – A (2 Marks)					
S.No	Questions	Level	Competence		
1.	Define vibratory motion.	BT-1	Remember		
2.	Mention the types of vibratory motion.	BT-2	Understand		
3.	Define time period.	BT-1	Remember		
4.	Define damped vibration.	BT-1	Remember		
5.	Differentiate between forced vibration and free vibration.	BT-2	Understand		
б.	List the types of free vibration.	BT-2	Understand		
7.	Point out the methods used for determining the natural frequency of	BT-2	Understand		
	longitudinal vibration.				
8.	Differentiate between longitudinal vibration and transverse vibration.	BT-2	Understand		
9.	Define torsional vibration.	BT-1	Remember		
10.	Write the expression for natural frequency of a transverse vibration.	BT-1	Remember		
11.	Define whirling speed.	BT-1	Remember		
12.	Define viscous damping.	BT-1	Remember		
13.	Mention the effects of whirling speed of the shaft.	BT-2	Understand		
14.	List some applications of damping.	BT-2	Understand		
15.	A shaft fixed at one end has a stiffness of 's' N/m and fitted with a mass	BT-2	Understand		
	'm' at its free end. Its longitudinal natural frequency comes down by 10				
	%, if a mass of 1 kg is added to 'm'. Find the value of initial mass.				
16.	Mention the types of damping based on the source of damping.	BT-2	Understand		
17.	List the types of damping based on the nature of damping.	BT-2	Understand		
18.	Define logarithmic decrement.	BT-1	Remember		

19.	Sketch the displacement – time curves for over damped system.	BT-1	Remember
20.	Sketch the displacement – time curves for critically damped system.	BT-1	Remember
21.	Sketch the displacement – time curves for under damped system.	BT-1	Remember
22.	Mention the methods for determining the natural frequency of the free	BT-2	Understand
	transverse vibration for a shaft subjected to a number of point loads.		
23.	Write the expression for natural frequency of a torsional vibration.	BT-1	Remember
24.	Differentiate node and anti node.	BT-2	Understand
25.	List some applications of critical damping.	BT-3	Apply

	PART-B (13 Marks)				
S.No	Questions	Marks	Level	Competenc	
				e	
1.	An unknown mass m is attached to one end of a spring of stiffness k	13	BT-5	Evaluate	
	having natural frequency of 6 Hz. When 1 kg mass is attached with				
	m the natural frequency of the system is lowered by 20%. Determine				
	the value of unknown mass m and stiffness k.				
2.	Deduce the expression for the free longitudinal vibration in terms of	13	BT-5	Evaluate	
	spring stiffness, its inertia effect and suspended mass.				
3.	Derive an expression for the natural frequency of the free longitudinal	13	BT-5	Evaluate	
	vibration by (i) Equilibrium method (ii) Energy method (iii)				
	Rayleigh's method.				
4.	For the system shown in the diagram $s_1 = s_2 = 500$ N/m; $s_3 = 1500$	13	BT-3	Apply	
	N/m; $s_4 = 3000$ N/m; $s_5 = 2000$ N/m. Find the mass 'm' such that the				
	system has a natural frequency of 6.75 Hz.				
	s_1 s_2 s_3 s_4 s_5 s_4 s_5				

5.	Find the equation of motion for the spring mass-dashpot system	13	BT-3	Apply
	shown in diagram for the cases when (i) $\zeta = 2$ (ii) $\zeta = 1$ and (iii) $\zeta =$			
	0.3. The mass 'm' is displaced by a distance of 30 mm and released.			
6.	Explain with sketches for different cases of damped vibrations.	13	BT-5	Evaluate
7.	A mass of 1 kg is attached to a spring having stiffness of 3920 N/m.	13	BT-5	Evaluate
	The mass slides on a horizontal surface, the coefficient of friction			
	between the mass and surface being 0.1. Determine the frequency of			
	vibrations of the system and the amplitude after one cycle if the initial			
	amplitude is 0.25 cm. Determine the final rest position.			
8.	A shaft of diameter 10 mm carries at its centre a mass of 12 kg. It is	13	BT-5	Evaluate
	supported by two short bearings, the centre distance of which is 400			
	mm. Find the whirling speed: (a) Neglecting the mass of the shaft and			
	(b) considering the mass of the shaft. The density of shaft material is			
	7500 kg/m ³ . Take $E = 200 \text{ GN/m}^2$.			
9.	A vertical steel shaft of 14 mm diameter is mounted in long bearings	13	BT-5	Evaluate
	which are1.2 m apart and carries 160 N of disc at its middle. The			
	eccentricity of the centre of gravity of the disc from the centre of the			
	rotor is 0.4 mm. Taking Young's modulus as 200 GN/m^2 and			
	permissible stress as $70 \times 10^6 \text{ N/m}^2$, calculate the critical speed of the			
	shaft and range of speed over which it is unsafe to run the shaft.			
	Assume the shaft to be massless.			
10.	A rotor of mass 10 kg is mounted mid-way on a 20 mm diameter	13	BT-5	Evaluate
	horizontal shaft supported at the ends by two bearings. The bearing			
	span is 800 mm. Because of certain manufacturing defect, the centre			
	of gravity of the disc is 0.1 mm away from the geometric centre of			
	the rotor. If the system rotates at 50 r.p.s., determine the amplitude of			
	steady state vibrations and the dynamic load transmitted to the			
	bearings Take $E = 200 \text{ GN/m}^2$.			

11.	Reduce the stepped shaft shown in figure to torsionally equivalent shaft of 100 mm diameter. 	13	BT-5	Evaluate
12.	A stepped shaft is 0.05 m in diameter for the first 0.6 m length, 0.08 m diameter for the next 1.8 m and 0.03 m diameter for the remaining 0.25 m length. While the 0.05 m diameter end is fixed, the 0.03 m diameter end of the shaft carries a rotor of mass moment of inertia 14.7 kg-m ² . If the modulus of rigidity of the shaft material is 0.83 x 10^{11} N/m ² , find the natural frequency of torsional oscillations,	13	BT-5	Evaluate
13.	neglecting the inertia effect of the shaft. The shaft shown in fig. carries two masses. The mass A is 350 kg with radius of gyration 0.8 m and the mass B is 550 kg with radius of gyration 0.95 m. Determine the location of the node and the natural frequency of free torsional vibration of the system. It is desired to have the node at the midsection of the shaft of 120 mm diameter. By changing the diameter of the section having a 90 mm diameter, what will be the new diameter. Take C=84 GN/m ² \overrightarrow{A} \overrightarrow{A}	13	BT-5	Evaluate

14.	Three rotors A, B and C having moment of inertia of 2000, 6000 and	13	BT-5	Evaluate
	3500 kg- m^2 respectively are carried on a uniform shaft of 0.35m			
	diameter. The length of the shaft between the rotors A and B is 6 m			
	and between B and C is 32 m. Find the natural frequency of the			
	torsional vibrations. The modulus of rigidity for the shaft material is			
	80 GN/m ² .			
15.	An electric motor rotating at 1500 r.p.m drives a centrifugal pump at	13	BT-5	Evaluate
	500 r.p.m through a single stage reduction gearing. The moments of			
	inertia of the electric motor and the pump impeller are 400 kg-m^2 and			
	1400 kg- m ² respectively. The motor shaft is 45 mm in diameter and			
	180 mm long. The pump shaft is 90 mm in diameter and 450 mm			
	long. Determine the frequency of torsional oscillations of the system,			
	neglecting the inertia of the gears. The modulus of rigidity for the			
	shaft material is 84 GN/m ² .			
16.	Between a solid mass of 10 kg and the floor are kept two slabs of	13	BT-5	Evaluate
	isolators, natural rubber and felt in series. The natural rubber slab has			
	a stiffness of 3000 N/m and an equivalent viscous damping			
	coefficient of 100 N-sec/m. The felt has a stiffness of 12000 N/m and			
	equivalent viscous damping coefficient of 330 N-sec/m. Determine			
	the undamped and the damped natural frequencies of the system in			
	vertical direction, neglecting the mass of the isolators.			
17.	In a single degree damped vibrating system, the suspended mass of	13	BT-5	Evaluate
	3.75 kg makes 12 oscillations in 7 seconds when disturbed from its			
	equilibrium position. The amplitude decreases to 0.33 of the initial			
	vale after 4 oscillations. Determine (i) Stiffness of the spring (ii)			
	Logartmic decrement (iii) Damping factor (iv) damping coefficient			
18.	A body of 50 kg mass is supported by an elastic structure of stiffnes	13	BT-5	Evaluate
	10 kN/m. The motion of the body is controlled by a dashpot such			
	that the amplitude of vibration decreases to one-tenth of its original			
	value after two complete vibrations. Determine (i) damping ratio (ii)			
	damping force at 1 m/s (iii) natural frequency of vibration.			

	PART-C (15 Marks)				
S.No	Questions	Marks	Level	Competence	
1	A vertical steel shaft 15 mm diameter is held in long bearings1	15	BT-6	Create	
	m apart and carries at its middle a disc of mass 15 kg. The				
	eccentricity of the centre of gravity of the disc from the centre				
	of the rotor is 0.30mm. The modulus of elasticity for the shaft				
	material is 200 GN/m^2 and the permissible stress is 70 MN/m^2 .				
	Determine: (i) The critical speed of the shaft and (ii) The range				
	of speed over which it is unsafe to run the shaft. Neglect the				
	mass of the shaft.				
2	Determine: (i) the critical damping co-efficient, (ii) the	15	BT-5	Evaluate	
	damping factor, (iii) the natural frequency of damped				
	vibrations, (iv) the logarithmic decrement and (v) the ratio of				
	two consecutive amplitudes of a vibrating system which				
	consists of a mass of 25 kg, a spring of stiffness 15 kN/m and				
	a damper. The damping provided is only 15% of the critical				
	value.				
3	A steel shaft of diameter 10 cm is carrying three masses 2.5 kg,	15	BT-3	Apply	
	3.75 kg and 7 kg respectively. The distances between the rotors				
	are 0.70 m. Determine the natural frequencies of torsional				
	vibrations. The radii of gyration of three rotors are 0.20, 0.30,				
	0.40m respectively. Take $G = 9 \times 10^8 \text{ N/m}^2$.				
4	(i) A cantilever shaft 50 mm diameter and 300 mm long has	8	BT-4	Analyze	
	a disc of mass 100 kg at its free end. The young's modulus				
	for the shaft material is 200 GN/m^2 . Determine the				
	frequency of longitudinal and transverse vibrations of the				
	shaft.				
	(ii) Explain with sketches different cases of damped vibrations.	7			
5	A machine mounted on springs and filled with a dashpot has a	15	BT-5	Evaluate	
	mass of 100 kg. There are four springs, each of stiffness 25				
	kN/m. The amplitude of vibrations reduces from 40 mm to 10				
	mm in three complete oscillations. Assuming that the damping				
	forces varies as the velocity. Determine (i) the resistance of				

dashpot at unit velocity. (ii) the ratio of frequencies of damped		
and undamped vibrations (iii) the periodic time of damped		
vibrations.		

	UNIT IV - FORCED VIBRATION			
Respo	nse of one degree freedom systems to periodic forcing – Harmonic disturba	nces –Di	sturbance caused	
by unl	palance – Support motion –transmissibility – Vibration isolation vibration	measure	ment	
	PART – A (2 Marks)			
S.No	Questions	Level	Competence	
1.	Define forced vibration with sketch.	BT-2	Understand	
2.	Generalize the sources of excitation in forced vibration.	BT-6	Create	
3.	Define damping ratio or damping factor.	BT-1	Remember	
4.	Define logarithmic decrement.	BT-1	Remember	
5.	Give equation for damping factor ζ and damped frequency f_d .	BT-2	Understand	
6.	Define harmonic forcing.	BT-2	Understand	
7.	A vibrating spring having a mass of 1 kg is suspended by a spring of	BT-4	Analyze	
	stiffness 1000 N/m and its put to harmonic excitation of 10 N. Determine			
	the resonant frequency and the amplitude of vibration at resonance.			
8.	Write the expression for magnification factor.	BT-2	Understand	
9.	Define transmissibility.	BT-1	Remember	
10.	Define transmissibility ratio or isolation factor.	BT-1	Remember	
11.	Illustrate vibration isolation.	BT-3	Apply	
12.	Write the governing differential equation for forced vibration.	BT-4	Analyze	
13.	Mention the instruments used for measurement of vibration levels in a	BT-3	Remember	
	body.			
14.	Show that for effective isolation of vibration, frequency ratio $r > \sqrt{2}$.	BT-6	Create	
15.	Identify the type of motion that is exhibited by a vibrating system when	BT-1	Remember	
	it is critically damped.			
16.	Recognize the methods of isolation in the vibration.	BT-3	Apply	
17.	Write the equation of motion for the forced damped vibration.	BT-5	Evaluate	
18.	Indicate the various types of damping.	BT-4	Analyze	
19.	Define steady state vibration.	BT-5	Evaluate	
20.	Define transient Vibration.	BT-1	Remember	
21.	Illustrate amplitude of vibration.	BT-3	Apply	
22.	Define magnification factor.	BT-1	Remember	
23.	Define whirling speed of rotating shaft.	BT-2	Understand	
24.	Illustrate damped force vibration system.	BT-3	Apply	

25.	Mention different types of forced vibration.	BT-1	Remember
-----	--	------	----------

	PART-B (13 Marks)			
S.No	Questions	Marks	Level	Competence
1.	A vibrating system having mass 1 kg is suspended by a spring	13	BT-3	Apply
	of stiffness 1000 N/m and it is put to harmonic excitation of 10			
	N. Assuming viscous damping, determine (i) the resonant			
	frequency (ii) the phase angle at resonance (iii) the amplitude			
	at resonance (iv) the frequency corresponding to the peak			
	amplitude and(v) damped frequency. Take $C = 40$ N-sec/m.			
2.	A mass of 50kg is supported by an elastic structure of	13	BT-3	Apply
	total stiffness 20 kN/m. A simple harmonic disturbing force in			
	Newton, expressed as 75 cos12t acts on the mass. If t is			
	expressed in seconds and the damping force is 0.25, find			
	amplitude of the vibration and phase angle caused by the			
	damping.			
3.	A mass of 10 kg is suspended from one end of a helical spring;	13	BT-3	Apply
	the other end being fixed. The stiffness of the spring is 10			
	N/mm. The viscous damping causes the amplitude to decrease			
	to one-tenth of the initial value in four complete oscillations. If			
	a periodic force of 150 cos50t N is applied at the mass in the			
	vertical direction. Find the amplitude of the forced vibrations?			
	What is its value of resonance?			
4.	A harmonic exiting force of 25 N is acting on a machine part	13	BT-5	Evaluate
	which is having a mass of 2 kg and is vibrating in a viscous			
	medium. The exciting force causes resonant amplitude of 12.5			
	mm with a period of 0.2 sec. Determine the damping			
	coefficient.			
5.	A body having a mass of 15 kg is suspended from a spring	13	BT-5	Evaluate
	which deflects 12 mm under the weight of the mass. Determine			
	the frequency of the free vibrations. What is the viscous			
	damping force needed to make the motion a periodic at a			

	speed of 1mm/s? If, when damped to this extent, a disturbing			
	force having a maximum value of 100 N and vibrating at 6 Hz			
	is made to act on the body, determine the amplitude of the			
	ultimate motion.			
6.	A single cylinder vertical petrol engine of total mass of 200	13	BT-3	Apply
	kg is mounted upon a steel chassis frame. The vertical static			
	deflection of the frame is 2.4 mm due to the weight of the			
	engine .The mass of the reciprocating parts is 9 kg and stroke			
	of the piston is 160 mm with S.H.M. If dashpot of damping			
	coefficient of 1 N/mm/s is used to dampen the vibrations,			
	calculate at steady state (i) The amplitude of forced vibrations			
	at 500 r.p.m. engine speed. (ii) The speed of the driving shaft			
	at which resonance will occur.			
7.	A vertical single stage air compressor having a mass of 500 kg	13	BT-5	Evaluate
	is mounted on spring having stiffness of 1.96 x 10^5 N/m and			
	dashpots with damping factor of 0.2 m. The rotating parts are			
	completely balanced and the equivalent reciprocating parts			
	weigh 20 kg. The stroke is 0.2 m. Determine the dynamic			
	amplitude of vertical motion and the phase difference between			
	the motion and the excitation force if the compressor is			
	operated at 200 r.p.m.			
8.	A vehicle has a mass of 490 kg and the total spring constant of	13	BT-5	Evaluate
	its suspension system is 58800 N/m. The profile of the road			
	may be approximated to a sine wave of amplitude 40 mm and			
	wavelength 4 metres. Determine the critical speed of the			
	vehicle, the amplitude of the steady state motion of the mass			
	when the vehicle is driven at critical speed and the damping			
	factor is 0.5 the amplitude of steady state motion of the mass			
	when the vehicle is driven at 57 km/hr and the damping factor			
	is 0.5 .			
9.	A vibratory body of mass 150 kg supported on springs of total	13	BT-3	Apply
	stiffness 1050 kN/m has a rotating unbalance force of 525 N at			
	a speed of 6000rpm. If the damping factor is 0.3, determine (i)			

	the amplitude caused by the unbalance and its phase angle (ii)			
	the transmissibility and (iii) the actual force transmitted and its			
	phase angle.			
10.	A single cylinder engine has an out of balance force of 500 N	13	BT-3	Apply
	at an engine speed of 300 r.p.m. The total mass of engine is			
	150 kg and it is carried on a set of springs of total stiffness 300			
	N/cm. (i) Find the amplitude of steady motion of the mass and			
	the maximum oscillating force transmitted to the foundation.			
	(ii) If a viscous damping is interposed between the mass			
	and the foundation, the damping force being 1000 N at 1 m/s			
	of velocity, find the amplitude of the forced damped			
	oscillation of the mass and its angle of lag with disturbing			
	force.			
11.	An industrial machine weighting 445 kg is supported on a	13	BT-5	Evaluate
	spring with a statical deflection of 0.5 cm. If the machine has			
	rotating imbalance of 25 kg- cm, determine the force			
	transmitted at 1200 r.p.m. and the dynamic amplitude at that			
	speed.			
12.	The mass of an electric motor is 120 kg and it runs at 1500	13	BT-5	Evaluate
	r.p.m. The armature mass is 35 kg and its centre of gravity			
	lies 0.5 mm from the axis of rotation. The motor is mounted			
	on five springs of negligible damping so that the force			
	transmitted is one-eleventh of the impressed force. Assume			
	that the mass of the motor is equally distributed among the			
	five springs. Determine (i) the stiffness of each spring (ii)			
	the dynamic force transmitted to the base at the operating			
	speed (iii) the natural frequency of system.			
13.	A centrifugal fan of mass 5kg has a rotating unbalance of	13	BT-3	Apply
	0.25kg.m when dampers having damping factor of 0.2 are			
	used specify, the springs for mounting such that only 10% of			
	unbalance force is transmitted to the floor. The fan is running			
	at constant speed of 1000rpm.			
14.	A compressor supported symmetrically on four springs has a			

	mass of 100 kg. The mass of the reciprocating parts is 2 kg	13	BT-5	Evaluate
	which moves through a vertical stroke of 80 mm with SHM.			
	Neglecting damping, determine the combined stiffness of the			
	springs so that the force transmitted to the foundation is 1/25th			
	of the impressed force. The machine crankshaft rotates at 1000			
	r.p.m. When the compressor is actually supported on the			
	springs, it is found that the damping reduces the amplitude of			
	successive free vibrations by 25%. Find the force transmitted			
	to the foundation at 1000r.p.m and the force transmitted to the			
	foundation at resonance and the amplitude of the vibrations at			
	resonance.			
15.	A trailer has 1000 kg mass when fully loaded and 250 kg	13	BT-5	Evaluate
	when empty. The spring of the suspension is 350 kN/m. The			
	damping factor is 0.5 when the trailer is fully loaded. The			
	speed is 100 km/hr. The varies sinusoidally with a wave			
	length of 5 m. Determine the amplitude ratio of the trailer			
	when fully loaded and empty.			
16.	The vibrations of the platform of railway station are periodic	13	BT-3	Apply
	at the frequency range of 12-50 Hz. A vibration measuring			
	instrument is to be installed on some foundation independent			
	of the platform. The small foundation is supported by four			
	identical springs resting on the platform. The total mass of			
	the instrument and foundation is 50 kg. What is the			
	maximum value of spring stiffness, if the amplitude of			
	transmitted vibration is to be less than 10% of the platform			
	vibration over the given frequency range. Take damping			
	factor 0.20. System is treated as single degree of freedom.			
17.	A vibratory body of mass 150 kg supported on springs of total	13	BT-3	Apply
	stiffness 1050 kN/m has a rotating unbalance force of 525 N at			
	a speed of 6000 rpm. If the damping factor is 0.3, determine (i)			
	the amplitude caused by the unbalance and its phase angle (ii)			
	the transmissibility and (iii) the actual force transmitted and its			
	phase angle.			

18.	A machine of mass one tonne is acted upon by an external	13	BT-5	Evaluate
	force of 2450 N at a frequency of 1500 rpm. To reduce the			
	effects of vibration, isolator of rubber having a static			
	deflection of 2 mm under the machine load and an estimated			
	damping $\mathcal{E} = 0.2$ are used. Determine (i) the force transmitted			
	to the foundation (ii) the amplitude of vibration of machine			
	(iii) the phase lag.			

	PART-C (15 Marks)			
S.No	Questions	Marks	Level	Competence
1.	A trailer has 1000 kg mass when fully loaded and 250 kg when	15	BT-5	Evaluate
	empty. The spring of the suspension is 350 kN/m. The damping			
	factor is 0.5 when the trailer is fully loaded. The speed is 100			
	km/hr. The road varies sinusoidally with a wave length of 5m.			
	Determine the amplitude ratio of the trailer when fully loaded			
	and empty.			
2.	A vibrating system having a mass of 1.5 kg is suspended by a	15	BT-6	Create
	spring of stiffness 1200 N/m and it is put to harmonic			
	excitation of 12 N. Assuming viscous damping, Determine, (i)			
	Resonant Frequency (ii) Phase angle at resonance (iii)			
	Amplitude at resonance (iv) Damped frequency; Take $c = 48$			
	Ns/m.			
3.	A 75 kg machine is mounted on springs of stiffness $K= 11.76$	15	BT-4	Analyze
	X 10^5 N/m with an assumed damping factor of 0.2. A 2 kg			
	piston within the machine has a reciprocating motion with a			
	stroke of 0.08 m and a speed of 3000 rpm. Assuming the			
	motion of the piston to be harmonic, determine the amplitude			
	of vibration of the machine and the vibratory force transmitted			
	to the foundation.			
4.	The support of a spring mass system is vibrating with	15	BT-3	Apply
	amplitude of 6 mm and a frequency of 1200 cycles/min. If a			
	mass is 95 kg and the spring has a stiffness of 1950 N/m,			
	determine the amplitude of vibration of the mass. If a			

	damping factor of 0.2 is include, what would be the			
	amplitude?			
5.	A vehicle of mass 490 kg and total spring constant of its	15	BT-6	Create
	suspension system is 60 x 10^3 N/m. The profile of the road			
	may be approximated to a line curve of amplitude 4.0 cm and			
	wavelength of 4.0 meters. Determine: (i) the critical speed of			
	the vehicle			
	(ii) the amplitude of the steady state motion of the mass when			
	the vehicle is driven at critical speed and the damping factor			
	is 0.5 ; and			
	(iii) the amplitude of the steady state motion of the mass when			
	the vehicle is driven at 57 km/hr and the damping factor is 0.5.			

UNIT V - MECHANISM FOR CONTROL

Governors – Types – Centrifugal governors – Gravity controlled and spring controlled centrifugal governors – Characteristics – Effect of friction – Controlling force curves. Gyroscopes –Gyroscopic forces and torques – Gyroscopic stabilization – Gyroscopic effects in Automobiles, ships and airplanes

S.No	Questions	Level	Competence
1.	Point out the function of governor.	BT-1	Remember
2.	Classify governors.	BT-3	Apply
3.	Differentiate between governor and fly wheel.	BT-3	Apply
4.	Define sensitiveness of a governor.	BT-2	Understand
5.	Classify spring controlled governors.	BT-4	Analyze
6.	Define coefficient of sensitiveness.	BT-2	Understand
7.	Define hunting of governor.	BT-2	Understand
8.	Mention the isochronous condition in a governor.	BT-2	Understand
9.	Recognize the application of gyroscopic principle.	BT-3	Apply
10.	Define gyroscopic torque.	BT-1	Remember
11.	Identify the effects of gyroscopic couple on rolling of ship.	BT-5	Evaluate
12.	Define gyroscopic couple.	BT-1	Remember
13.	Write the expression for gyroscopic couple.	BT-1	Remember
14.	Define reactive gyroscopic couple.	BT-5	Evaluate
15.	Generalize the differences between stable governors and isochronous	BT-1	Remember
	governors.		
16.	A flywheel of mass 10 kg and radius of gyration 200 mm is spinning	BT-4	Analyze
	about its axis, which is horizontal and is suspended at a point 150 mm		
	from the plane of rotation of the flywheel. Determine the angular		
	velocity of precession of the flywheel. The spin speed of the flywheel is		
	900 rpm.		
17.	Mention the gyroscopic effect on a sea going vessels.	BT-1	Remember
18.	Mention the gyroscopic effect on a flying machine.	BT-1	Remember
19.	State the expression for height in the case of Watt Governor.	BT-1	Remember
20.	Differentiate reaction torque and active torque.	BT-4	Analyze
21.	Define equilibrium speed of governors.	BT-1	Remember
22.	Define sensitiveness of a governor.	BT-1	Remember
23.	Illustrate coefficient of insensitiveness of a governor.	BT-3	Apply

PART – A (2 Marks)

24.	Depict the effect of gyroscopic couple in ships during pitching.	BT-2	Understand
25.	List some of the terms related to motion of ships using gyroscopic	BT-1	Remember
	principle.		

	PART-B (13 Marks)		PART-B (13 Marks)				
S.No	Questions	Marks	Level	Competence			
1	(i)The length of the upper arm of a Watt governor is 400 mm	5	BT-3	Apply			
	and its inclination to the vertical is 30°. Find the percentage						
	increase in speed, if the ball rise by 20mm.						
	(ii)In the Watt governor, length of each arm is 350 mm, and	8					
	they are pivoted on the axis of rotation. Determine the						
	governor height and the radii of rotation of the balls, when (a)						
	the governor speed is 62 r.p.m. and (b) the governor speed is						
	75r.p.m.						
2.	The length of the upper and lower arms of a porter governor	13	BT-3	Apply			
	are 200 mm and 250 mm respectively. Both the arms are						
	pivoted on the axis of rotation. The central load is 150 N, the						
	weight of the each ball is 20 N and the friction of the sleeve						
	together with the resistance of the operating gear is equivalent						
	to a force of 30N at the sleeve. If the limiting inclinations of						
	the upper arms to the vertical are 30° and 40° , taking friction						
	in to account, find the range of speed of the governor.						
3.	A loaded governor of the Porter type has equal arms and	13	BT-3	Apply			
	links each 250 mm long. The mass of each ball is 2 kg and						
	the central mass is 12 kg. When the ball radius is 150 mm, the						
	valve is fully open and when the radius is 185 mm, the valve						
	is closed. Find the maximum speed and the range of speed. If						
	the maximum speed is to be increased 20% by an addition of						
	mass to the central load, find what additional mass is						
	required.						
4.	Each arm of a Porter governor is 250 mm long. The upper and	13	BT-5	Evaluate			
	lower arms are pivoted to links of 40 mm and 50 mm						

	respectively from the axis of rotation. Each ball has a mass of			
	5 kg and the sleeve mass is 50 kg. The force of friction on the			
	sleeve of the mechanism is 40 N. Determine the range of			
	speed of the governor for extreme radii of rotation of 125 mm			
	and 150mm.			
5.	A Proell governor has arms of 300 mm length. The upper	13	BT-5	Evaluate
	arms are hinged on the axis of rotation, whereas the lower			
	arms are pivoted at a distance of 35 mm from the axis of			
	rotation. The extensions of lower arms to which the balls			
	are attached are 100 mm long. The mass of each ball is 8			
	kg and the mass on the sleeve is 60 kg. At the minimum			
	radius of rotation of 200 mm, the extensions are parallel to			
	the governor axis. Determine the equilibrium speed of the			
	governor for the given configuration. What will be the			
	equilibrium speed for the maximum radius of 250 mm?			
6.	Calculate the minimum speed of a porter governor, which	13	BT-3	Apply
	has equal arms each of 200 mm and are pivoted on the axis			
	of rotation. The mass of each ball is 4 kg and the central			
	mass on the sleeve is 20 kg. The radius of rotation of the			
	ball is 100mm when the governor begins to lift and 130mm			
	the governor is at maximum speed.			
7.	A spring loaded governor of Wilson-Hartnell type is shown	13	BT-3	Apply
	in fig. Two balls each of mass 6 kg are connected by two			
	spring. A speed of the governor is 600 r.p.m. in its mean			
	position. The radius of the governor ball is 150 mm. The			
	tension in each of the spring A is 1300 N. Find the tension in			
	the spring B for this position. Find the necessary stiffness of			
	the spring B if the speed is 630 r.p.m. when the sleeve moves			
	up 20 mm from mean position and if stiffness of each spring			
	A is 10 kN/m.			
8.	A ship propelled by a turbine rotor which has a mass of 5	13	BT-3	Apply
	tonne and a speed of 2100 r.p.m. The rotor has a radius of			
	gyration of 0.5 m and rotates in a clockwise direction when			

	viewed from the stern. Find the gyroscopic effects in the			
	following conditions:			
	1. The ship sails at a speed of 30 km/h and steers to the			
	left in a curve having 60 m radius.			
	The ship pitches 6 degree above and 6 degree below the			
	horizontal position. The bow is descending with its maximum			
	velocity. The motion due to pitching is simple harmonic and			
	the periodic time is 20 seconds.3. The ship rolls and at a			
	certain instant it has an angular velocity of 0.03 rad/s			
	clockwise when viewed from stern. Determine also the			
	maximum angular acceleration during pitching. Explain how			
	the direction of motion due to gyroscopic effect is determined			
	in each case.			
9.	The turbine rotor of a ship has a mass of 8 tonnes and a radius	13	BT-3	Apply
	of gyration0.6 m. It rotates at 1800 r.p.m. clockwise, when			
	looking from the stern. Determine the gyroscopic couple, if			
	the ship travels at 100 km/hr and steer to the left in a curve of			
	75 m radius.			
10.	An aero plane makes a complete half circle of 50 metres	13	BT-3	Apply
	radius, towards left, when flying at 200 km per hr. The rotary			
	engine and the propeller of the plane has a mass of 400 kg			
	and a radius of gyration of 0.3 m. The engine rotates at 2400			
	r.p.m. clockwise when viewed from the rear. Find the			
	gyroscopic couple on the aircraft and state its effect on it.			
11.	(i) Explain the effect of Gyroscopic couple on a Naval ship	7	BT-4	Analyze
	during the pitching.			
	(ii) Explain the effect of Gyroscopic couple on a Aero plane.	6		
12.	The rotor of a turbine installed in a boat with its axis along	13	BT-5	Evaluate
	the longitudinal axis of the boat makes 1500 r.p.m.			
	clockwise when viewed from the stern. The rotor has a			
	mass of 750 kg and a radius of rotation of 300 mm. If at			
	an instant, the boat pitches in the longitudinal vertical plane			

	velocity of 1 rad/s, determine the torque acting in the			
	boat and the direction in which it tends to turn the boat at			
	the instant.			
13.	The turbine rotor of a ship has a mass of 20 tonnes and a	13	BT-5	Evaluate
	radius of gyration 0.75. Its speed is 2000 r.p.m. The ship			
	pitches 6° above and below the horizontal position. One			
	complete oscillation takes 18 seconds and the motion is			
	simple harmonic. Determine (i) the maximum couple			
	tending to shear the holding down bolts of the turbine (ii)			
	The maximum angular acceleration of the ship during			
	pitching (iii) The direction in which the bow will tend to			
	turn while rising, if the rotation of the rotor is clockwise			
	when looking from rear.			
14.	The turbine rotor of a ship has a mass of 2000 kg and	13	BT-5	Evaluate
	rotates at a speed of 3000 r.p.m. clockwise when looking			
	from a stern. The radius of gyration of the rotor is 0.5 m.			
	Determine the gyroscopic couple and its effects upon the			
	ship when the ship is steering to the right in a curve of 100			
	m radius at a speed of 16.1 knots (1 knot = 1855 m/hr).			
	Calculate also the torque and its effects when the ship is			
	pitching in simple harmonic motion, the bow falling with			
	its maximum velocity. The period of pitching is 50 seconds			
	and the total angular displacement between the two			
	extreme positions of pitching is 12°. Find the maximum			
	acceleration during pitching motion.			
15.	In a spring controlled governor mass of each governor ball	13	BT-3	Apply
	is 6.80 kg and moves radially under the action of a			
	controlling force $F=a+br$, where 'r' is the ball path radius. If			
	the speed range is 42.5 to 44.0 radian per sec. and the			
	corresponding values of r are 12.38 cm and 13.01 cm, obtain			
	the values of 'a' and 'b'. Find the equilibrium speed in rad/sec			
	for $r = 12.7$ cm.			
16.	The arms of a Porter governor are 25 cm long and pivoted	13	BT-5	Evaluate

	on the governor axis, Mass of each ball is 5 kg and mass of			
	central sleeve is 30 kg. The radius of rotation of balls is 15			
	cm when the sleeve begins to rise and reaches a value of 20			
	cm for maximum speed. Determine the speed range of			
	governor.			
17.	The propeller of aero weighs 500 N and has radius of gyration	13	BT-5	Evaluate
	of 0.8 m. The propeller shaft rotates at 2000 rpm., clockwise,			
	as viewed from tail end. The plane turns left, making a U			
	turn, i.e., through 180 ⁰ , of 120 m radius, at a speed of 360			
	kmph, determine the gyroscopic couple and its effect on the			
	aircraft. Also find the extra pressure on bearings if the			
	distance between two bearings of the propeller is 0.75 m.			
18.	A disc with radius of gyration 60 mm and a mass of 4.0 kg	13	BT-3	Apply
	is mounted centrally on a horizontal axle of 80 mm length			
	between the bearings. It spins about the axle at 800 r.p.m.			
	anticlockwise when viewed from the right hand side			
	bearing. The axle processes about a vertical axis at 50 r.p.m.			
	in the anticlockwise direction when viewed from above.			
	Determine the resultant reaction at each bearing due to the			
	mass and the gyroscopic effect.			

	PART-C (15 Marks)				
S.No	Questions	Marks	Level	Competence	
1.	(i) Explain the function of a proell governor with the help of a	8	BT-3	Apply	
	neat sketch. Derive the relationship among the various forces				
	acting on the link.				
	(ii) What are centrifugal governors? How do they differ from	7	BT-3	Apply	
	inertia governors?				
2.	In a Hartnell governor the lengths of ball and sleeve arms of a	15	BT-5	Evaluate	
	bell crank lever are 120 mm and 100 mm respectively. the				
	fulcrum of the bell crank lever is located at 140 mm from the				
	governor axis each governor ball is 4 kg.the governor runs at				
	5 rps with ball arms vertical and sleeve arms horizontal the				

	sleeve movement is found to be 10 mm (upwards) for an			
	increase of speed of 4%.find (i) maximum speed if the total			
	sleeve movement is limited to 20 mm (ii) the spring stiffness			
	(iii) sensitiveness of governor (iv) required spring stiffness for			
	isochronous at 300 rpm.			
3.	A ship is propelled by a turbine rotor which has a mass of 5	15	BT-4	Analyze
	tonnes and a speed of 2100 rpm. The rotor has a radius of			
	gyration of 0.5 m and rotates in a clockwise direction when			
	viewed from the stern. Find the gyroscopic effect in the			
	following conditions: (i) the ship sails at a speed of 30 km/hr			
	and steers to the left in curve having 60 m radius; (ii) the ship			
	pitches 6° above and 6° below the horizontal position. The bow			
	is descending with its maximum velocity. the motion due to			
	pitching is simple harmonic and a periodic time is 20			
	seconds.(iii) the ship rolls and at a certain instant it has an			
	angular velocity of 0.03 rad/sec clockwise when viewed from			
	stern.			
4.	The mass of the turbine rotor of a ship is 20 tonnes and has a	15	BT-6	Create
	radius of gyration of 0.60 m. Its speed is 2000 r.p.m. The ship			
	pitches 6° above and 6° below the horizontal position. A			
	complete oscillation takes 30 seconds and the motion is simple			
	harmonic. Determine the following: 1. Maximum gyroscopic			
	couple, 2. Maximum angular acceleration of the ship during			
	pitching, and 3. The direction in which the bow will tend to			
	turn when rising, if the rotation of the rotor is clockwise when			
	looking from the left.			
5.	A Rear Engine automobiles is travelling along a track of 100	15	BT-6	Create
	m mean radius. Each of 4 road wheels have I= moment of			
	inertia = 2 kg m^2 and effective dia = 60 cm . The rotating parts			
	inertia = 2 kg m ² and effective dia = 60 cm. The rotating parts of engine have I = moment of inertia = 1 kg m ² . The engine			
	inertia = 2 kg m^2 and effective dia = 60 cm . The rotating parts of engine have I = moment of inertia = 1 kg m^2 . The engine axis is parallel to rear axle and crank shaft rotates in the same			
	inertia = 2 kg m^2 and effective dia = 60 cm . The rotating parts of engine have I = moment of inertia = 1 kg m^2 . The engine axis is parallel to rear axle and crank shaft rotates in the same sense as the road wheels. The gear ratio between engine to back			

above road level. The width of track of vehicle is 1.5 m.		
Determine the limiting speed of vehicle around the curve for		
all four wheels to maintain contact with the road surface if this		
is not cambered.		